JP3681873B2 - Method for measuring substances - Google Patents

Method for measuring substances Download PDF

Info

Publication number
JP3681873B2
JP3681873B2 JP27169797A JP27169797A JP3681873B2 JP 3681873 B2 JP3681873 B2 JP 3681873B2 JP 27169797 A JP27169797 A JP 27169797A JP 27169797 A JP27169797 A JP 27169797A JP 3681873 B2 JP3681873 B2 JP 3681873B2
Authority
JP
Japan
Prior art keywords
substance
particles
measured
solid phase
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27169797A
Other languages
Japanese (ja)
Other versions
JPH11108926A (en
Inventor
聡 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP27169797A priority Critical patent/JP3681873B2/en
Publication of JPH11108926A publication Critical patent/JPH11108926A/en
Application granted granted Critical
Publication of JP3681873B2 publication Critical patent/JP3681873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測定対象物質を粒子状の固相担体へ捕捉させる捕捉反応を行う反応工程と、前記固相担体を含む反応系を洗浄してB/F分離を行う洗浄工程と、固相担体に捕捉された前記物質を測定する測定工程とを含む物質の測定方法において、洗浄工程を経た後の固相担体の残存量のばらつきに依存する測定値のばらつきを補正し、測定再現性を改善する方法に関する。特に、医療診断における臨床検査方法等に用いられる測定精度の向上した測定方法に関する。
【0002】
【従来の技術】
臨床検査分野における免疫測定法には、放射性同位体(RI)、酵素、発光物質、蛍光物質などを各々標識物質として結合させた抗体または抗原を用いるラジオイムノアッセイ(以下、「RIA」と略記する)、エンザイムイムノアッセイ(以下、「EIA」と略記する)、ケミルミネッセンスイムノアッセイ(以下、「CLIA」と略記する)、フローレッセンスイムノアッセイ(以下、「FIA」と略記する)に分類される。また、ラテックス等の不溶性担体粒子に担持された抗体または抗原と、それに対応する抗原または抗体とを反応させ、その反応に伴う反応混合物の透過光の変化から抗原抗体反応の速度を測定するラテックスイムノアッセイ(以下、「LPIA」と略記する)が知られている。
【0003】
これらの測定方法は、未反応の試料や標識物質の洗浄を行わずに直接測定するホモジニアスアッセイと、洗浄によって未反応の試料や過剰の標識物質を除去した後に測定を行うヘテロジニアスアッセイの2種類に大別される。これらのうち、後者のヘテロジニアスアッセイでは、目的物と不要物の洗浄分離(B/F分離)を行うために固相担体が用いられるが、固相担体がラテックス微粒子のように可動である場合は、B/F分離工程後の固相担体の残存量(回収量)にばらつきがみられ、測定値の再現性不良の原因の一つとなっていた。例えば、不溶性担体として一次抗体または抗原を磁性粒子に結合したものを用い、磁石を利用して磁性粒子を捕集して洗浄操作等を行う方法があるが、B/F分離を行うための洗浄操作中に、磁力により捕集された磁性粒子の一部が流出し、洗浄工程後の磁性粒子の回収量(残存量)にばらつきがみられ、測定値の再現性不良の原因の一つとなっていた。
【0004】
【発明が解決しようとする課題】
本発明は、上述したようなヘテロジニアスアッセイ等の、固相担体を用い洗浄操作を行う物質の測定方法において、B/F分離のための洗浄操作後の固相担体の回収量のばらつきに起因する測定結果のばらつきを補正してその測定再現性を改善し、測定精度をさらに向上させた測定方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明の方法は、測定対象物質を粒子状の固相担体へ捕捉させる捕捉反応を行う反応工程と、前記固相担体を含む反応系を洗浄してB/F分離を行う洗浄工程と、固相担体に捕捉された前記物質を測定する測定工程とを含む物質の測定方法において、
前記洗浄工程後の固相担体の残存量を指標として前記測定工程における測定値を補正することを特徴とする測定方法である。
【0006】
また、本発明の好ましい方法は、
(a)測定対象物質を、前記物質に特異的に結合しうる物質を担持させた不溶性磁性粒子からなる固相担体と反応容器の液体媒体中で反応させて、前記測定対象物質を前記不溶性磁性粒子へ捕捉させる反応工程、
(b)工程(a)における反応後の不溶性磁性粒子を、磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体を除去する洗浄工程、
(c)前記測定対象物質と同じ特異性を有する物質を担持させた不溶性蛍光色素標識粒子と、工程(b)における反応容器壁に付着した該不溶性磁性粒子とを、液体媒体中で反応させる工程、
(d)工程(c)の該不溶性磁性粒子を磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体及び未反応の不溶性蛍光色素標識粒子を除去する洗浄工程、及び
(e)工程(d)における反応容器壁に付着した該不溶性磁性粒子と反応した不溶性蛍光色素標識粒子の蛍光強度を測定することにより測定対象物質を測定する測定工程、
を含む物質の測定方法において、前記工程(b)及び/又は(d)における洗浄操作後の不溶性磁性粒子の残存量を指標として前記工程(e)における測定値を補正することを特徴とする測定方法である。
【0007】
本発明の方法は、微粒子状の固相担体に抗体又は抗原を担持し、ヒト又は動物の体液中の成分を抗原抗体反応を利用して前記担体に結合させ、この結合物質を標識体(標識抗体、標識抗原など)によって検出または定量する免疫測定法に代表されるような物質の測定方法において、洗浄工程を経た後の固相担体の粒子数の残存量のばらつきに起因する測定値のばらつきを、該固相担体の粒子数又は濃度を吸光度測定等の方法によってモニターして標識物の測定値を補正することにより、その測定再現性を改善した測定方法である。
【0008】
本発明の方法は測定精度が格段に向上したものであり、特に医療診断の分野における臨床検査法等に好適に用いられる。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の方法は、測定対象物質を粒子状の固相担体へ捕捉させる捕捉反応を行う反応工程と、前記固相担体を含む反応系を洗浄してB/F分離を行う洗浄工程と、固相担体に捕捉された前記物質を測定する測定工程とを含むものであれば特に限定されないが、具体的には、検体中に存在する抗体、抗原、核酸などの生物学的活性物質を検出、定量する方法として用いられる免疫測定法、ハイブリダイゼーション法等が挙げられる。
【0010】
(1)測定対象物質
本発明の測定対象物質としては、タンパク質、ペプチド、結合タンパク質、ハプテン、その他の抗原(抗体結合性物質)、それらに対する抗体、核酸などの生物学的活性物質を挙げることができる。
【0011】
抗原しては、これに結合する抗体が得られるものであれば特に制限されない。また、抗体としては、上記のような抗原に結合するものであれば制限されず、抗体分子全体であっても、フラグメントであってもよい。核酸としては、天然又は合成のDNA、RNAまたはオリゴヌクレオチドが挙げられる。
【0012】
(2)固相担体
本発明に用いる固相担体は、測定対象物質を捕捉するためのものであり、該担体上には、かかる捕捉反応を行うために、通常、前記測定対象物質と特異的に結合しうる物質を固定化(担持)する。
【0013】
固相担体の材質は、水又は測定に用いられる溶媒に不溶性であり、測定対象物質と特異的に結合する物質を固定化できるものであれば特に制限されないが、天然ゴムやポリスチレン、ポリスチレン−ジビニルベンゼン共重合体、スチレン−ブタジエン共重合体、ポリアクリル酸エステル、及びポリメタクリル酸エステル等のプラスチック、カオリン、炭素、カーボン、活性炭、ガラス、シリカ、アルミナ、シリカ−アルミナ等の無機物、ゼラチン、リポソーム、並びに血球等の天然有機高分子が挙げられる。
【0014】
固相担体の形状は、洗浄時に可動の形態を有する粒子状であれば特に限定されず、その粒径も数nm〜数mmの範囲で可能であるが、好ましくは平均粒径が0.1〜10μmの微粒子である。なお、本発明の方法は、液体による洗浄操作により流動し消失する可能性のある形状の固相担体を用いる場合に、その洗浄操作による消失後の残存量のばらつきを測定し、それに基づいて測定値のばらつきを補正することを特徴とするものであるから、本発明にいう「粒子状」とはかかる洗浄操作により消失する可能性のある微細形状のものすべてを包含するものである。
【0015】
本発明において好ましくは、固相担体として不溶性磁性粒子を用いることができる(特開平7−151755号参照)。
不溶性磁性粒子は、磁気誘導により容易に磁化され得るものであれば特に制限はされず、例えば、四三酸化鉄(Fe34)、三二酸化鉄(γ−Fe23)、各種フェライト、鉄、マンガン、ニッケル、コバルト、クロムなどの金属や、コバルト、ニッケル、マンガンなどの合金からなる磁性体微粒子、又はこれらの磁性体を内部に含んだポリスチレン、ポリアクリロニトリル、ポリメタクリロニトリル、ポリメタクリル酸メチル、ポリカプラミド、ポリエチレンテレフタレートなどの疎水性重合体、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルピロリドン、ポリビニルアルコール、ポリ(2−オキシエチルアクリレート)、ポリ(2−オキシエチルメタクリレート)、ポリ(2,3−ジオキシプロピルアクリレート)、ポリ(2,3−ジオキシプロピルメタクリレート)、ポリエチレングリコールメタクリレートなどの架橋した親水性重合体、もしくはそれぞれのモノマーの2〜4種程度の共重合体などのラテックス、ゼラチン、リポソームからなる磁性粒子、又は上記磁性体をラテックス、ゼラチン、リポソームなどの表面に固定化した磁性粒子などが用いられる。
【0016】
固相担体に固定化する前記測定対象物質と特異的に結合しうる物質としては、上述した生物学的活性物質と同様のタンパク質、ペプチド、結合タンパク質、その他の抗原、抗体、核酸などが挙げられる。例えば、前記測定対象物質が抗原である場合にはそれに結合する抗体、抗体である場合にはこれに結合する抗原が挙げられる。また、前記測定対象物質が抗体である場合、これに特異的に結合しううる物質は、この抗体に結合する抗体であってもよい。測定対象物質が核酸である場合、これと特異的に結合しうる物質は、その核酸の塩基配列に実質的に相補的な塩基配列を有する核酸である。
【0017】
前記測定対象物質が抗原であり、該抗原を測定する免疫測定法を行う場合は、固相担体に固定化する抗体として、好ましくはIgGが用いられるが、ペプシン、パパインなどの消化酵素あるいはジチオスレイトール、メルカプトエタノールなどの還元剤を用いて、F(ab’)2、Fab’、Fabなどの低分子化したものを用いてもよい。また、IgGだけでなくIgMあるいはこれをIgGと同様の処理で低分子化したフラグメントを用いてもよい。また、モノクローナル抗体、ポリクローナル抗体のいずれも適用できる。モノクローナル抗体を用いるときは、B型肝炎ウィルス表面抗原のように繰り返し構造を持つタンパク質や、CA19−9抗原のように分子内にエピトープを複数持つ抗原に対してはモノクローナル抗体は1種類以上で使用できる。また、認識エピトープの異なるものを2種類以上組み合わせても使用できる。
【0018】
これらの物質を固相担体へ固定化する方法としては、物理的吸着法や、共有結合法、イオン結合法といった化学的に担持させる方法などが用いられる。
物理的吸着法としては、担体粒子に抗体又は抗原を直接固定化する方法、アルブミンなどの他のタンパク質に化学的に結合させてから吸着させて固定化する方法などが挙げられる。
【0019】
化学的に担持させる方法としては、担体表面に存在するアミノ基、カルボキシル基、メルカプト基、ヒドロキシル基、アルデヒド基、エポキシ基などを化学的に修飾することにより抗体、抗原等の分子と結合させることができる官能基を利用して、直接担体上に固定化する方法、担体と抗体、抗原等の分子との間にスペーサー分子(カルボジイミド化合物など)を化学結合で導入して固定化する方法、アルブミンなどの他のタンパク質に抗体、抗原等を結合させた後、そのタンパク質を担体に化学結合させる方法などが挙げられる。
【0020】
(3)反応工程
本発明においては、このようにして得られる固相担体を測定対象物質と反応させ、該担体上に固定化された測定対象物質と特異的に結合する物質を介して、該測定対象物質を固相担体へ捕捉させる。反応は、好ましくは反応容器の液体媒体中で混合することにより行う。免疫測定法の場合はpH5〜10、好ましくはpH7〜9程度で反応を行う。目的のpHを維持するために、通常、緩衝液が用いられ、例えばリン酸、トリス(ヒドロキシメチル)アミノメタン等が例示されるが、これらに限られない。
【0021】
(4)洗浄工程
前記捕捉反応の後、測定対象物質を捕捉した固相担体を含む反応系を洗浄して、未反応の体液成分や未反応の標識体等の物質を除去するB/F分離を行う。
【0022】
未反応の物質を固相担体から洗浄・分離除去する方法としては、遠心分離、フィルターによる濾過、磁場による磁性分離などがある。
例えば、固相担体を遠心分離等により集めて未反応物を含む液体媒体(上清)を吸引除去する、あるいは必要に応じてさらに固相担体を適当な洗浄液に懸濁させ、撹拌した後遠心分離等により分離して洗浄液のみをまた吸引除去し、この操作を数回繰り返す、等の方法をとることができる。また、磁性分離としては、固相担体として不溶性磁性粒子を用い、不溶性磁性粒子を含む反応容器に磁場を作用させ、磁性粒子を反応容器壁に付着させて集めた後反応液(上清)を除去し、さらに必要に応じて適当な洗浄液を加え、同様に磁場を作用させた後上清を除去する操作を繰り返すことにより行われる。
【0023】
(5)測定工程
前記洗浄工程の後、固相担体に捕捉された測定対象物質を測定する。測定は、通常のイムノアッセイと同様に行えばよい。例えば、標識物質が化学発光物質または蛍光色素であれば、標識物質が発する発光または蛍光を、標識物質が酵素であれば、この酵素活性を測定することにより、測定対象物質を測定することができる。また、標識物質がラジオアイソトープ(放射性同位体)である場合には、標識物質の放射活性を測定すればよい。
【0024】
(6)不溶性磁性粒子を用いた測定方法
本発明では、固相担体として前述した不溶性磁性粒子を用いる場合、標識物質として測定対象物質と同じ特異性を有する物質を固定化させた不溶性蛍光色素標識粒子を用い、競合法に基づいて測定する方法をとることもできる。その方法は以下の工程を含むものである。
(a)測定対象物質を、前記物質に特異的に結合しうる物質を担持させた不溶性磁性粒子からなる固相担体と反応容器の液体媒体中で反応させて、前記測定対象物質を前記不溶性磁性粒子へ捕捉させる反応工程。
(b)工程(a)における反応後の不溶性磁性粒子を、磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体を除去する洗浄工程。
(c)前記測定対象物質と同じ特異性を有する物質を担持させた不溶性蛍光色素標識粒子と、工程(b)における反応容器壁に付着した該不溶性磁性粒子とを、液体媒体中で反応させる工程。
(d)工程(c)の該不溶性磁性粒子を磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体及び未反応の不溶性蛍光色素標識粒子を除去する洗浄工程。
(e)工程(d)における反応容器壁に付着した該不溶性磁性粒子と反応した不溶性蛍光色素標識粒子の蛍光強度を測定することにより測定対象物質を測定する測定工程。
【0025】
不溶性蛍光色素標識粒子に用いる標識色素としては、蛍光色素であればいずれも使用できる。例えば、ユーロピウム(Eu)、テルビウム(Tb)、サマリウム(Sm)などの希土類キレートや、フィコシアニン、フィコエリスリンなどのフィコビリプロテイン、フルオレッセイン、テトラメチルローダミン、テキサスレッド、4−メチルウンベリフェリン、7−アミノ−4−メチルクマリンなどが用いられる。
【0026】
色素標識を行う不溶性担体粒子の材質としては、前記不溶性磁性粒子で述べたものと同様に、ポリスチレン、ポリアクリロニトリル、ポリメタクリロニトリル等の疎水性重合体、ポリアクリルアミド、ポリビニルピロリドン、ポリアクリル酸系樹脂等の親水性重合体、またはそれぞれのモノマーの共重合体などのラテックス、ゼラチン、リポソームのほか、赤血球のような生体成分、金コロイドのような金属コロイド粒子等が用いられる。
【0027】
かかる不溶性担体粒子に蛍光色素を担持させる方法としては、特開平151755公報に記載されているように、例えば粒子表面の官能基を利用して蛍光色素を化学的に結合させる方法、粒子を重合して合成する際に色素を加えて粒子内部に封じ込める方法、粒子内部又は表面に物理的に吸着、封入させる方法、あらかじめタンパク質、ペプチドなどと物理的又は化学的に色素を結合させておいてからそのタンパク質、ペプチドを粒子に固定化する方法などがある。
【0028】
こうして得られる蛍光粒子には、測定しようとする生物学的活性物質と同じ特異性を有する抗原又は抗体、核酸等が前述のとおり物理的又は化学的に固定化される。
【0029】
なお、本発明における「特異性を有する」とは、測定しようとする物質が抗原である場合、前述した抗原と生物学的あるいは生理学的に同一なものとして生体に非自己として認識され、抗体の産生を導く物質全般を指す。測定しようとする物質が抗体である場合は、かかる抗体の免疫グロブリンクラスと反応するもの、すなわちIgG、IgA、IgM、IgD、IgEもしくはそれらの抗体軽鎖部分に対する抗体、プロテインA又は補体成分の一種であるClq等のように、ある種の抗体分子の特徴を選択的に認識して結合する能力を有する物質をいう。
【0030】
不溶性磁性粒子を用いる上記方法においては、固相担体(不溶性磁性粒子)に試料中の測定対象物質を捕捉させた後に、該測定対象物質と同じ特異性を有する物質が担持された不溶性蛍光色素標識粒子を加えて同様に前記不溶性磁性粒子に捕捉・結合させる。その際、不溶性磁性粒子に既に捕捉されている測定対象物質は、不溶性磁性粒子上に固定化された物質と不溶性蛍光色素標識粒子とが結合するのを阻害する。よって、固相担体に捕捉される不溶性蛍光色素標識粒子の量は試料中の測定対象物質の量に依存することから、蛍光色素を定量することにより間接的に測定対象物質を定量することができる。
【0031】
捕捉反応後、固相担体を洗浄してB/F分離を行ったのち、得られた固相担体に捕捉された不溶性蛍光色素標識粒子の量を蛍光色素の固有の励起光を照射して放出される蛍光強度を計測することにより測定する。例えば、Euキレートを標識色素とした場合、励起光は300〜380nm、又は240〜270mmの紫外光であり、蛍光は600〜630nm(615nmに極大値を有する)である。
【0032】
(7)補正
本発明においては、洗浄工程後の固相担体の残存量を指標として前記測定工程で得られた測定値を補正する。
【0033】
固相担体の残存量は、洗浄前後の固相担体の粒子数又は濃度を測定することによって算出することができる。固相担体の粒子数又は濃度を測定する方法としては、固相担体がラテックス粒子の場合は、透過光測定、散乱光測定等の光学的方法を採用するのが好ましい。その場合、好ましくは300nm〜1100nmの波長光が用いられる。
【0034】
固相担体の残存量を指標として測定値を補正する方法としては、例えば、測定結果のカウント値を固相担体の残存量で除する方法が挙げられる。また、測定結果のカウント値を固相担体の残存量で除し、更に一定値を乗じてもよい。これによって、固相担体の洗浄による残存量のばらつきに左右されない測定結果を得ることが可能となる。
【0035】
測定対象物質を定量する場合は、あらかじめ濃度既知品又は基準品を試料として測定を行い、得られた定量値を試料の濃度に対して図示して検量線を求め、それを用いて濃度未知試料の定量値から濃度を求めることができる。
【0036】
尚、上記で補正のために乗ずる一定値は任意の数でよく、例えば、残存量の平均値や平均値付近の切りのいい数値等が挙げられる。但し、測定対象物質(濃度未知試料)の蛍光カウント補正時および検量線作成のための蛍光カウント補正時とに、同じ数値を用いる必要がある。
【0037】
【実施例】
以下、本発明の実施例を説明する。
【0038】
【実施例1】
<TR−FIA法による遊離サイロキシン(FT4)の測定>
(1)試薬の調製
▲1▼磁性ラテックス試薬の調製
マウス抗T4モノクローナル抗体を、公知の方法に従って、カルボジイミドによって磁性ラテックス粒子(材質:ポリスチレン−ジビニルベンゼン共重合体、平均粒径:0.7μm)上のカルボキシル基に共有結合させて調製した。
▲2▼ユーロピウムラテックスの調製
精製T4を公知の方法に従って、カルボジイミドによってユーロピウムラテックス(材質:ポリスチレン−ジビニルベンゼン共重合体、平均粒径:0.4μm)上のカルボキシル基に共有結合させて調製した。
▲3▼反応バッファーの調製
トリス(Tris)緩衝液:0.2M(pH7.0)、ゼラチン(Ge1atin):0.2%、NaN3:0.1%を含む溶液を調製した。
【0039】
(2)測定方法
抗T4抗体感作磁性ラテックス粒子100μL、前記反応バッファー100μL、及び下記FT4標準品20μLをキュべット中で37℃にて5分間反応させた後、キュべットを磁石上に1分間静置して磁性ラテックス粒子を集め、上清を吸引して洗浄を行った。
【0040】
次に、キュべットにトラップされた磁性ラテックス粒子とT4感作ユーロピウムラテックス粒子100μLおよび反応バッファー100μLを37℃にて10分間反応させ、同様に磁石上で1分間静置させてから上清の吸引洗浄を行った。
【0041】
次いで、磁性ラテックス粒子を水中に分散させ、吸光度計で吸光度(540nm)を測定し、同時に蛍光強度計で蛍光強度を測定した。測定はLPIA・A−700とよばれる全自動TR−FIA測定装置(三菱化学社製)において、下記濃度のFT4標準品を用い、それぞれ10反復測定を行った。
【0042】
(FT4標準品)
Ca1.A:0.00ng/dL
Cal.B:0.27ng/dL
Ca1.C:0.67ng/dL
Ca1.D:1.60ng/dL
Ca1.E:2.83ng/dL
Ca1.F:4.70ng/dL
Ca1.G:6.47ng/dL
Ca1.H:8.57ng/dL
【0043】
(3)測定結果
蛍光強度計による蛍光カウント値を表1に、濃度換算値を表2に、最終OD値を表3にそれぞれ示す。濃度計算は蛍光カウント値を検量線としてスプライン関数を用いて計算を行った。
【0044】
【表1】

Figure 0003681873
【0045】
【表2】
Figure 0003681873
【0046】
【表3】
Figure 0003681873
【0047】
表2に示したようにCal.B、Ca1.C等の低濃度域では濃度のCV%が10%を超えてしまうことがわかる。このデータを用いて本発明のデータ補正法によってどのようにデータが改善されるかを次に示す。
【0048】
(4)データ補正
表1のデータをOD値で除することによって補正し、さらに得られる値を補正後の蛍光カウント値とするために0.7を乗じた。すなわち、
【0049】
【数1】
蛍光カウント÷OD値×0.7
【0050】
の計算式によって蛍光カウントの補正値を得た。その結果を表4に示す。
次に、この蛍光カウント補正値を検量線として上述と同様の方法で濃度計算を行った。その結果を表5に示す。
【0051】
【表4】
Figure 0003681873
【0052】
【表5】
Figure 0003681873
【0053】
(5)考察
補正前のデータ(表1・表2)と補正後のデータ(表4・表5)を比較してわかるように、本発明のデータ補正処理によって測定値のCV%、即ち測定再現性が向上し、特にCal.B、Cal.CでのCV%が10%以内に入っていることがわかる。
【0054】
【実施例2】
<TRーFIA法による総トリヨードサイロニン(TT3)の測定>
(1)試薬の調製
▲1▼磁性ラテックス試薬の調製
ヒツジ抗T3モノクローナル抗体を公知の方法に従って、カルボジイミドによって磁性ラテックス粒子(材質:ポリスチレン−ジビニルベンゼン共重合体、平均粒径:0.7μm)上のカルボキシル基に共有結合させて調製した。
▲2▼ユーロピウムラテックスの調製
精製T3を公知の方法に従って、カルボジイミドによってユーロピウムラテックス(材質:ポリスチレン−ジビルベンゼン共重合体、平均粒径:0.4μm)上のカルボキシル基に共有結合させて調製した。
▲3▼反応バッファー(1)の調製
バルビタール(Barbita1)Na:120mM(pH8.6)、ゼラチン:0.2%、NaN3:0.1%、ANS(8−アニリノ−1−ナフタレンスルホン酸):1mMを含む溶液を調製した。
▲4▼反応バッファー(2)の調製
トリス(Tris)緩衝液:0.2M(pH7.0)、ゼラチン:0.2%、NaN3:0.1%を含む溶液を調製した。
【0055】
(2)測定
下記TT3標準品20μL、反応バッファー(1)100μL、及び抗T3抗体感作磁性ラテックス粒子100μLをキュべット中で37℃・5分間反応させた後、キュベットを磁石上に1分間静置して磁性ラテックス粒子を集め、上清を吸引して洗浄を行った。
【0056】
次に、キュベットにトラップされた磁性ラテックス粒子とT3感作ユーロピウムラテックス粒子100μL及び反応バッファー100μLを37℃にて10分間反応させ、同様に磁石上で1分間静置させてから上清の吸引洗浄を行った。
【0057】
最後に磁性ラテックス粒子を水中に分散させ、吸光度計で吸光度を測定し、同時に蛍光強度計で蛍光強度を測定した。測定は実施例1と同様にLPIA・A−700において、下記濃度のTT3標準品を用い、それぞれ10反復測定を行った。
【0058】
(TT3標準品)
Cal.A':0.00ng/mL
Cal.B':0.50ng/mL
Cal.C':1.00ng/mL
Cal.D':1.98ng/mL
Cal.E':3.95ng/mL
Ca1.F':7.90ng/mL
【0059】
(3)測定結果
蛍光カウント値を表6に、濃度換算値を表7に、最終OD値を表8にそれぞれ示す。濃度計算は蛍光カウント値を検量線とし、スプライン関数を用いて計算を行った。
【0060】
【表6】
Figure 0003681873
【0061】
【表7】
Figure 0003681873
【0062】
【表8】
Figure 0003681873
【0063】
表7に示したようにCa1.B'、Ca1.F'では濃度のCV%が10%を超えてしまうことがわかる。このデータを用いて本発明のデータ補正法によってどのようにデータが改善されるかを次に示す。
【0064】
(4)データ補正
表6のデータをOD値で除することによって補正し、さらに得られる値を補正後の蛍光カウント値とするために0.7を乗じた。すなわち、
【0065】
【数2】
蛍光カウント÷OD値×0.7
【0066】
の計算式によって蛍光カウントの補正値を得た。その結果を表9に示す。
次に、この蛍光カウント補正値を検量線として上述と同様の方法で濃度計算を行った。その結果を表10に示す。
【0067】
【表9】
Figure 0003681873
【0068】
【表10】
Figure 0003681873
【0069】
(5)考察
補正前のデータ(表6、表7)と補正後のデータ(表9、表10)を比較してわかるように、本発明のデータ補正処理によって測定値のCV%、即ち測定再現性が向上し、特にCal.B'、Cal.F'でのCV%が10%以内に入っていることがわかる。
【0070】
【実施例3】
<TR−FIA法による甲状腺刺激ホルモン(TSH)の測定>
(1)試薬の調製
▲1▼磁性ラテックス試薬の調製
マウス抗TSHモノクローナル抗体を公知の方法に従って、カルボジイミドによって磁性ラテックス粒子(材質:ポリスチレン−ジビニルベンゼン共重合体、平均粒径:1μm)上のカルボキシル基に共有結合して調製した。
▲2▼ユーロピウムラテックスの調製
マウス抗TSHモノクローナル抗体を公知の方法に従って、カルボジイミドによってユーロピウムラテックス(材質:ポリスチレン−ジビニルベンゼン共重合体、平均粒径:0.1μm)上のカルボキシル基に共有結合して調製した。
▲3▼反応バッファーの調製
トリス(Tris)緩衝液:0.2M(pH7.0)、ゼラチン:0.2%、NaN3:0.1%を含む溶液を調製した。
【0071】
(2)測定方法
下記TSH標準品70μLと反応バッファー100μL及び抗TSH抗体感作磁性ラテックス粒子100μLをキュペット中で37℃にて5分間反応させた後、キュべットを磁石上に1分間静置して磁性ラテックス粒子を集め、上清を吸引して洗浄を行った。
【0072】
次に、キュベットにトラップされた磁性ラテックス粒子と抗TSH抗体感作ユーロピウムラテックス粒子100μLおよび反応バッファー100μLを37℃にて10分間反応させ、同様に磁石上で1分間静置させてから上清の吸引洗浄を行った。
【0073】
次いで、磁性ラテックス粒子を水中に分散させ、吸光度計で吸光度を測定し、同時に蛍光強度計で蛍光強度を測定した。測定は実施例1と同様にLPIA・A−700において、下記濃度のTSH標準品を用い、それぞれ10反復測定を行った。
【0074】
(TSH標準品)
Cal.1: 0.00μIU/mL
Cal.2: 0.05μIU/mL
Cal.3: 0.1 μIUノmL
Cal.4: 0.2 μIU/mL
Cal.5: 1.0 μIU/mL
Cal.6:10 μIUノmL
Cal.7:50 μIU/mL
Ca1.8:80 μIUノmL
【0075】
また、濃度計算はTSH標準品を下記のように回帰して計算を行った。
Cal.1〜Ca1.4:直線
Ca1.4〜Ca1.6:放物線(対数)
Cal.6〜Cal.8:放物線(対数)
【0076】
(3)測定結果
蛍光カウント値を表11に、濃度換算値を表12に、最終OD値を表13にそれぞれ示す。
【0077】
【表11】
Figure 0003681873
【0078】
【表12】
Figure 0003681873
【0079】
【表13】
Figure 0003681873
【0080】
(4)データ補正
表11のデータをOD値で除することによって補正し、さらに得られる値を補正後の蛍光カウント値とするために0.3を乗じた。すなわち、
【0081】
【数3】
蛍光カウント÷OD値×0.3
【0082】
の計算式によって蛍光カウントの補正値を得た。その結果を表14に示す。
次に、この蛍光カウント補正値を検量線として上述と同様の方法で濃度計算を行った。その結果を表15に示す。
【0083】
【表14】
Figure 0003681873
【0084】
【表15】
Figure 0003681873
【0085】
(5)考察
本発明のデータ補正処理によってほぼ全領域にわたってCV%の向上が見られた。
【0086】
【発明の効果】
本発明によれば、固相担体を用い洗浄工程を有する物質の測定方法において、B/F分離後の固相担体の残存量のばらつきに起因する測定結果のばらつきを補正することにより、測定再現性を改善することができる。よって、臨床検査法等の測定精度をさらに向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction step for performing a capture reaction for capturing a substance to be measured on a particulate solid phase carrier, a washing step for washing a reaction system containing the solid phase carrier to perform B / F separation, and a solid phase carrier. In a method for measuring a substance including a measurement step for measuring the substance trapped in the substrate, the measurement reproducibility is improved by correcting the variation in the measured value depending on the variation in the remaining amount of the solid phase carrier after the washing step. On how to do. In particular, the present invention relates to a measurement method with improved measurement accuracy used for clinical examination methods in medical diagnosis.
[0002]
[Prior art]
As an immunoassay in the field of clinical examination, a radioimmunoassay (hereinafter abbreviated as “RIA”) using an antibody or an antigen in which a radioisotope (RI), an enzyme, a luminescent substance, a fluorescent substance, etc. are bound as a labeling substance. , Enzyme immunoassay (hereinafter abbreviated as “EIA”), chemiluminescence immunoassay (hereinafter abbreviated as “CLIA”), and florescence immunoassay (hereinafter abbreviated as “FIA”). Latex immunoassay that reacts antibody or antigen supported on insoluble carrier particles such as latex with the corresponding antigen or antibody, and measures the rate of antigen-antibody reaction from the change in transmitted light of the reaction mixture accompanying the reaction. (Hereinafter abbreviated as “LPIA”).
[0003]
These measurement methods include two types: a homogeneous assay that directly measures without washing unreacted samples and labeling substances, and a heterogeneous assay that performs measurements after removing unreacted samples and excess labeling substances by washing. It is divided roughly into. Among these, in the latter heterogeneous assay, a solid support is used to perform washing separation (B / F separation) of a target product and an unnecessary product, but the solid support is movable like latex fine particles. However, the residual amount (recovered amount) of the solid phase carrier after the B / F separation step was varied, which was one of the causes of poor reproducibility of measured values. For example, there is a method in which a primary antibody or antigen bound to magnetic particles is used as an insoluble carrier, and magnetic particles are collected using a magnet and washed, etc., but washing for performing B / F separation is possible. During operation, some of the magnetic particles collected by the magnetic force flow out, and the recovered amount (residual amount) of the magnetic particles after the cleaning process varies, which is one of the causes of poor reproducibility of measured values. It was.
[0004]
[Problems to be solved by the invention]
The present invention is due to variations in the recovery amount of a solid phase carrier after a washing operation for B / F separation in a method for measuring a substance that is washed using a solid phase carrier, such as the heterogeneous assay as described above. It is an object of the present invention to provide a measurement method that corrects variations in measurement results to improve measurement reproducibility and further improve measurement accuracy.
[0005]
[Means for Solving the Problems]
The method of the present invention comprises a reaction step for carrying out a capture reaction for capturing a substance to be measured on a particulate solid phase carrier, a washing step for carrying out B / F separation by washing the reaction system containing the solid phase carrier, A method for measuring a substance comprising a measuring step of measuring the substance trapped on a phase carrier,
The measurement method is characterized in that the measurement value in the measurement step is corrected using the residual amount of the solid phase carrier after the washing step as an index.
[0006]
Also, the preferred method of the present invention is:
(A) A substance to be measured is reacted with a solid phase carrier made of insoluble magnetic particles carrying a substance capable of binding specifically to the substance in a liquid medium in a reaction vessel, and the substance to be measured is made to be insoluble magnetic. A reaction process for trapping particles,
(B) a cleaning step in which the insoluble magnetic particles after the reaction in step (a) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium is removed by a cleaning operation;
(C) A step of reacting insoluble fluorescent dye-labeled particles carrying a substance having the same specificity as the substance to be measured with the insoluble magnetic particles attached to the reaction vessel wall in the step (b) in a liquid medium. ,
(D) a washing step in which the insoluble magnetic particles in step (c) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium and unreacted insoluble fluorescent dye-labeled particles are removed by a washing operation;
(E) a measurement step of measuring the substance to be measured by measuring the fluorescence intensity of the insoluble fluorescent dye-labeled particles reacted with the insoluble magnetic particles attached to the reaction vessel wall in the step (d),
In the method for measuring a substance containing, the measurement value in the step (e) is corrected using the residual amount of insoluble magnetic particles after the washing operation in the step (b) and / or (d) as an index. Is the method.
[0007]
In the method of the present invention, an antibody or antigen is supported on a particulate solid carrier, components in human or animal body fluids are bound to the carrier using an antigen-antibody reaction, and the binding substance is labeled (labeled). In measurement methods for substances such as antibodies and labeled antigens that are detected or quantified by immunoassay, the variation in measured values due to the variation in the remaining amount of solid phase carrier particles after the washing step Is a measurement method in which the measurement reproducibility is improved by monitoring the number or concentration of particles of the solid phase carrier by a method such as absorbance measurement and correcting the measurement value of the label.
[0008]
The method of the present invention has a markedly improved measurement accuracy, and is particularly suitable for clinical test methods and the like in the field of medical diagnosis.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The method of the present invention comprises a reaction step for carrying out a capture reaction for capturing a substance to be measured on a particulate solid phase carrier, a washing step for carrying out B / F separation by washing the reaction system containing the solid phase carrier, It is not particularly limited as long as it includes a measurement step for measuring the substance captured by the phase carrier, and specifically, it detects biologically active substances such as antibodies, antigens, and nucleic acids present in the specimen. Examples of the quantification method include an immunoassay method and a hybridization method.
[0010]
(1) Substance to be measured
Examples of the measurement target substance of the present invention include biologically active substances such as proteins, peptides, binding proteins, haptens, other antigens (antibody binding substances), antibodies against them, and nucleic acids.
[0011]
The antigen is not particularly limited as long as an antibody that binds to the antigen can be obtained. The antibody is not limited as long as it binds to the antigen as described above, and may be the whole antibody molecule or a fragment. Nucleic acids include natural or synthetic DNA, RNA, or oligonucleotides.
[0012]
(2) Solid support
The solid phase carrier used in the present invention is for capturing a substance to be measured, and a substance capable of specifically binding to the substance to be measured is usually present on the carrier in order to perform such a capture reaction. Immobilize (carry).
[0013]
The material of the solid phase carrier is not particularly limited as long as it is insoluble in water or a solvent used for measurement and can immobilize a substance that specifically binds to the substance to be measured, but natural rubber, polystyrene, polystyrene-divinyl. Plastics such as benzene copolymer, styrene-butadiene copolymer, polyacrylic acid ester, and polymethacrylic acid ester, kaolin, carbon, carbon, activated carbon, glass, silica, alumina, silica-alumina and other inorganic materials, gelatin, liposomes And natural organic polymers such as blood cells.
[0014]
The shape of the solid phase carrier is not particularly limited as long as it is a particle having a movable form at the time of washing, and the particle size can be in the range of several nm to several mm, but preferably the average particle size is 0.1. 10 μm fine particles. In the method of the present invention, when a solid support having a shape that may flow and disappear due to a washing operation with a liquid is used, the variation in the remaining amount after disappearance due to the washing operation is measured, and the measurement is performed based on the variation. Since it is characterized by correcting variations in values, the “particulate” as used in the present invention includes all fine shapes that may be lost by such a washing operation.
[0015]
In the present invention, preferably, insoluble magnetic particles can be used as a solid support (see JP-A-7-151755).
The insoluble magnetic particles are not particularly limited as long as they can be easily magnetized by magnetic induction, for example, iron trioxide (Fe Three O Four ), Iron sesquioxide (γ-Fe 2 O Three ), Various fine particles of ferrite, iron, manganese, nickel, cobalt, chromium, etc., magnetic fine particles made of alloys such as cobalt, nickel, manganese, etc., or polystyrene, polyacrylonitrile, polymethacrylate containing these magnetic materials inside Hydrophobic polymers such as nitrile, polymethyl methacrylate, polycapramide, polyethylene terephthalate, polyacrylamide, polymethacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, poly (2-oxyethyl acrylate), poly (2-oxyethyl methacrylate), Crosslinked hydrophilic polymers such as poly (2,3-dioxypropyl acrylate), poly (2,3-dioxypropyl methacrylate), polyethylene glycol methacrylate, Latex, such as species of approximately copolymer, gelatin, magnetic particles made of a liposome, or latex the magnetic, gelatin, surface-immobilized magnetic particles such as liposomes are employed.
[0016]
Examples of the substance that can specifically bind to the measurement target substance immobilized on the solid phase carrier include the same proteins, peptides, binding proteins, other antigens, antibodies, nucleic acids, and the like as the biologically active substances described above. . For example, when the substance to be measured is an antigen, an antibody that binds to the antigen, and when it is an antibody, an antigen that binds to the antibody can be used. When the substance to be measured is an antibody, the substance that can specifically bind to the substance may be an antibody that binds to the antibody. When the substance to be measured is a nucleic acid, the substance that can specifically bind to this is a nucleic acid having a base sequence substantially complementary to the base sequence of the nucleic acid.
[0017]
When the substance to be measured is an antigen and an immunoassay for measuring the antigen is performed, IgG is preferably used as an antibody to be immobilized on a solid phase carrier, but digestive enzymes such as pepsin and papain or dithiothrease are used. Using a reducing agent such as Tol, Mercaptoethanol, F (ab ′) 2 , Fab ′, Fab or the like having a reduced molecular weight may be used. Further, not only IgG but also IgM or a fragment obtained by reducing the molecular weight by the same treatment as IgG may be used. Either a monoclonal antibody or a polyclonal antibody can be applied. When using monoclonal antibodies, use one or more monoclonal antibodies for proteins with repetitive structures such as hepatitis B surface antigen and antigens with multiple epitopes in the molecule such as CA19-9 antigen. it can. Further, two or more types having different recognition epitopes can be used in combination.
[0018]
As a method for immobilizing these substances on a solid phase carrier, a chemical adsorption method such as a physical adsorption method, a covalent bond method, and an ion bond method is used.
Examples of the physical adsorption method include a method of directly immobilizing an antibody or antigen on a carrier particle, a method of chemically adsorbing to another protein such as albumin, and then adsorbing and immobilizing.
[0019]
The chemical loading method involves chemically modifying the amino group, carboxyl group, mercapto group, hydroxyl group, aldehyde group, epoxy group, etc. present on the surface of the carrier to bind to molecules such as antibodies and antigens. A method of directly immobilizing on a carrier using a functional group capable of binding, a method of immobilizing by introducing a spacer molecule (carbodiimide compound, etc.) by a chemical bond between a carrier and a molecule such as an antibody or an antigen, albumin Examples include a method in which an antibody, an antigen, or the like is bound to another protein, and then the protein is chemically bound to a carrier.
[0020]
(3) Reaction process
In the present invention, the solid phase carrier thus obtained is reacted with a substance to be measured, and the substance to be measured is immobilized via a substance that specifically binds to the substance to be measured immobilized on the carrier. Capture to the phase carrier. The reaction is preferably carried out by mixing in the liquid medium of the reaction vessel. In the case of an immunoassay, the reaction is carried out at a pH of 5 to 10, preferably about 7 to 9. In order to maintain the target pH, a buffer solution is usually used, and examples thereof include, but are not limited to, phosphoric acid and tris (hydroxymethyl) aminomethane.
[0021]
(4) Cleaning process
After the capture reaction, the reaction system including the solid phase carrier that captured the substance to be measured is washed, and B / F separation is performed to remove substances such as unreacted body fluid components and unreacted labels.
[0022]
Methods for washing / separating and removing unreacted substances from the solid support include centrifugation, filtration with a filter, and magnetic separation with a magnetic field.
For example, the solid phase carrier is collected by centrifugation or the like, and the liquid medium (supernatant) containing unreacted substances is removed by suction, or if necessary, the solid phase carrier is further suspended in an appropriate washing solution, stirred, and then centrifuged. It is possible to take a method such as separation by separation or the like and removing only the cleaning liquid by suction and repeating this operation several times. For magnetic separation, insoluble magnetic particles are used as the solid phase carrier, a magnetic field is applied to the reaction vessel containing the insoluble magnetic particles, and the magnetic particles are collected by adhering to the reaction vessel wall. This is carried out by repeating the operation of removing the supernatant after removing the supernatant after adding a suitable washing solution as required and applying a magnetic field in the same manner.
[0023]
(5) Measurement process
After the washing step, the measurement target substance captured on the solid phase carrier is measured. The measurement may be performed in the same manner as a normal immunoassay. For example, if the labeling substance is a chemiluminescent substance or a fluorescent dye, the substance to be measured can be measured by measuring the luminescence or fluorescence emitted by the labeling substance, and if the labeling substance is an enzyme, the enzyme activity is measured. . Further, when the labeling substance is a radioisotope (radioisotope), the radioactivity of the labeling substance may be measured.
[0024]
(6) Measuring method using insoluble magnetic particles
In the present invention, when the insoluble magnetic particles described above are used as the solid phase carrier, insoluble fluorescent dye-labeled particles on which a substance having the same specificity as the measurement target substance is immobilized as the labeling substance are measured based on the competition method. You can also take a method. The method includes the following steps.
(A) A substance to be measured is reacted with a solid phase carrier made of insoluble magnetic particles carrying a substance capable of binding specifically to the substance in a liquid medium in a reaction vessel, and the substance to be measured is made to be insoluble magnetic. A reaction process for capturing particles.
(B) A cleaning step in which the insoluble magnetic particles after the reaction in step (a) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium is removed by a cleaning operation.
(C) A step of reacting insoluble fluorescent dye-labeled particles carrying a substance having the same specificity as the substance to be measured with the insoluble magnetic particles attached to the reaction vessel wall in the step (b) in a liquid medium. .
(D) A washing step in which the insoluble magnetic particles in step (c) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium and unreacted insoluble fluorescent dye-labeled particles are removed by a washing operation.
(E) A measurement step of measuring the substance to be measured by measuring the fluorescence intensity of the insoluble fluorescent dye-labeled particles reacted with the insoluble magnetic particles attached to the reaction vessel wall in the step (d).
[0025]
Any labeling dye can be used as the labeling dye used for the insoluble fluorescent dye labeling particles. For example, rare earth chelates such as europium (Eu), terbium (Tb), samarium (Sm), phycobiliproteins such as phycocyanin and phycoerythrin, fluorescein, tetramethylrhodamine, Texas red, 4-methylumbelliferin 7-amino-4-methylcoumarin and the like are used.
[0026]
The material of the insoluble carrier particles for performing the dye labeling is the same as described for the insoluble magnetic particles, such as a hydrophobic polymer such as polystyrene, polyacrylonitrile, polymethacrylonitrile, polyacrylamide, polyvinyl pyrrolidone, polyacrylic acid type. In addition to latex polymers such as resins, copolymers of monomers, gelatin, liposomes, biological components such as erythrocytes, metal colloidal particles such as gold colloids, and the like are used.
[0027]
As a method for supporting the fluorescent dye on the insoluble carrier particles, as described in JP-A-151755, for example, a method of chemically binding the fluorescent dye using a functional group on the particle surface, or polymerizing the particles. The method of adding a dye and encapsulating it inside the particle, the method of physically adsorbing and encapsulating it inside or on the surface of the particle, the physical or chemical combination of the dye with protein, peptide, etc. There are methods for immobilizing proteins and peptides on particles.
[0028]
On the fluorescent particles thus obtained, an antigen, an antibody, a nucleic acid or the like having the same specificity as the biologically active substance to be measured is physically or chemically immobilized as described above.
[0029]
In the present invention, “having specificity” means that when the substance to be measured is an antigen, it is recognized as non-self in the living body as being biologically or physiologically identical to the antigen described above, and It refers to all substances that lead to production. If the substance to be measured is an antibody, one that reacts with the immunoglobulin class of such an antibody, ie, an antibody against IgG, IgA, IgM, IgD, IgE or their light chain portion, protein A or complement component A substance having the ability to selectively recognize and bind to the characteristics of a certain type of antibody molecule, such as Clq, which is a type.
[0030]
In the above method using insoluble magnetic particles, an insoluble fluorescent dye label in which a substance having the same specificity as the substance to be measured is carried after the solid substance (insoluble magnetic particles) captures the substance to be measured in the sample. Particles are added and similarly captured and bound to the insoluble magnetic particles. At that time, the substance to be measured already captured by the insoluble magnetic particles inhibits the substance immobilized on the insoluble magnetic particles from being bound to the insoluble fluorescent dye-labeled particles. Therefore, since the amount of insoluble fluorescent dye-labeled particles captured by the solid phase carrier depends on the amount of the measurement target substance in the sample, the measurement target substance can be indirectly quantified by quantifying the fluorescent dye. .
[0031]
After the capture reaction, the solid phase carrier is washed and B / F separation is performed, and then the amount of the insoluble fluorescent dye-labeled particles captured on the obtained solid phase carrier is released by irradiating the excitation light inherent to the fluorescent dye. Measured by measuring the fluorescence intensity. For example, when Eu chelate is used as a labeling dye, excitation light is 300 to 380 nm or 240 to 270 mm ultraviolet light, and fluorescence is 600 to 630 nm (having a maximum value at 615 nm).
[0032]
(7) Correction
In the present invention, the measurement value obtained in the measurement step is corrected using the remaining amount of the solid phase carrier after the washing step as an index.
[0033]
The remaining amount of the solid phase carrier can be calculated by measuring the number or concentration of the solid phase carrier particles before and after washing. As a method for measuring the number of particles or the concentration of the solid phase carrier, when the solid phase carrier is latex particles, it is preferable to employ an optical method such as transmitted light measurement or scattered light measurement. In that case, light with a wavelength of 300 nm to 1100 nm is preferably used.
[0034]
Examples of a method of correcting the measurement value using the residual amount of the solid phase carrier as an index include a method of dividing the count value of the measurement result by the residual amount of the solid phase carrier. Alternatively, the count value of the measurement result may be divided by the remaining amount of the solid phase carrier and further multiplied by a certain value. This makes it possible to obtain measurement results that are not affected by variations in the remaining amount due to washing of the solid phase carrier.
[0035]
When quantifying a substance to be measured, perform measurement using a known or reference product as a sample in advance, obtain a calibration curve by graphically representing the obtained quantitative value with respect to the concentration of the sample, and use it to determine an unknown concentration sample. The concentration can be determined from the quantitative value.
[0036]
The fixed value multiplied for correction in the above may be an arbitrary number, for example, an average value of the remaining amount, a numerical value near the average value, or the like. However, it is necessary to use the same numerical value when correcting the fluorescence count of the measurement target substance (sample with unknown concentration) and when correcting the fluorescence count for preparing the calibration curve.
[0037]
【Example】
Examples of the present invention will be described below.
[0038]
[Example 1]
<Measurement of free thyroxine (FT4) by TR-FIA method>
(1) Preparation of reagents
(1) Preparation of magnetic latex reagent
A mouse anti-T4 monoclonal antibody was prepared by covalently bonding to a carboxyl group on magnetic latex particles (material: polystyrene-divinylbenzene copolymer, average particle size: 0.7 μm) by carbodiimide according to a known method.
(2) Preparation of europium latex
Purified T4 was prepared by covalently bonding to a carboxyl group on europium latex (material: polystyrene-divinylbenzene copolymer, average particle size: 0.4 μm) with carbodiimide according to a known method.
(3) Preparation of reaction buffer
Tris buffer: 0.2M (pH 7.0), gelatin (Ge1atin): 0.2%, NaN Three : A solution containing 0.1% was prepared.
[0039]
(2) Measuring method
After reacting 100 μL of anti-T4 antibody-sensitized magnetic latex particles, 100 μL of the above reaction buffer, and 20 μL of the following FT4 standard product in a cuvette at 37 ° C. for 5 minutes, the cuvette was allowed to stand on a magnet for 1 minute. The magnetic latex particles were collected and the supernatant was aspirated and washed.
[0040]
Next, the magnetic latex particles trapped in the cuvette, 100 μL of T4 sensitized europium latex particles and 100 μL of the reaction buffer are reacted at 37 ° C. for 10 minutes, and allowed to stand on the magnet in the same manner for 1 minute, and then the supernatant. Was aspirated and washed.
[0041]
Next, the magnetic latex particles were dispersed in water, and the absorbance (540 nm) was measured with an absorptiometer, and at the same time, the fluorescence intensity was measured with a fluorescence intensity meter. The measurement was carried out 10 times each using a fully automatic TR-FIA measuring device (manufactured by Mitsubishi Chemical Corporation) called LPIA · A-700, using FT4 standard products having the following concentrations.
[0042]
(FT4 standard product)
Ca1.A: 0.00ng / dL
Cal.B: 0.27ng / dL
Ca1.C: 0.67ng / dL
Ca1.D: 1.60ng / dL
Ca1.E: 2.83ng / dL
Ca1.F: 4.70ng / dL
Ca1.G: 6.47ng / dL
Ca1.H: 8.57ng / dL
[0043]
(3) Measurement results
Table 1 shows the fluorescence count values measured by the fluorescence intensity meter, Table 2 shows the converted concentrations, and Table 3 shows the final OD values. Concentration calculation was performed using a spline function with a fluorescence count value as a calibration curve.
[0044]
[Table 1]
Figure 0003681873
[0045]
[Table 2]
Figure 0003681873
[0046]
[Table 3]
Figure 0003681873
[0047]
As shown in Table 2, it can be seen that CV% of the concentration exceeds 10% in a low concentration region such as Cal.B and Ca1.C. The following shows how the data is improved by the data correction method of the present invention using this data.
[0048]
(4) Data correction
The data in Table 1 was corrected by dividing by the OD value, and 0.7 was multiplied to obtain the corrected fluorescence count value. That is,
[0049]
[Expression 1]
Fluorescence count / OD value × 0.7
[0050]
The correction value of the fluorescence count was obtained by the following formula. The results are shown in Table 4.
Next, concentration calculation was performed in the same manner as described above using this fluorescence count correction value as a calibration curve. The results are shown in Table 5.
[0051]
[Table 4]
Figure 0003681873
[0052]
[Table 5]
Figure 0003681873
[0053]
(5) Consideration
As can be seen by comparing the data before correction (Tables 1 and 2) and the data after correction (Tables 4 and 5), the data correction processing of the present invention improves the CV% of the measured value, that is, the measurement reproducibility. In particular, it can be seen that CV% in Cal.B and Cal.C is within 10%.
[0054]
[Example 2]
<Measurement of total triiodothyronine (TT3) by TR-FIA method>
(1) Preparation of reagents
(1) Preparation of magnetic latex reagent
A sheep anti-T3 monoclonal antibody was prepared by covalently bonding to a carboxyl group on magnetic latex particles (material: polystyrene-divinylbenzene copolymer, average particle size: 0.7 μm) with carbodiimide according to a known method.
(2) Preparation of europium latex
Purified T3 was prepared by covalently bonding to a carboxyl group on europium latex (material: polystyrene-divirbenzene copolymer, average particle size: 0.4 μm) with carbodiimide according to a known method.
(3) Preparation of reaction buffer (1)
Barbita1 Na: 120 mM (pH 8.6), gelatin: 0.2%, NaN Three : A solution containing 0.1%, ANS (8-anilino-1-naphthalenesulfonic acid): 1 mM was prepared.
(4) Preparation of reaction buffer (2)
Tris buffer: 0.2 M (pH 7.0), gelatin: 0.2%, NaN Three : A solution containing 0.1% was prepared.
[0055]
(2) Measurement
The following TT3 standard 20 μL, reaction buffer (1) 100 μL, and anti-T3 antibody-sensitized magnetic latex particles 100 μL were reacted in a cuvette at 37 ° C. for 5 minutes, and then the cuvette was left on the magnet for 1 minute. The magnetic latex particles were collected and the supernatant was aspirated and washed.
[0056]
Next, the magnetic latex particles trapped in the cuvette, 100 μL of T3 sensitized europium latex particles and 100 μL of the reaction buffer are reacted at 37 ° C. for 10 minutes. Went.
[0057]
Finally, the magnetic latex particles were dispersed in water, the absorbance was measured with an absorptiometer, and simultaneously the fluorescence intensity was measured with a fluorescence intensity meter. In the same manner as in Example 1, the measurement was carried out using TT3 standard products having the following concentrations in LPIA • A-700, and 10 measurements were performed.
[0058]
(TT3 standard product)
Cal.A ': 0.00ng / mL
Cal.B ': 0.50ng / mL
Cal.C ': 1.00ng / mL
Cal.D ': 1.98ng / mL
Cal.E ': 3.95ng / mL
Ca1.F ': 7.90ng / mL
[0059]
(3) Measurement results
Table 6 shows the fluorescence count value, Table 7 shows the converted concentration value, and Table 8 shows the final OD value. The concentration was calculated using a spline function with the fluorescence count value as a calibration curve.
[0060]
[Table 6]
Figure 0003681873
[0061]
[Table 7]
Figure 0003681873
[0062]
[Table 8]
Figure 0003681873
[0063]
As shown in Table 7, it is understood that CV% of the concentration exceeds 10% in Ca1.B ′ and Ca1.F ′. The following shows how the data is improved by the data correction method of the present invention using this data.
[0064]
(4) Data correction
The data in Table 6 was corrected by dividing by the OD value, and 0.7 was multiplied to obtain the corrected value as the fluorescence count value after correction. That is,
[0065]
[Expression 2]
Fluorescence count / OD value × 0.7
[0066]
The correction value of the fluorescence count was obtained by the formula The results are shown in Table 9.
Next, concentration calculation was performed in the same manner as described above using this fluorescence count correction value as a calibration curve. The results are shown in Table 10.
[0067]
[Table 9]
Figure 0003681873
[0068]
[Table 10]
Figure 0003681873
[0069]
(5) Consideration
As can be seen by comparing the data before correction (Tables 6 and 7) with the data after correction (Tables 9 and 10), the data correction processing of the present invention improves the CV% of the measured value, that is, the measurement reproducibility. In particular, it can be seen that CV% at Cal.B ′ and Cal.F ′ is within 10%.
[0070]
[Example 3]
<Measurement of thyroid stimulating hormone (TSH) by TR-FIA method>
(1) Preparation of reagents
(1) Preparation of magnetic latex reagent
A mouse anti-TSH monoclonal antibody was prepared by covalently bonding to a carboxyl group on a magnetic latex particle (material: polystyrene-divinylbenzene copolymer, average particle size: 1 μm) with carbodiimide according to a known method.
(2) Preparation of europium latex
A mouse anti-TSH monoclonal antibody was prepared by covalently bonding to a carboxyl group on europium latex (material: polystyrene-divinylbenzene copolymer, average particle size: 0.1 μm) with carbodiimide according to a known method.
(3) Preparation of reaction buffer
Tris buffer: 0.2 M (pH 7.0), gelatin: 0.2%, NaN Three : A solution containing 0.1% was prepared.
[0071]
(2) Measuring method
The following TSH standard 70 μL, reaction buffer 100 μL and anti-TSH antibody-sensitized magnetic latex particles 100 μL were reacted in a cuppet at 37 ° C. for 5 minutes, and then the cuvette was allowed to stand on the magnet for 1 minute to form magnetic latex. The particles were collected and the supernatant was aspirated and washed.
[0072]
Next, the magnetic latex particles trapped in the cuvette, the anti-TSH antibody-sensitized europium latex particles (100 μL) and the reaction buffer (100 μL) are reacted at 37 ° C. for 10 minutes. Suction cleaning was performed.
[0073]
Next, the magnetic latex particles were dispersed in water, the absorbance was measured with an absorptiometer, and at the same time the fluorescence intensity was measured with a fluorescence intensity meter. In the same manner as in Example 1, the measurement was carried out 10 times in each of the LPIA · A-700 using TSH standard products having the following concentrations.
[0074]
(TSH standard product)
Cal.1: 0.00μIU / mL
Cal.2: 0.05μIU / mL
Cal.3: 0.1 μIU mL
Cal.4: 0.2 μIU / mL
Cal.5: 1.0 μIU / mL
Cal.6: 10 μIU mL
Cal.7: 50 μIU / mL
Ca1.8: 80 μIU no mL
[0075]
The concentration was calculated by regressing a TSH standard product as follows.
Cal.1 to Ca1.4: Straight line
Ca1.4 to Ca1.6: Parabola (logarithm)
Cal.6 to Cal.8: Parabola (logarithm)
[0076]
(3) Measurement results
The fluorescence count value is shown in Table 11, the converted concentration value is shown in Table 12, and the final OD value is shown in Table 13, respectively.
[0077]
[Table 11]
Figure 0003681873
[0078]
[Table 12]
Figure 0003681873
[0079]
[Table 13]
Figure 0003681873
[0080]
(4) Data correction
Correction was made by dividing the data in Table 11 by the OD value, and the obtained value was multiplied by 0.3 to obtain the corrected fluorescence count value. That is,
[0081]
[Equation 3]
Fluorescence count / OD value × 0.3
[0082]
The correction value of the fluorescence count was obtained by the formula The results are shown in Table 14.
Next, concentration calculation was performed in the same manner as described above using this fluorescence count correction value as a calibration curve. The results are shown in Table 15.
[0083]
[Table 14]
Figure 0003681873
[0084]
[Table 15]
Figure 0003681873
[0085]
(5) Consideration
By the data correction processing of the present invention, CV% was improved over almost the entire region.
[0086]
【The invention's effect】
According to the present invention, in a method for measuring a substance having a washing step using a solid phase carrier, the measurement reproduction is corrected by correcting the variation in the measurement result caused by the variation in the remaining amount of the solid phase carrier after the B / F separation. Can improve sex. Therefore, it is possible to further improve the measurement accuracy of the clinical test method and the like.

Claims (5)

測定対象物質を粒子状の固相担体へ捕捉させる捕捉反応を行う反応工程と、前記固相担体を含む反応系を洗浄してB/F分離を行う洗浄工程と、固相担体に捕捉された前記物質を測定する測定工程とを含む物質の測定方法において、
前記洗浄工程後の固相担体の残存量を指標として前記測定工程における測定値を補正することを特徴とする測定方法。
A reaction step for performing a capture reaction for capturing a substance to be measured on a particulate solid phase carrier, a washing step for performing B / F separation by washing the reaction system containing the solid phase carrier, and a solid phase carrier. In a method for measuring a substance comprising a measuring step for measuring the substance,
A measurement method comprising correcting the measurement value in the measurement step using the remaining amount of the solid phase carrier after the washing step as an index.
前記測定対象物質が抗原又は抗体である、請求項1記載の測定方法。The measurement method according to claim 1, wherein the substance to be measured is an antigen or an antibody. 前記固相担体が平均粒径0.1〜10μmの微粒子である、請求項1又は2記載の測定方法。The measurement method according to claim 1, wherein the solid phase carrier is a fine particle having an average particle diameter of 0.1 to 10 μm. 前記残存量が、前記固相担体の粒子数を光学的に測定して求められるものであることを特徴とする、請求項1〜3のいずれかに記載の測定方法。The measurement method according to claim 1, wherein the remaining amount is obtained by optically measuring the number of particles of the solid phase carrier. (a)測定対象物質を、前記物質に特異的に結合しうる物質を担持させた不溶性磁性粒子からなる固相担体と反応容器の液体媒体中で反応させて、前記測定対象物質を前記不溶性磁性粒子へ捕捉させる反応工程、
(b)工程(a)における反応後の不溶性磁性粒子を、磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体を除去する洗浄工程、
(c)前記測定対象物質と同じ特異性を有する物質を担持させた不溶性蛍光色素標識粒子と、工程(b)における反応容器壁に付着した該不溶性磁性粒子とを、液体媒体中で反応させる工程、
(d)工程(c)の該不溶性磁性粒子を磁場の作用により反応容器壁に付着させ、洗浄操作により該液体媒体及び未反応の不溶性蛍光色素標識粒子を除去する洗浄工程、及び
(e)工程(d)における反応容器壁に付着した該不溶性磁性粒子と反応した不溶性蛍光色素標識粒子の蛍光強度を測定することにより測定対象物質を測定する測定工程、
を含む物質の測定方法において、前記工程(b)及び/又は(d)における洗浄操作後の不溶性磁性粒子の残存量を指標として前記工程(e)における測定値を補正することを特徴とする、請求項1〜4のいずれかに記載の測定方法。
(A) A substance to be measured is reacted with a solid phase carrier made of insoluble magnetic particles carrying a substance capable of binding specifically to the substance in a liquid medium in a reaction vessel, and the substance to be measured is made to be insoluble magnetic. A reaction process for trapping particles,
(B) a cleaning step in which the insoluble magnetic particles after the reaction in step (a) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium is removed by a cleaning operation;
(C) A step of reacting insoluble fluorescent dye-labeled particles carrying a substance having the same specificity as the substance to be measured with the insoluble magnetic particles attached to the reaction vessel wall in the step (b) in a liquid medium. ,
(D) A cleaning step in which the insoluble magnetic particles in step (c) are attached to the reaction vessel wall by the action of a magnetic field, and the liquid medium and unreacted insoluble fluorescent dye-labeled particles are removed by a cleaning operation, and (e) step A measurement step of measuring the substance to be measured by measuring the fluorescence intensity of the insoluble fluorescent dye-labeled particles reacted with the insoluble magnetic particles attached to the reaction vessel wall in (d),
In the method for measuring a substance containing, the measurement value in the step (e) is corrected using the residual amount of insoluble magnetic particles after the washing operation in the step (b) and / or (d) as an index, The measuring method in any one of Claims 1-4.
JP27169797A 1997-10-03 1997-10-03 Method for measuring substances Expired - Lifetime JP3681873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27169797A JP3681873B2 (en) 1997-10-03 1997-10-03 Method for measuring substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27169797A JP3681873B2 (en) 1997-10-03 1997-10-03 Method for measuring substances

Publications (2)

Publication Number Publication Date
JPH11108926A JPH11108926A (en) 1999-04-23
JP3681873B2 true JP3681873B2 (en) 2005-08-10

Family

ID=17503593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27169797A Expired - Lifetime JP3681873B2 (en) 1997-10-03 1997-10-03 Method for measuring substances

Country Status (1)

Country Link
JP (1) JP3681873B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804202B1 (en) * 2003-05-02 2008-02-18 액세스 바이오 인코포레이티드 Chromatographic assay system
WO2005075997A1 (en) * 2004-02-03 2005-08-18 Asahi Kasei Kabushiki Kaisha Method of detecting analyte with use of magnetic bead

Also Published As

Publication number Publication date
JPH11108926A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP4270751B2 (en) Neutralization of polycations in whole blood chromatography devices
US5236826A (en) Immunoassay for the detection or quantitation of an analyte
JP2762259B2 (en) How to use magnetically responsive fluorescent polymer
EP0296398B1 (en) Immunoassay method for detecting antibodies to antigens
CN110763834B (en) Method, reagent and kit for detecting content of immune marker
JPS5949545B2 (en) Antibody, antigen or antibody: reagent for antigen complex analysis
JPS6367661B2 (en)
JPH0717697B2 (en) Bioactive reagents made from carboxy-containing polymers, analytical elements and methods of use
JPH03502244A (en) Test method and reagent kit
US4283383A (en) Analysis of biological fluids
US4138213A (en) Agglutination immunoassay of immune complex with RF or Clq
WO2017138497A1 (en) Analyte detection method and reagent kit for detecting analyte
EP3054283A1 (en) Method for detecting target substance
JP2005502871A (en) Particle homogeneous assay using laser-excited fluorescence detection capillary electrophoresis
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
JPS61286755A (en) Solid phase immunity testing method and composition using light-emitting fine particle
CN205449806U (en) A magnetic particle chemiluminescence micro -fluidic chip for whole blood sample test
JP3681873B2 (en) Method for measuring substances
JPH0843391A (en) Measuring method for antigen antibody reaction
JP3695178B2 (en) Antigen / antibody measurement method
JPH06160387A (en) Measuring method for antigen-antibody reaction
JP4292670B2 (en) Immunoassay for anti-HBc antibody
JP3827409B2 (en) Immunological measurement method
EP0228225A2 (en) Immunoassay kit and method employing modified solid surface
KR100411406B1 (en) Inspection kit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term