JP3679611B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP3679611B2
JP3679611B2 JP15743798A JP15743798A JP3679611B2 JP 3679611 B2 JP3679611 B2 JP 3679611B2 JP 15743798 A JP15743798 A JP 15743798A JP 15743798 A JP15743798 A JP 15743798A JP 3679611 B2 JP3679611 B2 JP 3679611B2
Authority
JP
Japan
Prior art keywords
double
sided
solar cell
cell module
terminal box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15743798A
Other languages
Japanese (ja)
Other versions
JPH11354822A (en
Inventor
三郎 中島
健治 邑田
聡生 柳浦
宏 清水
浩 井上
晋行 辻野
茂樹 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15743798A priority Critical patent/JP3679611B2/en
Publication of JPH11354822A publication Critical patent/JPH11354822A/en
Application granted granted Critical
Publication of JP3679611B2 publication Critical patent/JP3679611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、両面入射型太陽電池モジュールに関し、特にたとえば両面入射型太陽電池セルの直列接続を容易に行うことができる両面入射型太陽電池モジュールに関する。
【0002】
【従来の技術】
従来のこの種両面入射型太陽電池モジュール1は、図15および図16に示すように、複数枚の両面入射型太陽電池セル2,2および2を直列接続して構成する場合、太陽電池セル2の表面側の正極と、隣接する太陽電池セル2の裏面側の負極とを、2本の半田メッキ銅線3および3によりそれぞれ直列接続している。
【0003】
【課題を解決するための手段】
この発明は、表面部材、裏面部材、表面側と裏面側の極性を交互に変えて表面部材と裏面部材との間に配置された3枚の両面入射型太陽電池セルと、を含み前記3枚の両面入射型セルのうち隣接する太陽電池セルの表面どうしおよび裏面どうしは正極と負極が交互に配置され、隣接する両面入射型太陽電池セルの、正極と負極とが交互に配置された表面どうしおよび裏面どうしを電気的に直列接続する導電線を備える、陽電池モジュールである。
【0004】
【課題を解決するための手段】
この発明は、表面部材、裏面部材、表面側と裏面側の極性を交互に変えて表面部材と裏面部材との間に配置された複数枚の両面入射型太陽電池セル、および隣接する両面入射型太陽電池セルの表面どうしおよび裏面どうしを電気的に直列接続する複数の導電線とを備える、両面入射型太陽電池モジュールである。
【0005】
【作用】
複数枚の両面入射型太陽電池セルを表面側と裏面側の極性を交互に変えて配置し、隣接する両面入射型太陽電池セルの表面どうしおよび裏面どうしを導電線により直列接続するので、太陽電池セルの表面側から隣接する太陽電池セルの裏面側へ導電線を通す必要がなく、また、隣接する太陽電池セル相互の間隙も小さくなる。
【0006】
【発明の効果】
この発明によれば、導電線による太陽電池セルの直列接続作業も容易となりかつ大きな発電量を確保しながら太陽電池モジュールの面積を小さくすることができる。
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかになろう。
【0007】
【実施例】
図1および図2に主要部を示すこの実施例の両面入射型太陽電池モジュール10は、たとえば、3枚の両面入射型太陽電池セル12,12および12を含みかつこれらの太陽電池セル12は表面側と裏面側の極性を交互に変えて絶縁を保つのに必要な最小の間隙を残して配置される。その結果、隣接する太陽電池セル12,12および12の表面どうしおよび裏面どうしは正極と負極が交互に配置され、これらの太陽電池セルの表面どうしおよび裏面どうしをそれぞれ2本の導電線14および14を用いて電気的に直列接続している。
【0008】
このように接続された両面入射型太陽電池セル12,12および12を、図3に示すように、透明強化ガラスあるいは透光性樹脂等の透光性部材からなる表面部材16および裏面部材18の間においてEVAなどの透光性封止材20により封止して太陽電池モジュール10を構成する。
図4および図5に示す他の実施例の両面入射型太陽電池モジュール10は、標準サイズ(寸法:104mm×104mm)の両面入射型太陽電池セル12aを23枚、標準サイズより寸法が大きいラージサイズ(寸法:150mm×150mm)の両面入射型太陽電池セル12bを1枚、合計24枚の太陽電池セルを含む。これらの太陽電池セル12aおよび12bは、一列が8枚の横3列(8×3=24枚)で構成されかつ隣接する太陽電池セルは表面側と裏面側の極性を交互に変えて絶縁を保つのに必要な最小間隙を残して配置され、太陽電池セルの表面どうしおよび裏面どうしを図1および図2に示す実施例の場合と同様に導電線(図示されず)により直列接続している。
【0009】
図4において、ラージサイズの太陽電池セル12bは、左下のコーナー部(第3列左端)に配置され、この太陽電池セル12bの裏面側に端子ボックス22を取り付け、この端子ボックス22からその内部で太陽電池セルの導電線と接続された2本の外部出力線32および32を引き出している。この両面入射型太陽電池モジュール10の導電線による直列接続パターン26は、図4に示す裏面側から見て図6のように全体が略S字状になっている。
【0010】
この接続状態で、図3に示す実施例の場合と同様に、透光性の表面部材および裏面部材の間に透光性封止材を用いて上述の24枚の両面入射型太陽電池セルが封止されて両面入射型太陽電池モジュール10が形成される。また、この太陽電池モジュール10の周縁部には、アルミ製保持枠28が装着されている。
この両面入射型太陽電池モジュール10を適当な場所に設置して使用する場合、太陽電池モジュール10の表面側および裏面側から光が入射すると、裏面側に端子ボックス22を取り付けたラージサイズの太陽電池セル12bは、この端子ボックス22の分だけ入射光が遮断される。しかし、太陽電池セル12bの面積を標準サイズの太陽電池セル12aの面積より大きくしているためこの端子ボックス22による入射光の減少分を補い、両面入射型太陽電池モジュール10に供給される光量とこの光量に基づく発電量を確保できる。すなわち、ラージサイズの太陽電池セル12bの面積は、標準サイズの太陽電池セル12aの面積と端子ボックス22の面積との和に略等しくしている。そのため、ラージサイズの太陽電池セル12bでの電流値と標準サイズの太陽電池セル12aとの電流値を略等しくすることができるので、直列接続した場合、いずれか低い方の電流値に律速されることがなく、最大の発電量を得ることができる。
【0011】
図7に示す第3実施例の両面入射型太陽電池モジュール10は、図4および図5に示す第2実施例におけるラージサイズの太陽電池セル12bの部分も標準サイズの太陽電池セル12aとしたものである。そして、この太陽電池モジュール10の周縁部に装着されるアルミ製保持枠28の1辺内側を一部切欠いて端子ボックス用空間30を形成する。この端子ボックス用空間30内で太陽電池モジュール10のリード線24と外部出力線32を接続し、端子ボックス用空間30の開口部をカバー34で閉塞している。そのために、両面入射型太陽モジュール10の裏面側から入射する入射光は端子ボックス用空間30により遮ぎられることはない。
【0012】
したがって、この場合も図4および図5に示す実施例の場合と同様、端子ボックス用空間30による光量と発電量の減少を防止することができる。
図8に示す第4実施例の両面入射型太陽電池モジュール10は、複数枚の両面入射型太陽電池セルを導電線により直列接続して図3に示す実施例と同様に透光性の表面部材16と裏面部材18の間で透光性封止材20により封止して構成される。この太陽電池モジュール10においては、透光性封止材20の端部より引き出されるリード線24は、この封止材20と表面部材16および裏面部材18との間にそれぞれ一端が固着された2枚の絶縁シート36および36の間に位置して取り付けられる。リード線24および絶縁シート36を取り付けた太陽電池モジュール10の裏面側に取付板38を設け、この取付板38に端子ボックス22を固定してその内部でリード線24と外部出力線32を接続している。
【0013】
また、太陽電池モジュール10の周縁部に装着されるアルミ製保持枠28の一部を切欠き、この切欠部40に端子ボックス22を嵌め込むとともに端子ボックスの開口部をカバー34で閉塞している。このカバー34の上端部は太陽電池モジュール10の表面側端部を覆う状態で取り付けられる。
なお、端子ボックス22の内部にはダイオード42が設けられているが、これらのダイオード42は、図10に示すように接続されており、太陽電池モジュール10を構成する複数枚の太陽電池セル12、12…のうち、一部のセルが何らかの理由、たとえば木の葉や鳥類の糞等が太陽電池モジュールの表面に付着した場合、入射光が遮断されてこのセルを流れる電流が減少するためダイオードによりバイパスしてセルが焼損しないように保護する。
【0014】
この場合も、両面入射型太陽電池モジュール10の表面側に直接入射する入射光および裏面側より反射して入射する入射光は端子ボックス22により遮られることはないので、光量は減少せず所望の発電量を確保することができる。
さらに、図11〜図14に示される第5実施例の両面入射型太陽電池モジュール10は、この太陽電池モジュール10を複数枚、たとえば2枚組み合わせて太陽電池パネルとした場合で、これらのモジュール10の周縁部に装着されたアルミ製保持枠28および28はいずれも外側にU字状溝44を有し、このU字状溝44および44を組み合わすことにより形成される上面開口の長溝部46に横長端子ボックス22を嵌め込んでいる。
【0015】
そして、この横長端子ボックス22内で太陽電池モジュール10を構成するセルより引き出されたリード線24、24…と外部出力線32をダイオード42、42…および支持リブ48、48…で保持される接続端子板50、50…を介して接続している。この場合の接続状態は、図10に示されているブロック回路と同様であり、その説明は省略する。
【0016】
なお、この長溝部46は横長端子ボックス22を配置収納した後、その開口面は図示されない適当なカバーで覆われる。
また、この実施例においては、リード線を太陽電池モジュールの側部より表側に取り出すことができ、その結果表配線が可能となり施工性が向上する。
【図面の簡単な説明】
【図1】この発明の一実施例を示す要部の図解図である。
【図2】図1における側面から見た場合の図解図である。
【図3】この発明の一実施例における要部を断面した図解図である。
【図4】この発明の他の実施例を示す表面側の図解図である。
【図5】図4の実施例における裏面側の図解図である。
【図6】図5における導電線による接続パターンを示す図解図である。
【図7】この発明の第3実施例を示す要部の図解図である。
【図8】この発明の第4実施例を示す要部の図解図である。
【図9】図8の実施例における要部分解せる図解図である。
【図10】図8の実施例におけるブロック回路図である。
【図11】この発明の第5実施例を示す図解図である。
【図12】図11において横長端子ボックスを配置したA−A矢視の図解図である。
【図13】図11において横長端子ボックスを配置したB−B矢視の図解図である。
【図14】図11に示す第5実施例の要部の図解図である。
【図15】従来例を示す要部の図解図である。
【図16】図15の側面側から見た場合の図解図である。
【符号の説明】
10 …両面入射型太陽電池モジュール
12 …両面入射型太陽電池セル
12a …両面入射型太陽電池セル(標準サイズ)
12b …両面入射型太陽電池セル(ラージサイズ)
14 …導電線
16 …表面部材
18 …裏面部材
20 …封止材
22 …端子ボックス
24 …リード線
28 …アルミ製保持枠
32 …外部出力線
[0001]
[Industrial application fields]
The present invention relates to a double-sided solar cell module, and more particularly to a double-sided solar cell module capable of easily connecting, for example, double-sided solar cells in series.
[0002]
[Prior art]
As shown in FIGS. 15 and 16, the conventional double-sided solar cell module 1 of this type is formed by connecting a plurality of double-sided solar cells 2, 2 and 2 in series. Are connected in series by two solder-plated copper wires 3 and 3, respectively.
[0003]
[Means for Solving the Problems]
This invention includes a surface member, and back member, and three double-sided incidence type solar cells arranged between the surface member and the back member by changing the polarity of the surface side and back side alternately, and The positive and negative electrodes are alternately arranged between the front and back surfaces of adjacent solar cells among the three double-sided incident cells, and the positive and negative electrodes of the adjacent double-sided incident solar cells are alternately arranged. surface each other and provided with electrically conductive wires to connect in series the back side each other, a solar cell module.
[0004]
[Means for Solving the Problems]
The present invention relates to a front surface member, a back surface member, a plurality of double-sided incident solar cells disposed between the front surface member and the back surface member by alternately changing the polarity of the front surface side and the back surface side, and the adjacent double-sided incident type It is a double-sided incident solar cell module comprising a plurality of conductive wires that electrically connect the front and back surfaces of solar cells in series.
[0005]
[Action]
A plurality of double-sided solar cells are arranged with alternating polarity on the front side and back side, and the front and back surfaces of adjacent double-sided solar cells are connected in series by conductive wires. It is not necessary to pass a conductive line from the front side of the cell to the back side of the adjacent solar cell, and the gap between adjacent solar cells is reduced.
[0006]
【The invention's effect】
According to this invention, the series connection operation of the solar cells by the conductive wire is facilitated, and the area of the solar cell module can be reduced while securing a large amount of power generation.
The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
[0007]
【Example】
A double-sided solar cell module 10 of this embodiment whose main part is shown in FIGS. 1 and 2 includes, for example, three double-sided solar cells 12, 12, and 12, and these solar cells 12 are on the surface. It is arranged with the minimum gap necessary for maintaining insulation by alternately changing the polarity on the side and the back side. As a result, the positive and negative electrodes are alternately arranged between the front and back surfaces of the adjacent solar cells 12, 12 and 12, and the two conductive lines 14 and 14 are connected to the front and back surfaces of these solar cells, respectively. Are electrically connected in series.
[0008]
As shown in FIG. 3, the double-sided solar cells 12, 12 and 12 connected in this way are made of a front surface member 16 and a back surface member 18 made of a translucent member such as transparent tempered glass or translucent resin. The solar cell module 10 is configured by sealing with a light-transmitting sealing material 20 such as EVA.
The double-sided solar cell module 10 of another embodiment shown in FIG. 4 and FIG. 5 is a large size having 23 double-sided solar cells 12a of standard size (dimensions: 104 mm × 104 mm) and larger in size than the standard size. A single double-sided solar cell 12b (size: 150 mm × 150 mm) is included, including a total of 24 solar cells. Each of these solar cells 12a and 12b is composed of eight horizontal three rows (8 × 3 = 24) and adjacent solar cells are insulated by alternately changing the polarity on the front side and the back side. It is arranged leaving a minimum gap necessary for maintaining, and the front and back surfaces of the solar cells are connected in series by conductive lines (not shown) as in the embodiment shown in FIGS. .
[0009]
In FIG. 4, the large-sized solar battery cell 12 b is arranged at the lower left corner (third row, left end), and a terminal box 22 is attached to the back side of the solar battery cell 12 b, and the terminal box 22 is connected to the inside thereof Two external output lines 32 and 32 connected to the conductive lines of the solar cells are drawn out. The entire series connection pattern 26 of the conductive wires of the double-sided solar cell module 10 is substantially S-shaped as shown in FIG. 6 when viewed from the back side shown in FIG.
[0010]
In this connected state, as in the case of the embodiment shown in FIG. 3, the above-described 24 double-sided incident solar cells are formed using a light-transmitting sealing material between the light-transmitting front surface member and the back surface member. The double-sided incident solar cell module 10 is formed by sealing. An aluminum holding frame 28 is attached to the peripheral edge of the solar cell module 10.
When the double-sided solar cell module 10 is installed and used at an appropriate location, when light is incident from the front surface side and the back surface side of the solar cell module 10, a large size solar cell having a terminal box 22 attached to the back surface side. In the cell 12b, incident light is blocked by the amount of the terminal box 22. However, since the area of the solar battery cell 12b is larger than that of the standard-sized solar battery cell 12a, the amount of light supplied to the double-sided incident solar battery module 10 is compensated for by the decrease in incident light by the terminal box 22. The amount of power generation based on this amount of light can be secured. That is, the area of the large size solar battery cell 12 b is substantially equal to the sum of the area of the standard size solar battery cell 12 a and the area of the terminal box 22. Therefore, the current value in the large-sized solar battery cell 12b and the current value in the standard-sized solar battery cell 12a can be made substantially equal, so that when connected in series, the current value is controlled to the lower current value. The maximum power generation amount can be obtained.
[0011]
In the double-sided solar cell module 10 of the third embodiment shown in FIG. 7, the large-sized solar cell 12b in the second embodiment shown in FIGS. 4 and 5 is also a standard-sized solar cell 12a. It is. Then, a terminal box space 30 is formed by partially notching one inner side of the aluminum holding frame 28 attached to the peripheral edge of the solar cell module 10. The lead wire 24 and the external output line 32 of the solar cell module 10 are connected in the terminal box space 30, and the opening of the terminal box space 30 is closed with a cover 34. Therefore, incident light incident from the back side of the double-sided incident solar module 10 is not blocked by the terminal box space 30.
[0012]
Accordingly, in this case as well, as in the case of the embodiment shown in FIGS. 4 and 5, it is possible to prevent the light amount and the power generation amount from being reduced by the terminal box space 30.
The double-sided incident solar cell module 10 of the fourth embodiment shown in FIG. 8 is a translucent surface member similar to the embodiment shown in FIG. 3 in which a plurality of double-sided solar cells are connected in series by conductive wires. 16 and the back surface member 18 are configured to be sealed with a translucent sealing material 20. In this solar cell module 10, the lead wires 24 drawn out from the end portions of the light-transmitting sealing material 20 have one end fixed between the sealing material 20 and the front surface member 16 and the back surface member 18. A sheet of insulating sheets 36 and 36 are located and attached. A mounting plate 38 is provided on the back surface side of the solar cell module 10 to which the lead wire 24 and the insulating sheet 36 are attached. The terminal box 22 is fixed to the mounting plate 38 and the lead wire 24 and the external output wire 32 are connected therein. ing.
[0013]
Further, a part of the aluminum holding frame 28 attached to the peripheral edge of the solar cell module 10 is cut out, the terminal box 22 is fitted into the cutout 40 and the opening of the terminal box is closed with the cover 34. . The upper end portion of the cover 34 is attached so as to cover the end portion on the surface side of the solar cell module 10.
In addition, although the diode 42 is provided in the inside of the terminal box 22, these diodes 42 are connected as shown in FIG. 10, and a plurality of solar cells 12 constituting the solar cell module 10, 12 ... Some of the cells are bypassed by a diode for some reason, for example, when leaves or bird droppings adhere to the surface of the solar cell module, the incident light is blocked and the current flowing through this cell decreases. Protect the cell from burning.
[0014]
Also in this case, incident light that is directly incident on the front surface side of the double-sided solar cell module 10 and incident light that is reflected and incident from the back surface side are not blocked by the terminal box 22, so the amount of light does not decrease and is desired. The amount of power generation can be secured.
Furthermore, the double-sided incident solar cell module 10 of the fifth embodiment shown in FIGS. 11 to 14 is a case where a plurality of, for example, two, solar cell modules 10 are combined to form a solar cell panel. Each of the aluminum holding frames 28 and 28 mounted on the peripheral edge portion of the frame has a U-shaped groove 44 on the outer side, and a long groove portion 46 having an upper surface opening formed by combining the U-shaped grooves 44 and 44. A horizontally long terminal box 22 is fitted in the.
[0015]
And the lead wires 24, 24... And the external output wires 32 drawn out from the cells constituting the solar cell module 10 in the horizontally long terminal box 22 are held by the diodes 42, 42... And the support ribs 48, 48. It connects via the terminal boards 50, 50 .... The connection state in this case is the same as that of the block circuit shown in FIG. 10, and the description thereof is omitted.
[0016]
The long groove 46 is covered with a suitable cover (not shown) after the horizontally long terminal box 22 is disposed and stored.
Further, in this embodiment, the lead wire can be taken out from the side of the solar cell module to the front side, and as a result, the front wiring is possible and the workability is improved.
[Brief description of the drawings]
FIG. 1 is an illustrative view of a principal part showing one embodiment of the present invention.
FIG. 2 is an illustrative view when viewed from a side surface in FIG. 1;
FIG. 3 is an illustrative view showing a cross section of a main part in one embodiment of the present invention;
FIG. 4 is an illustrative view of the front side showing another embodiment of the present invention.
FIG. 5 is an illustrative view of the back side in the embodiment of FIG. 4;
6 is an illustrative view showing a connection pattern by conductive lines in FIG. 5; FIG.
FIG. 7 is an illustrative view showing a principal part of a third embodiment of the invention.
FIG. 8 is an illustrative view showing a principal part of a fourth embodiment of the invention.
9 is an illustrative view showing an essential part of the embodiment of FIG. 8 in an exploded manner.
FIG. 10 is a block circuit diagram in the embodiment of FIG. 8;
FIG. 11 is an illustrative view showing a fifth embodiment of the present invention;
12 is an illustrative view taken along arrow AA in which a horizontally long terminal box is arranged in FIG. 11. FIG.
13 is an illustrative view taken along arrow B-B in which a horizontally long terminal box is arranged in FIG. 11;
14 is an illustrative view showing a main part of the fifth embodiment shown in FIG. 11. FIG.
FIG. 15 is an illustrative view showing a principal part of a conventional example.
16 is an illustrative view when viewed from a side surface of FIG. 15;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Double-sided incident type solar cell module 12 ... Double-sided incident type solar cell 12a ... Double-sided incident type solar cell (standard size)
12b ... Double-sided solar cell (large size)
DESCRIPTION OF SYMBOLS 14 ... Conductive wire 16 ... Front surface member 18 ... Back surface member 20 ... Sealing material 22 ... Terminal box 24 ... Lead wire 28 ... Aluminum holding frame
32 ... External output line

Claims (5)

表面部材
裏面部材
表面側と裏面側の極性を交互に変えて前記表面部材と前記裏面部材との間に配置された3枚の両面入射型太陽電池セルと、を含み
前記3枚の両面入射型セルのうち隣接する太陽電池セルの表面どうしおよび裏面どうしは正極と負極が交互に配置され、
前記隣接する両面入射型太陽電池セルの、正極と負極とが交互に配置された表面どうしおよび裏面どうしを電気的に直列接続する導電線を備える、陽電池モジュール。
And the surface member,
And the back member,
Including three double-sided incident solar cells disposed between the front surface member and the back surface member by alternately changing the polarity of the front surface side and the back surface side,
The positive and negative electrodes are alternately arranged between the front and back surfaces of adjacent solar cells among the three double-sided incident cells,
It said adjacent two-sided incidence type solar cells, electrically comprise a conductive wire to connect in series to one other positive electrode and the negative electrode and are arranged alternately surface and the back with each other, solar cell module.
前記3枚の両面入射型セルを含む複数枚の両面入射型太陽電池セルを備え、
前記複数枚の両面入射型太陽電池セルのうち所定のセルに対応する位置において前記裏面部材の背面側に取り付けられた電力取出用の端子ボックスをさらに備え、
前記所定のセルが他のセルより大きい面積を有する、請求項1記載の陽電池モジュール。
A plurality of double-sided solar cells including the three double-sided incident cells,
A power extraction terminal box attached to the back side of the back member at a position corresponding to a predetermined cell of the plurality of double-sided solar cells,
Said predetermined cell has a larger area than the other cells, solar cell module according to claim 1.
前記所定のセルの面積は、前記他のセルの面積と前記端子ボックスの面積との和に略等しい、請求項2記載の陽電池モジュール。The area of a given cell is substantially equal to the sum of the areas of the terminal box and the area of the other cell, solar cell module according to claim 2, wherein. 前記3枚の両面入射型太陽電池セルを前記表面部材と前記裏面部材との間に封止されてなる封止体、
前記封止体の周縁部に装着された保持枠、および
前記保持枠に設けられた電力取出用の端子ボックスをさらに備える、請求項1記載の陽電池モジュール。
A sealed body in which the three double-sided incident solar cells are sealed between the front surface member and the back surface member;
The sealing body further comprising, solar cell module according to claim 1 mounted retention frame to the peripheral portion, and a terminal box for power take-out provided in the holding frame.
前記保持枠に切欠部を形成し、前記切欠部に前記端子ボックスを取り付ける、請求項4記載の陽電池モジュール。A notch formed in the holding frame, attaching the terminal box to said notch, claim 4 solar cell module according.
JP15743798A 1998-06-05 1998-06-05 Solar cell module Expired - Lifetime JP3679611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15743798A JP3679611B2 (en) 1998-06-05 1998-06-05 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15743798A JP3679611B2 (en) 1998-06-05 1998-06-05 Solar cell module

Publications (2)

Publication Number Publication Date
JPH11354822A JPH11354822A (en) 1999-12-24
JP3679611B2 true JP3679611B2 (en) 2005-08-03

Family

ID=15649639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15743798A Expired - Lifetime JP3679611B2 (en) 1998-06-05 1998-06-05 Solar cell module

Country Status (1)

Country Link
JP (1) JP3679611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099955A1 (en) 2006-03-01 2007-09-07 Sanyo Electric Co., Ltd. Solar battery cell and solar battery module using such solar battery cell

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210849A (en) * 2000-01-24 2001-08-03 Sumitomo Wiring Syst Ltd Connector for solar battery panel
JP4663417B2 (en) * 2005-06-17 2011-04-06 三洋電機株式会社 Solar cell module
TW200642103A (en) 2005-03-31 2006-12-01 Sanyo Electric Co Solar battery module
DE102005026132A1 (en) * 2005-06-01 2006-12-28 Sulfurcell Solartechnik Gmbh Method for guidance of contact strip by solar modules involves guiding around of the contact strip on the top side of the glass plate, facing away from the light, around the glass plate
JP5153066B2 (en) * 2005-09-27 2013-02-27 三洋電機株式会社 Solar cell module
JP4942324B2 (en) * 2005-09-30 2012-05-30 三洋電機株式会社 Solar cell module
JP4781074B2 (en) * 2005-09-30 2011-09-28 三洋電機株式会社 Solar cell module
JP5171001B2 (en) 2005-09-30 2013-03-27 三洋電機株式会社 Method for manufacturing solar cell module, solar cell and solar cell module
JP5084146B2 (en) * 2006-01-30 2012-11-28 三洋電機株式会社 Photovoltaic module
JP4925844B2 (en) * 2006-02-01 2012-05-09 三洋電機株式会社 Solar cell module
EP1816684A2 (en) 2006-02-01 2007-08-08 Sanyo Electric Co. Ltd. Solar battery module
JP2007294866A (en) 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
US20100018572A1 (en) * 2006-06-29 2010-01-28 Huber+Suhner Ag Connection Box
JP5153097B2 (en) 2006-07-31 2013-02-27 三洋電機株式会社 Solar cell module
JP5507034B2 (en) 2007-03-01 2014-05-28 三洋電機株式会社 Solar cell module and manufacturing method thereof
JP2008252051A (en) * 2007-03-02 2008-10-16 Sanyo Electric Co Ltd Solar cell module
JP4989268B2 (en) * 2007-03-23 2012-08-01 三洋電機株式会社 Solar cell module
JP5196821B2 (en) * 2007-03-23 2013-05-15 三洋電機株式会社 Solar cell module
EP2096681A1 (en) * 2008-02-27 2009-09-02 Arcelormittal-Stainless & Nickel Device for external electrical connection of the electrically live cells of an electrically live panel, such as the electricity generating cells of a photovoltaic panel
JP5436805B2 (en) * 2008-07-04 2014-03-05 三洋電機株式会社 Solar cell module
TWI493732B (en) * 2009-02-17 2015-07-21 Shinetsu Chemical Co Solar module
JP2011054662A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Solar cell module
CN102792460B (en) * 2009-11-27 2015-08-05 欧南芭株式会社 Solar module
JP5495777B2 (en) * 2009-12-25 2014-05-21 京セラ株式会社 Solar cell module
JP5031935B2 (en) * 2010-04-21 2012-09-26 京セラ株式会社 Solar cell module
JP2011160008A (en) * 2011-05-26 2011-08-18 Sanyo Electric Co Ltd Solar cell module
JP2013073953A (en) * 2011-09-26 2013-04-22 Sumitomo Wiring Syst Ltd Terminal box for solar cell module
JPWO2013140550A1 (en) * 2012-03-21 2015-08-03 パナソニックIpマネジメント株式会社 Solar cell module
WO2013140550A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Solar cell module
WO2014155910A1 (en) * 2013-03-29 2014-10-02 三洋電機株式会社 Solar cell system
US20150249426A1 (en) * 2014-02-28 2015-09-03 David Okawa Photovoltaic module junction box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099955A1 (en) 2006-03-01 2007-09-07 Sanyo Electric Co., Ltd. Solar battery cell and solar battery module using such solar battery cell
US8049099B2 (en) 2006-03-01 2011-11-01 Sanyo Electric Co., Ltd. Solar cell and solar cell module including the same

Also Published As

Publication number Publication date
JPH11354822A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP3679611B2 (en) Solar cell module
JP4174227B2 (en) Solar cell module
JP4776258B2 (en) SOLAR CELL MODULE AND SOLAR CELL DEVICE HAVING THE SAME
JP2005011869A (en) Solar cell module and its manufacturing method
JP5031698B2 (en) Solar cell module
KR20120018369A (en) Photovoltaic module string arrangement and shading protection therefor
JP2005191479A (en) Solar cell module
US20120216849A1 (en) Solar Photovoltaic Device
WO2012057243A1 (en) Solar cell and solar cell module
JP2704429B2 (en) Photovoltaic module
JP5015352B2 (en) Solar cell module
JP4245724B2 (en) Solar cell module
JP2000114572A (en) Solar battery module
US20220302873A1 (en) A solar power generator
KR20190126515A (en) Solar cell module
JP7441937B2 (en) solar module
JP4224161B2 (en) Solar cell module
JP2002094099A (en) Solar cell device
JP3106784B2 (en) Solar cell straw
JP7372412B1 (en) Output line connection structure of solar cell module
CN220021142U (en) Black bus bar and photovoltaic module
JPH06318727A (en) Solar battery element
WO2024057855A1 (en) Photovoltaic module
JP2004221211A (en) Solar-cell element and module thereof
CN218482253U (en) Grid line structure, solar wafer, battery pack and photovoltaic system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

EXPY Cancellation because of completion of term