JP3676650B2 - Cleaning tool - Google Patents

Cleaning tool Download PDF

Info

Publication number
JP3676650B2
JP3676650B2 JP2000164103A JP2000164103A JP3676650B2 JP 3676650 B2 JP3676650 B2 JP 3676650B2 JP 2000164103 A JP2000164103 A JP 2000164103A JP 2000164103 A JP2000164103 A JP 2000164103A JP 3676650 B2 JP3676650 B2 JP 3676650B2
Authority
JP
Japan
Prior art keywords
fiber material
cleaning
cleaning tool
bactericidal
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000164103A
Other languages
Japanese (ja)
Other versions
JP2001340280A (en
Inventor
邦夫 藤原
収功 武田
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000164103A priority Critical patent/JP3676650B2/en
Publication of JP2001340280A publication Critical patent/JP2001340280A/en
Application granted granted Critical
Publication of JP3676650B2 publication Critical patent/JP3676650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、家庭や事業場の床などの掃除に使用されている使い捨て清掃シートの改良に主眼をおいたものである。また、カビや微生物の繁殖を防止し、台所、風呂場、洗面所、トイレ等をより衛生的に清掃するために用いられる拭き取り清掃シートにも関するものである。しかしながら、本発明に係る技術思想は、清掃シートのみならず、後述するように広範囲に亘る清掃用具に適用することができ、これら全ての態様の清掃用具は本発明の範囲に含まれる。
【0002】
【従来の技術】
近年、家庭や事業場での床掃除において、ごみ吸着保持力を有する使い捨ての清掃シートをモップ状の保持具の先端(頭部)に取り付けた清掃用具がよく利用されている。また、同様のシートを用いた壁、家具等用の手持ち型清掃用具(ハンドモップ)もよく利用されている。これらの清掃用具は、手軽に仕様でき、シートのごみ吸着保持力も大きいので、掃除機のある家庭などにおいても普及している。このシートの継続使用可能回数は、対象とする床、壁等の汚れ具合、一回の清掃で処理する床、壁等の面積などに依存するが、通常は、これらの清掃用具は比較的汚れの少ない床、壁などの清掃に使用する場合が多いので、一枚のシートを何回も続けて使用することが多い。この場合、使用したシートを保持具に装着させたまま、次回の清掃に用いるまでの間、家庭や事業場内の適当な場所に保管するのが普通である。
【0003】
しかし、清掃に使用したシートにはゴミや雑菌が吸着しており、これらを吸着させたまま次の清掃に用いるまで保管しておくと、ゴミや雑菌の吸着部のみならず、保管場所周辺において雑菌の繁殖が起こり、衛生上問題である。特に、シートの吸着部は、微生物のみならず、その餌となる物質も合わせて吸着しているので、繁殖の速度が著しい。このように雑菌が繁殖したシートを次回の清掃に使用すると、却って、シートに繁殖している雑菌を床や壁に大量に撒き散らすことになってしまい、衛生上好ましくない。更に、このようなシートは、片面を使用した後に、裏返して再び使用するという使用法がしばしば適用されているが、この場合、シートに繁殖した雑菌が使用者の身体に付着する危険性があり、好ましくない。
【0004】
また、湿度の高い洗面所、台所、浴場等では、床のみならず壁や天井等にカビが発生することがよくある。これに対しては、通常、殺菌剤をスプレーした後に拭き取ったり、殺菌剤を染み込ませた布で拭き取る等の方法で対処している。しかしながら、例えば天井や壁の上部などの目の高さよりも高い位置のカビをこれらの方法で処理する場合には、有毒な殺菌剤が目に入る危険性が常に伴う。更に、カビ用の殺菌剤は、有害ガスを発生するものが多く、清掃中の環境悪化、保管中の安全性などの面で問題が多い。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような課題を解決するもので、使用した清掃用具を次に使用するまでの間、保管場所に保管していても雑菌の繁殖がなく、更に、好ましくは清掃面の除菌をも達成することができる清掃用具を提供するものである。
【0006】
【課題を解決するための手段】
本発明の一態様は、少なくとも一部に殺菌性又は抗菌性を持つ物質が化学的に導入されている繊維材料を構成要素とすることを特徴とする清掃用具に関する。
【0007】
上記のような課題を解決するために、即ち、清掃シート上での雑菌の繁殖を防止し、更に好ましくは清掃面の除菌をも達成する清掃シートを提供するために、清掃シートに殺菌剤や抗菌性薬剤をしみ込ませることは容易に考えつく。しかしながら、これら殺菌剤や抗菌性薬剤を清掃シートに単にしみ込ませただけでは、使用直後には薬剤の濃度が高いので十分な効果を発揮するが、使用に伴い薬剤の濃度が急激に低下するので、その効果は極めて短時間で終わってしまう。しかも、使用開始直後には、薬剤の放出が過剰になってしまい、床や壁等の清掃面に高濃度の殺菌剤や抗菌性薬剤が残留することになってしまう。これでは、雑菌の繁殖による汚染よりも、薬剤の残留による汚染による影響の方が重大な問題を引き起こす恐れがある。特に清掃面が水で濡れている場合には、薬剤の放出量は急激に大きくなる。
【0008】
これに対して、殺菌性又は抗菌性を持つ物質を、化学的に導入した場合、即ち清掃用具のゴミ吸着部を構成する繊維材料との化学的な結合によって導入した場合には、当該化学結合の結合力によって持続時間が異なるが、薬剤を単に染み込ませた(即ち物理的に導入した)ものよりも、効果の持続時間が極めて長い。例えば、イオン交換基を導入した繊維材料に銀や銅等の抗菌性金属をイオン交換的に結合させた本発明に係る清掃用具の場合、水との平衡関係により、数カ月及至数年のオーダーで抗菌性金属が微量ずつ放出される。また、繊維材料に4級アンモニウム基を導入した場合、その表面にプラスの電荷を有するようになり、一般にマイナスに帯電している細菌やゴミを静電的に吸着し、吸着された細菌類は繊維材料上で死滅する。このように、4級アンモニウム基を化学的に導入した繊維材料は、単に4級アンモニウム塩を繊維材料に物理的に染み込ませたものとは異なり、イオン交換基が脱落することがないので、殺菌効果が持続する。
【0009】
【発明の実施の形態】
以下、本発明に係る清掃用具の各種態様について説明する。
【0010】
本発明において、清掃用具を構成する繊維材料として用いることのできるものとしては、繊維やその集合体である織布や不織布が挙げられる。繊維の形状の具体例としては、長繊維及びその加工品、短繊維及びその加工品並びにそれらの切断短体などが挙げられる。長繊維としては、例えば連続フィラメントが挙げられ、短繊維としては例えばステープルファイバーが挙げられる。長繊維及び短繊維の加工品としては、これらの繊維から製造される種々の織布及び不織布が挙げられる。また、繊維材料の形状として、シート状、ブラシ状、玉状、塊状、棒状、中空体、パンヤ状態、三次元網状物、スポンジ状構造体等、任意の構造のものを採用することができる。
【0011】
本発明に係る清掃用具においては、上記のような繊維材料の少なくとも一部に、殺菌性又は抗菌性を有する物質が化学的に導入される。ここで「化学的に導入」とは、殺菌性又は抗菌性を有する物質が、繊維材料との化学反応により化学結合することによって繊維材料に導入されることを意味する。本発明においては、殺菌性又は抗菌性を有する物質と繊維材料との化学反応として、任意の公知の化学反応を採用することができる。
【0012】
その中で、本発明において特に好ましい反応方法は、放射線グラフト重合法を利用した方法である。放射線グラフト重合法は、有機高分子基材に放射線を照射してラジカルを生成させ、それにグラフトモノマーを反応させることによって、所望のグラフト重合体側鎖を基材に導入することのできる方法であり、各種形状の既存の繊維材料に所望の重合体側鎖を導入することができるので、本発明の目的のために用いるのに最適である。この方法によれば、グラフト率を変えることによって、基材に導入する殺菌性又は抗菌性の物質の量を容易にコントロールすることが可能である。また、グラフト鎖は、繊維の表面と内部の両方に生成するので、グラフト鎖のモビリティが大きく、微生物や微粒子の吸着速度及び薬剤の放出速度を大きくすることができる。また、繊維内部に生成するグラフト鎖は、薬剤の導入量を増やすために利用することができる。
【0013】
本発明の目的のために好適に用いることのできる放射線グラフト重合法において、用いることのできる放射線としては、α線、β線、γ線、電子線、紫外線などを挙げることができるが、本発明において用いるのにはγ線や電子線が適している。放射線グラフト重合法には、グラフト用基材に予め放射線を照射した後、重合性単量体(グラフトモノマー)と接触させて反応させる前照射グラフト重合法と、基材とモノマーの共存下に放射線を照射する同時照射グラフト重合法とがあるが、いずれの方法も本発明において用いることができる。また、モノマーと基材との接触方法により、モノマー溶液に基材を浸漬させたまま重合を行う液相グラフト重合法、モノマーの蒸気に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後、モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法などが挙げられるが、いずれの方法も本発明において用いることができる。
【0014】
なお、本発明に係る清掃用具において用いられる基材である繊維や繊維の集合体である織布/不織布は、モノマー溶液を保持し易いので、含浸気相グラフト重合法において用いるのに特に適している。
【0015】
本発明に係る清掃用具においては、繊維材料に殺菌性又は抗菌性の物質を導入するのであるが、その導入形態としては、殺菌性又は抗菌性の官能基を導入したり、或いは殺菌性又は抗菌性の物質、例えば金属やヨウ素などを担持することのできる官能基を繊維材料に導入して当該官能基に殺菌性又は抗菌性の物質を担持するなどの方法を用いることができる。即ち、「殺菌性又は抗菌性の物質」とは、殺菌性又は抗菌性の化合物のみならず、殺菌性又は抗菌性の官能基をも包含する。繊維材料に導入することのできる殺菌性又は抗菌性の物質としては、当該技術において公知の任意の殺菌性又は抗菌性の物質又は官能基を用いることができる。例えば、放射線グラフト重合法を用いて4級アンモニウム基を繊維材料に導入することにより、本発明に係る清掃用具を形成することができる。これと同様に、本発明において繊維材料に導入することのできる殺菌性又は抗菌性の官能基としては、ピリジニウム基などが挙げられる。
【0016】
また、イオン交換基を繊維材料に導入し、導入したイオン交換基に殺菌性又は抗菌性の金属を担持させることによっても、本発明に係る清掃用具を形成することができる。更には、放射線グラフト重合法を用いて繊維材料にN−アルキル−N−ビニルアルキルアミド、例えばN−ビニルピロリドンから誘導される単位を含む重合体側鎖を導入し、これにヨウ素を担持させることによっても、本発明に係る清掃用具を形成することができる。N−ビニルピロリドンの重合体とヨウ素との結合体はうがい薬として常用されており、体内に取り入れても安全であることが確認されている。しかも、N−ビニルピロリドンの重合体側鎖を放射線グラフト重合法によって布状の基材に導入し、これにヨウ素を担持させることは極めて容易である。例えば、本発明の清掃用具を構成する繊維材料を放射線照射した後、N−ビニルピロリドンを接触させて所定時間重合を行わせる。次に、繊維材料を、ヨウ素のヨウ化カリウム溶液に浸漬し、続いて洗浄と乾燥を行うことによって、ヨウ素を繊維材料に導入することができる。このヨウ素が担持された繊維材料は、ヨウ素を徐放するので、これを清掃用具として使用した場合、清掃用具の表面及び内部での雑菌の繁殖を抑えるだけでなく、これを用いて清掃した床や壁などの面をも除菌することができる。本発明に係る清掃用具において、ヨウ素を殺菌性又は抗菌性の物質として用いると、雑菌やウィルスを短時間で掃去することができ、極めて効果的である。
【0017】
このように、殺菌性又は抗菌性の物質が徐放されるように構成した本発明に係る清掃用具は、清掃用具での雑菌の繁殖を抑制するのみならず、清掃面の除菌をも行うことができる。
【0018】
同様に本発明において殺菌性又は抗菌性の物質を繊維材料に担持させる態様としては、例えば、カルボキシル基やスルホン酸基、リン酸基等のカチオン交換基を繊維材料中にグラフト重合等の方法により導入し、これに銀、銅、第4級アンモニウム塩などの抗菌性イオンを担持したり、第4級アンモニウム基、第2級、第3級アミノ基等のアニオン交換基を繊維材料中にグラフト重合等の方法により導入し、これにオルトフェニルフェノール、アミノ酸等の抗菌性物質を担持するなどの手法を挙げることができる。
【0019】
本発明に係る清掃用具の具体的な形態としては、少なくとも一部に殺菌性又は抗菌性を持つ物質が化学的に導入された繊維材料を頭部に装着したモップ型、ハンドモップ型、ブラシ型、或いは、係る繊維材料により構成される雑巾、係る繊維材料から形成した掃除機能付きスリッパ等、任意の形態を採用することができる。また、本発明に係る少なくとも一部に殺菌性又は抗菌性を持つ物質が化学的に導入された繊維材料を、靴底清掃用の足拭きマットなどの形態で用いることもできる。この場合、殺菌性又は抗菌性を持つ物質が徐放されるように構成すれば、靴底の除菌も図ることができ、クリーン環境室内の入口に配置する足拭きマットとして有用である。
【0020】
本発明に係る清掃用具は、水を使わずに所謂ドライタイプとして用いることもでき、或いは水を使うウエットタイプとして用いることもできる。なお、ウエットタイプとして用いる場合には、清掃用具を構成する繊維材料は親水性のもの又は親水化させたものを用いることが好ましい。
【0021】
【実施例】
以下、本発明を実施例により説明する。これらの実施例は、本発明を限定するものではない。
【0022】
実施例1
4級アンモニウム基を導入した不織布材料の製造
目付50g/m2、厚さ0.3mm、繊維径12μmのポリエチレン繊維より構成された不織布に、電子線150kGyを窒素雰囲気下で照射した。次に、不織布をクロロメチルスチレン(セイミケミカル製)溶液に浸漬し、40℃で8時間反応させた。なお、クロロメチルスチレンは、使用に先立ち、活性アルミナと接触させて安定剤を除去した。反応後、不織布をアセトン溶液に浸漬して、未反応モノマーやホモポリマー(単独重合物)を除去した。乾燥後、重量を測定し、グラフト率(重量増加率)を算出したところ、132%であった。
【0023】
このグラフト化不織布を、10%トリメチルアミン溶液に浸漬し、45℃で2時間、4級アンモニウム化反応を行い、強塩基性アニオン交換不織布を得た。この不織布の中性塩分解容量は2.61meq/gであった。この不織布を5%水酸化ナトリウム水溶液に2時間浸漬して、再生した後、乾燥した。
【0024】
実施例2
イオン交換基に銀を担持した不織布材料の製造
目付50g/m2、厚さ0.3mm、繊維径12μmのポリエチレン繊維より構成された不織布に、電子線150kGyを窒素雰囲気下で照射した。次に、不織布をアクリル酸溶液に浸漬し、40℃で4時間反応させた。反応後、不織布を5%水酸化ナトリウム溶液に浸漬して、未反応モノマーやホモポリマー(単独重合物)を除去して、塩型をナトリウム型に調整した。乾燥後、重量を測定し、グラフト率(重量増加率)を算出したところ、52%であった。
【0025】
このグラフト化不織布を、2%硝酸銀水溶液に浸漬して、銀型のイオン交換不織布を得た。
【0026】
実施例3
ヨウ素を担持した不織布材料の製造
目付50g/m2、厚さ0.3mm、繊維径12μmのポリエチレン繊維より構成された不織布に、電子線150kGyを窒素雰囲気下で照射した。次に、不織布をビニルピロリドン溶液に浸漬し、40℃で5時間反応させた。反応後、不織布を50℃の純水に浸漬して、未反応モノマーやホモポリマー(単独重合物)を除去した。乾燥後、重量を測定してグラフト率(重量増加率)を算出したところ、106%であった。
【0027】
このグラフト化不織布を、0.1Nヨウ素−ヨウ化カリウム水溶液に2時間浸漬した後、純水に5時間浸漬し、洗浄した。この洗浄操作を更に2回繰り返した後、乾燥させて、ヨウ素担持不織布を得た。
【0028】
実施例4
オルトフェニルフェノール担持不織布材料の製造
目付50g/m2、厚さ0.3mm、繊維径12μmのポリエチレン繊維より構成された不織布に、電子線150kGyを窒素雰囲気下で照射した。次に、不織布を、ビニルベンジルトリメチルアンモニウム(VBTAC、セイミケミカル製)の50%水溶液とジメチルアクリルアミド溶液を1/1で混合したモノマー溶液に浸漬し、40℃で8時間反応させた。反応後、不織布を70℃の純水に浸漬し、未反応モノマーやホモポリマー(単独重合物)を除去した。不織布を乾燥した後、重量を測定してグラフト率(重量増加率)を算出したところ、120%であった。また、中性塩分解容量は1.08meq/gであった。
【0029】
このグラフト化不織布を、オルトフェニルフェノールの5%エタノール溶液に2時間浸漬した後、更にエタノールで洗浄し、乾燥した。
【0030】
実施例5
雑巾に捕捉された雑菌の殺菌性能
実施例1〜4で製造された本発明に係る不織布材料を15cm×20cmに切断したものを雑巾として用い、一般家庭の台所の床面1m2を2回拭いた。使用後の雑巾を5cm×5cmに切断した試料を、滅菌済みのシャーレに入れ、温度25℃、湿度60%の恒温恒湿器内で48時間静置した。その後、この断片試料を、Nutrient Agar培地の上に、拭き取り面が培地と接触するように置き、37℃で48時間培養した。これとは別にグラフト未処理のポリエチレン不織布材料についても同様の操作を行った。結果を表1に示す。
【0031】
表1から明らかなように、本発明に係る殺菌性又は抗菌性を持つ物質が化学的に導入されている繊維材料から構成された雑巾においては、微生物の増殖が認められなかった。
【0032】
実施例6
本発明の清掃用具で清掃した清掃面の雑菌の殺菌性能
実施例5で用いたものと同様の本発明に係る雑巾を用いて、表面タイル仕上げの10cm角の板を拭きあげた。未処理の板と共に、一般家庭の風呂場の天井付近に一週間静置した後、表面の状態を顕微鏡を用いて観察した。結果を表1に示す。表1から、殺菌性又は抗菌性を持つ物質が徐放されるように構成した実施例2〜4の清掃用具を用いると、清掃面の除菌が行われたことが分かる。この結果から、本発明に係る清掃用具は、殺菌性又は抗菌性を持つ物質が徐放されるように構成することにより、清掃面の除菌にも効果があることが分かった。
【0033】
【表1】

Figure 0003676650
【0034】
実施例7
純菌を用いた菌生育試験
実施例1〜4で得られた本発明に係る不織布材料及びグラフト未処理のポリエチレン不織布材料を、1cm×1cmの試料片に切断した。B. subtillis ATCC6633を液体培地(Nutrient Broth, NB培地)で、37℃で18時間培養した菌体液25μl(約106cells)を上記の試料片に滴下し、5秒間風乾して菌体を試料片に付着させた。
【0035】
この菌体付着試料片を、NB培地2.5mlを含む試験管内に入れ、試験管撹拌機で15秒間混合し、更に30秒間超音波処理を行って菌体を分散させた後、37℃で36時間培養し、培養液の濁度を観察した。
【0036】
対照試料として、B. subtillis ATCC6633の菌体液25μlを直接、NB培地2.5mlを含む試験管に加え、同様に分散処理、培養を行い、培養液の濁度を観察した。
【0037】
実験結果を表2に示す。本発明に係る殺菌性又は抗菌性を持つ物質が化学的に導入されている繊維材料においては、菌の生育が認められなかった。
【0038】
【表2】
Figure 0003676650
【0039】
【発明の効果】
本発明に係る清掃用具は、少なくとも一部に殺菌性又は抗菌性を持つ物質が化学的に導入されている繊維材料を構成要素としているので、繊維材料に捕集されたごみの中に生息する雑菌類を速やかに除菌することができ、清掃用具を次に使用するまでの間清潔に保つことができ、衛生的な居住環境が維持できる。また、高濃度の殺菌剤等に曝露される危険性も少なくなる。更に、清掃中に繊維材料から殺菌性又は抗菌性を持つ物質が徐々に放出されるように構成することもできるので、清掃面の除菌が行われるようにすることができ、安全で快適な生活に資すること大である。[0001]
BACKGROUND OF THE INVENTION
The present invention focuses on the improvement of the disposable cleaning sheet used for cleaning the floors of homes and business establishments. The present invention also relates to a wiping and cleaning sheet used to prevent the growth of mold and microorganisms and more hygienicly clean kitchens, bathrooms, washrooms, toilets and the like. However, the technical idea according to the present invention can be applied not only to the cleaning sheet but also to a wide range of cleaning tools as described later, and the cleaning tools of all these aspects are included in the scope of the present invention.
[0002]
[Prior art]
In recent years, a cleaning tool in which a disposable cleaning sheet having a dust adsorption holding force is attached to the tip (head) of a mop-like holder is often used in floor cleaning at home or business. In addition, hand-held cleaning tools (hand mops) for walls, furniture and the like using the same sheet are often used. Since these cleaning tools can be easily specified and have a large dust adsorbing / holding power for sheets, they are also popular in homes with vacuum cleaners. The number of times this sheet can be used continuously depends on the level of dirt on the target floor, wall, etc., the area of the floor, wall, etc. processed by one cleaning, but usually these cleaning tools are relatively dirty. Since it is often used for cleaning floors and walls with few floors, a single sheet is often used several times in succession. In this case, it is common to store the used sheet in a suitable place in the home or business place until it is used for the next cleaning while being mounted on the holder.
[0003]
However, dust and germs are adsorbed on the sheet used for cleaning, and if these are adsorbed and stored until the next cleaning, not only the adsorbing part of dust and germs but also around the storage location. Various germs breed, which is a sanitary problem. In particular, the adsorbing part of the sheet adsorbs not only microorganisms but also substances that serve as food, so the propagation speed is remarkable. If the sheet on which the germs propagated in this way is used for the next cleaning, the germs propagated on the sheet will be scattered in large quantities on the floor or wall, which is not preferable for hygiene. In addition, such a sheet is often used after being used on one side and then turned over and reused. In this case, there is a risk that germs that have propagated on the sheet may adhere to the user's body. It is not preferable.
[0004]
In addition, mold is often generated not only on the floor but also on walls and ceilings in humid bathrooms, kitchens, and baths. This is usually dealt with by spraying the germicide and then wiping it with a cloth soaked with the germicide. However, when molds higher than the height of the eyes, such as the ceiling or the upper part of the wall, are treated by these methods, there is always a risk that toxic disinfectants may enter the eyes. Furthermore, many fungicides for fungi generate harmful gases, and there are many problems in terms of environmental deterioration during cleaning and safety during storage.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, and there is no growth of germs even if the used cleaning tool is stored in a storage place until the next use, and preferably the cleaning surface is removed. The present invention provides a cleaning tool that can achieve bacteria.
[0006]
[Means for Solving the Problems]
One embodiment of the present invention relates to a cleaning tool including a fiber material into which a substance having bactericidal or antibacterial properties is chemically introduced at least partially.
[0007]
In order to solve the problems as described above, that is, in order to provide a cleaning sheet that prevents the growth of germs on the cleaning sheet and more preferably achieves the sterilization of the cleaning surface, a disinfectant is provided on the cleaning sheet. Soaking in and antibacterial drugs is easily conceivable. However, just soaking these disinfectants and antibacterial agents in the cleaning sheet will give a sufficient effect immediately after use because the concentration of the agent is high, but the concentration of the agent rapidly decreases with use. The effect ends in a very short time. Moreover, immediately after the start of use, the release of the drug becomes excessive, and a high-concentration disinfectant or antibacterial drug remains on the cleaning surface such as the floor or wall. In this case, there is a possibility that the influence caused by the contamination due to the residue of the drug causes a more serious problem than the contamination due to the propagation of various germs. In particular, when the cleaning surface is wet with water, the amount of drug released increases rapidly.
[0008]
On the other hand, when a substance having bactericidal or antibacterial properties is chemically introduced, that is, when it is introduced by chemical bonding with the fiber material constituting the dust adsorbing portion of the cleaning tool, the chemical bonding Although the duration varies depending on the binding force, the duration of the effect is much longer than that in which the drug is simply impregnated (ie, physically introduced). For example, in the case of the cleaning tool according to the present invention in which an antibacterial metal such as silver or copper is ion-exchanged bonded to a fiber material into which an ion exchange group is introduced, due to an equilibrium relationship with water, it is on the order of several months to several years. A small amount of antibacterial metal is released. In addition, when a quaternary ammonium group is introduced into the fiber material, it has a positive charge on its surface, and generally adsorbs negatively charged bacteria and dust electrostatically. Dies on fiber material. As described above, the fiber material in which the quaternary ammonium group is chemically introduced is different from the one in which the quaternary ammonium salt is physically soaked in the fiber material. The effect lasts.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various aspects of the cleaning tool according to the present invention will be described.
[0010]
In the present invention, fibers that can be used as the fiber material constituting the cleaning tool include fibers and woven fabrics and nonwoven fabrics that are aggregates thereof. Specific examples of the shape of the fiber include long fibers and processed products thereof, short fibers and processed products thereof, and cut short bodies thereof. Examples of the long fiber include a continuous filament, and examples of the short fiber include a staple fiber. Examples of processed products of long fibers and short fibers include various woven fabrics and non-woven fabrics produced from these fibers. In addition, as a shape of the fiber material, a sheet material, a brush shape, a ball shape, a lump shape, a rod shape, a hollow body, a bunker state, a three-dimensional network, a sponge-like structure, or the like can be adopted.
[0011]
In the cleaning tool according to the present invention, a sterilizing or antibacterial substance is chemically introduced into at least a part of the fiber material as described above. Here, “chemically introduced” means that a substance having bactericidal or antibacterial properties is introduced into the fiber material by chemically bonding with a chemical reaction with the fiber material. In the present invention, any known chemical reaction can be adopted as the chemical reaction between the bactericidal or antibacterial substance and the fiber material.
[0012]
Among them, a particularly preferable reaction method in the present invention is a method utilizing a radiation graft polymerization method. The radiation graft polymerization method is a method in which a desired graft polymer side chain can be introduced into a substrate by irradiating an organic polymer substrate with radiation to generate radicals and reacting with the graft monomer. It is ideal for use for the purposes of the present invention because the desired polymer side chains can be introduced into existing fiber materials of various shapes. According to this method, it is possible to easily control the amount of the bactericidal or antibacterial substance introduced into the substrate by changing the graft ratio. In addition, since the graft chain is generated both on the surface and inside of the fiber, the mobility of the graft chain is large, and the adsorption rate of microorganisms and fine particles and the release rate of the drug can be increased. Moreover, the graft chain produced | generated inside a fiber can be utilized in order to increase the introduction amount of a chemical | medical agent.
[0013]
Examples of radiation that can be used in the radiation graft polymerization method that can be suitably used for the purpose of the present invention include α rays, β rays, γ rays, electron beams, and ultraviolet rays. Γ rays and electron beams are suitable for use in the above. The radiation graft polymerization method includes a pre-irradiation graft polymerization method in which a graft substrate is irradiated with radiation in advance and then brought into contact with a polymerizable monomer (graft monomer) to react with the radiation. There are simultaneous irradiation graft polymerization methods of irradiating any one of them, and any method can be used in the present invention. In addition, by the contact method of the monomer and the base material, a liquid phase graft polymerization method for performing polymerization while the base material is immersed in the monomer solution, a gas phase graft polymerization method for performing the polymerization by contacting the base material with the vapor of the monomer, Examples of the method include an impregnation gas phase graft polymerization method in which a substrate is immersed in a monomer solution and then taken out from the monomer solution and reacted in a gas phase. Any method can be used in the present invention.
[0014]
It should be noted that the woven fabric / nonwoven fabric, which is the base material used in the cleaning tool according to the present invention and the aggregate of the fibers, can easily hold the monomer solution, and thus is particularly suitable for use in the impregnation gas phase graft polymerization method. Yes.
[0015]
In the cleaning tool according to the present invention, a bactericidal or antibacterial substance is introduced into the fiber material. As the introduction mode, a bactericidal or antibacterial functional group is introduced, or a bactericidal or antibacterial function is introduced. For example, a functional group capable of supporting a functional substance such as metal or iodine is introduced into the fiber material, and a bactericidal or antibacterial substance is supported on the functional group. That is, the “bactericidal or antibacterial substance” includes not only a bactericidal or antibacterial compound but also a bactericidal or antibacterial functional group. As the bactericidal or antibacterial substance that can be introduced into the fiber material, any bactericidal or antibacterial substance or functional group known in the art can be used. For example, the cleaning tool according to the present invention can be formed by introducing a quaternary ammonium group into the fiber material using a radiation graft polymerization method. Similarly, the bactericidal or antibacterial functional group that can be introduced into the fiber material in the present invention includes a pyridinium group.
[0016]
Moreover, the cleaning tool which concerns on this invention can also be formed by introduce | transducing an ion exchange group into a fiber material, and carrying | supporting a bactericidal or antibacterial metal to the introduced ion exchange group. Further, by introducing a polymer side chain containing a unit derived from N-alkyl-N-vinylalkylamide, for example, N-vinylpyrrolidone, into the fiber material by using a radiation graft polymerization method, and supporting iodine on this. Moreover, the cleaning tool which concerns on this invention can be formed. A conjugate of a polymer of N-vinylpyrrolidone and iodine is commonly used as a mouthwash, and it has been confirmed that it is safe to take in the body. In addition, it is extremely easy to introduce a polymer side chain of N-vinylpyrrolidone into a cloth-like base material by a radiation graft polymerization method and to support iodine on this. For example, after irradiating the fiber material which comprises the cleaning tool of this invention with radiation, N-vinylpyrrolidone is made to contact and it is made to superpose | polymerize for a predetermined time. Next, iodine can be introduced into the fiber material by immersing the fiber material in a potassium iodide solution of iodine followed by washing and drying. This iodine-supporting fiber material releases iodine slowly, so when used as a cleaning tool, it not only suppresses the growth of germs on the surface and inside of the cleaning tool, Surfaces such as walls can also be sterilized. In the cleaning tool according to the present invention, when iodine is used as a bactericidal or antibacterial substance, germs and viruses can be removed in a short time, which is extremely effective.
[0017]
As described above, the cleaning tool according to the present invention configured so that the bactericidal or antibacterial substance is gradually released not only suppresses the growth of bacteria in the cleaning tool but also sterilizes the cleaning surface. be able to.
[0018]
Similarly, in the present invention, as a mode in which a bactericidal or antibacterial substance is carried on a fiber material, for example, a cation exchange group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group is incorporated into the fiber material by a method such as graft polymerization. Introduced and loaded with antibacterial ions such as silver, copper, and quaternary ammonium salts, and grafted anion exchange groups such as quaternary ammonium groups, secondary, and tertiary amino groups into the fiber material Examples thereof include a method of introducing by a method such as polymerization and supporting an antibacterial substance such as orthophenylphenol and amino acid.
[0019]
As a specific form of the cleaning tool according to the present invention, a mop type, a hand mop type, and a brush type in which a fiber material in which a substance having bactericidal or antibacterial properties is chemically introduced is at least partially mounted on the head. Or arbitrary forms, such as the dust comprised from the fiber material which concerns, the slipper with a cleaning function formed from the fiber material which concerns, can be employ | adopted. In addition, a fiber material in which a substance having bactericidal or antibacterial properties is chemically introduced into at least a part of the present invention can be used in the form of a foot-wiping mat for shoe sole cleaning or the like. In this case, if it is configured such that a substance having bactericidal or antibacterial properties is gradually released, the shoe sole can be sterilized, which is useful as a foot-wiping mat placed at the entrance of a clean environment room.
[0020]
The cleaning tool according to the present invention can be used as a so-called dry type without using water, or can be used as a wet type using water. In addition, when using as a wet type, it is preferable to use the hydrophilic or hydrophilic thing as the fiber material which comprises a cleaning tool.
[0021]
【Example】
Hereinafter, the present invention will be described with reference to examples. These examples do not limit the invention.
[0022]
Example 1
A nonwoven fabric composed of polyethylene fibers having a production basis weight of 50 g / m 2 , a thickness of 0.3 mm, and a fiber diameter of 12 μm was prepared by irradiating an electron beam of 150 kGy in a nitrogen atmosphere. Next, the nonwoven fabric was immersed in a chloromethylstyrene (Seimi Chemical) solution and reacted at 40 ° C. for 8 hours. Note that the chloromethylstyrene was removed from the stabilizer by contacting with activated alumina prior to use. After the reaction, the nonwoven fabric was immersed in an acetone solution to remove unreacted monomers and homopolymer (homopolymer). After drying, the weight was measured, and the graft rate (weight increase rate) was calculated to be 132%.
[0023]
This grafted nonwoven fabric was immersed in a 10% trimethylamine solution and subjected to a quaternary ammonium reaction at 45 ° C. for 2 hours to obtain a strongly basic anion exchange nonwoven fabric. The neutral salt decomposition capacity of this nonwoven fabric was 2.61 meq / g. This nonwoven fabric was dipped in a 5% aqueous sodium hydroxide solution for 2 hours, regenerated and then dried.
[0024]
Example 2
A non-woven fabric made of polyethylene fibers having a basis weight of 50 g / m 2 , a thickness of 0.3 mm, and a fiber diameter of 12 μm was prepared by irradiating an electron beam of 150 kGy in a nitrogen atmosphere. Next, the nonwoven fabric was immersed in an acrylic acid solution and reacted at 40 ° C. for 4 hours. After the reaction, the nonwoven fabric was immersed in a 5% sodium hydroxide solution to remove unreacted monomers and homopolymers (homopolymers), and the salt type was adjusted to the sodium type. After drying, the weight was measured, and the graft rate (weight increase rate) was calculated to be 52%.
[0025]
This grafted nonwoven fabric was immersed in a 2% aqueous silver nitrate solution to obtain a silver-type ion exchange nonwoven fabric.
[0026]
Example 3
A nonwoven fabric composed of polyethylene fibers having a basis weight of 50 g / m 2 , a thickness of 0.3 mm, and a fiber diameter of 12 μm was prepared by irradiating an electron beam of 150 kGy in a nitrogen atmosphere. Next, the nonwoven fabric was immersed in a vinyl pyrrolidone solution and reacted at 40 ° C. for 5 hours. After the reaction, the non-woven fabric was immersed in pure water at 50 ° C. to remove unreacted monomers and homopolymer (homopolymer). After drying, the weight was measured to calculate the graft rate (weight increase rate), which was 106%.
[0027]
This grafted nonwoven fabric was immersed in a 0.1N iodine-potassium iodide aqueous solution for 2 hours, then immersed in pure water for 5 hours and washed. This washing operation was further repeated twice and then dried to obtain an iodine-supporting nonwoven fabric.
[0028]
Example 4
A non-woven fabric made of polyethylene fiber having a basis weight of 50 g / m 2 , a thickness of 0.3 mm, and a fiber diameter of 12 μm was produced by irradiation with an electron beam of 150 kGy in a nitrogen atmosphere. Next, the nonwoven fabric was immersed in a monomer solution in which a 50% aqueous solution of vinylbenzyltrimethylammonium ammonium (VBTAC, manufactured by Seimi Chemical Co.) and a dimethylacrylamide solution were mixed at 1/1, and reacted at 40 ° C. for 8 hours. After the reaction, the nonwoven fabric was immersed in pure water at 70 ° C. to remove unreacted monomers and homopolymer (homopolymer). After drying the nonwoven fabric, the weight was measured to calculate the graft ratio (weight increase rate), which was 120%. The neutral salt decomposition capacity was 1.08 meq / g.
[0029]
The grafted nonwoven fabric was immersed in a 5% ethanol solution of orthophenylphenol for 2 hours, further washed with ethanol and dried.
[0030]
Example 5
Bactericidal performance of germs trapped in a rag A non-woven material according to the present invention produced in Examples 1 to 4 cut into 15 cm × 20 cm is used as a rag and the floor surface 1 m 2 of a general household kitchen is wiped twice. It was. A sample obtained by cutting the dust cloth after use to 5 cm × 5 cm was placed in a sterilized petri dish and left in a constant temperature and humidity chamber at a temperature of 25 ° C. and a humidity of 60% for 48 hours. Thereafter, this fragment sample was placed on a Nutrient Agar medium so that the wiping surface was in contact with the medium, and cultured at 37 ° C. for 48 hours. Separately from this, the same operation was performed for the ungrafted polyethylene nonwoven fabric material. The results are shown in Table 1.
[0031]
As is apparent from Table 1, no growth of microorganisms was observed in the rag composed of a fiber material into which a substance having bactericidal or antibacterial properties according to the present invention was chemically introduced.
[0032]
Example 6
Bactericidal performance of various germs on the cleaning surface cleaned with the cleaning tool of the present invention A 10 cm square plate with a surface tile finish was wiped using the same dust cloth according to the present invention as used in Example 5. The sample was allowed to stand together with an untreated board near the ceiling of a general bathroom for a week, and then the surface condition was observed using a microscope. The results are shown in Table 1. From Table 1, it can be seen that the cleaning surface was sterilized by using the cleaning tools of Examples 2 to 4 configured so that a substance having bactericidal or antibacterial properties was gradually released. From this result, it was found that the cleaning tool according to the present invention is effective for sterilization of the cleaning surface by configuring so that a substance having bactericidal or antibacterial properties is gradually released.
[0033]
[Table 1]
Figure 0003676650
[0034]
Example 7
Bacteria Growth Test Using Pure Bacteria The nonwoven fabric material according to the present invention and the ungrafted polyethylene nonwoven fabric material obtained in Examples 1 to 4 were cut into 1 cm × 1 cm sample pieces. B. subtillis ATCC6633 was cultured in a liquid medium (Nutrient Broth, NB medium) at 37 ° C. for 18 hours. Attached.
[0035]
This bacterial cell-attached sample piece is put in a test tube containing 2.5 ml of NB medium, mixed for 15 seconds with a test tube agitator, and further subjected to ultrasonic treatment for 30 seconds to disperse the bacterial cells at 37 ° C. After culturing for 36 hours, the turbidity of the culture was observed.
[0036]
As a control sample, 25 μl of B. subtillis ATCC6633 cell solution was directly added to a test tube containing 2.5 ml of NB medium, and similarly dispersed and cultured, and the turbidity of the culture solution was observed.
[0037]
The experimental results are shown in Table 2. In the fiber material into which the bactericidal or antibacterial substance according to the present invention is chemically introduced, no growth of bacteria was observed.
[0038]
[Table 2]
Figure 0003676650
[0039]
【The invention's effect】
Since the cleaning tool according to the present invention is composed of a fiber material in which a substance having a bactericidal or antibacterial property is chemically introduced at least in part, it inhabits the garbage collected in the fiber material. Various germs can be sterilized quickly, the cleaning tool can be kept clean until the next use, and a hygienic living environment can be maintained. In addition, the risk of exposure to high concentrations of fungicides and the like is reduced. Furthermore, since it can be configured so that a substance having bactericidal or antibacterial properties is gradually released from the fiber material during cleaning, the cleaning surface can be sterilized, which is safe and comfortable. It is great to contribute to life.

Claims (5)

N−ビニルピロリドンから誘導される単位を含むグラフト重合体側鎖が導入され、これにヨウ素が担持されている繊維材料を構成要素とすることを特徴とする清掃用具。A cleaning tool comprising a fibrous material into which a graft polymer side chain containing a unit derived from N-vinylpyrrolidone is introduced and iodine is supported thereon . N−ビニルピロリドンから誘導される単位を含むグラフト重合体側鎖が、放射線グラフト重合法を用いて、繊維材料に導入されている請求項1に記載の清掃用具。 The cleaning tool according to claim 1, wherein the graft polymer side chain containing a unit derived from N-vinylpyrrolidone is introduced into the fiber material using a radiation graft polymerization method. ヨウ素が徐放されるように繊維材料に化学的に導入されている請求項1又は2に記載の清掃用具。 The cleaning tool according to claim 1 or 2, which is chemically introduced into the fiber material so that iodine is gradually released . 繊維材料がシート状に成形されている請求項1〜3のいずれかに記載の清掃用具。 The cleaning tool according to any one of claims 1 to 3, wherein the fiber material is formed into a sheet shape. N−ビニルピロリドンから誘導される単位を含むグラフト重合体側鎖が導入され、これにヨウ素が担持されている繊維材料を構成要素とすることを特徴とする足拭きマット。A foot-wiping mat comprising a fiber material in which a graft polymer side chain containing a unit derived from N-vinylpyrrolidone is introduced and iodine is supported thereon .
JP2000164103A 2000-06-01 2000-06-01 Cleaning tool Expired - Fee Related JP3676650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164103A JP3676650B2 (en) 2000-06-01 2000-06-01 Cleaning tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164103A JP3676650B2 (en) 2000-06-01 2000-06-01 Cleaning tool

Publications (2)

Publication Number Publication Date
JP2001340280A JP2001340280A (en) 2001-12-11
JP3676650B2 true JP3676650B2 (en) 2005-07-27

Family

ID=18667766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164103A Expired - Fee Related JP3676650B2 (en) 2000-06-01 2000-06-01 Cleaning tool

Country Status (1)

Country Link
JP (1) JP3676650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677224A (en) * 2011-03-14 2012-09-19 武汉纺织大学 Preparation method of modified polyolefin antibacterial nanofiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290688B2 (en) * 2014-03-31 2018-03-07 株式会社Nbcメッシュテック Bactericidal and antiviral components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677224A (en) * 2011-03-14 2012-09-19 武汉纺织大学 Preparation method of modified polyolefin antibacterial nanofiber
CN102677224B (en) * 2011-03-14 2015-05-27 武汉纺织大学 Preparation method of modified polyolefin antibacterial nanofiber

Also Published As

Publication number Publication date
JP2001340280A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
JP2643823B2 (en) Adsorption material and method for producing the same
US6288076B1 (en) Antimicrobial compositions
CA2535664C (en) Disinfecting and sanitizing article for hands and skin and hard surfaces
JPH10251340A (en) Production of antimicrobial polymer and its use
US8968771B2 (en) Articles and methods for applying antimicrobial protection
KR20040069181A (en) Antimicrobial solid surface materials containing chitosan-metal complexes
US4261849A (en) Anti-microbial, deodorizing, cleaning compositions
JP3676650B2 (en) Cleaning tool
JP3885099B2 (en) Organic polymer sterilizing material
CN105979776A (en) Compositions comprising hydrogen peroxide and quaternary ammonium acid compounds for disinfection and cleaning
KR20120127586A (en) Multifunctional surface treatment composition
JP2002544346A (en) Method for producing an endogenous microbicidal polymer surface
JP2013505973A (en) Method for imparting antibacterial activity to the surface of a solid substrate
JP5250110B2 (en) Sterilization unit
JP6141063B2 (en) Deodorizer, deodorizing apparatus and deodorizing method
JP2003507542A (en) Aminopropyl vinyl ether copolymer
EP3266306B1 (en) Impregnated textile fabric providing effective delivery of an alcoholic impregnant
JP7270368B2 (en) wet sheet
JP3604172B2 (en) Disinfection composition and disinfection method
JP5132163B2 (en) Wet wiper
TW201504428A (en) Hard surface detergent composition
JP2023092410A (en) Method for reactivating iodine-based bactericidal material
JP2022165881A (en) Deodorising and sterilizing cleaner and sheet-like article
JP2008307253A (en) Sterilizing material for controlling release or absorption of iodine
JPH1099250A (en) Wet wiper

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees