JP3674520B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP3674520B2
JP3674520B2 JP2001062893A JP2001062893A JP3674520B2 JP 3674520 B2 JP3674520 B2 JP 3674520B2 JP 2001062893 A JP2001062893 A JP 2001062893A JP 2001062893 A JP2001062893 A JP 2001062893A JP 3674520 B2 JP3674520 B2 JP 3674520B2
Authority
JP
Japan
Prior art keywords
power supply
semiconductor integrated
mosfet
internal power
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001062893A
Other languages
Japanese (ja)
Other versions
JP2002271145A (en
Inventor
弘和 河越
寛之 北嶋
Original Assignee
関西日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西日本電気株式会社 filed Critical 関西日本電気株式会社
Priority to JP2001062893A priority Critical patent/JP3674520B2/en
Priority to US10/092,169 priority patent/US6518804B2/en
Publication of JP2002271145A publication Critical patent/JP2002271145A/en
Application granted granted Critical
Publication of JP3674520B2 publication Critical patent/JP3674520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Landscapes

  • Amplifiers (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路装置に関し、特に外部電源から内部電源電圧を生成する内部電源回路と、スイッチング制御して内部電源電圧を容量性負荷に出力するスイッチング回路とを有する半導体集積回路装置に関する。
【0002】
【従来の技術】
従来のこの種の半導体集積回路装置の一例を図8を参照して説明する。図において、100は、半導体集積回路装置で、電源端子1に外部電源VCCが接続され、接地端子2が接地され、入力端子3に入力信号Vinが供給され、出力端子4に容量性負荷CLが接続される。半導体集積回路装置100は、外部電源電圧VCCから所望の内部電源電圧VHLを生成する内部電源回路10と、入力信号Vinによりスイッチング制御して内部電源電圧VHLを出力端子4に出力するスイッチング回路20とを具備している。
【0003】
内部電源回路10は、直列接続された抵抗11と抵抗12との接続点で外部電源電圧VCCが所望の電圧レベルに分割され、演算増幅器13を介して内部電源電圧VHLとしてスイッチング回路20に出力される構成としている。
演算増幅器13は、具体的な構成例を図9に示すように、直列接続されたPチャネル型MOSFET14とNチャネル型MOSFET15とを出力段に有し、MOSFET14のソースが電源端子1に接続され、MOSFET15のソースが接地端子2に接続され、MOSFET14とMOSFET15との接続点から内部電源電圧VHLが出力される構成としている。
【0004】
スイッチング回路20は、Pチャネル型MOSFET21とNチャネル型MOSFET22とからなるCMOS構成を有し、MOSFET21のソースに内部電源電圧VHLが供給され、MOSFET22のソースに接地端子2が接続され、入力端子3からの入力信号Vinがインバータ23を介してMOSFET21およびMOSFET22のゲートに供給されることにより、MOSFET21およびMOSFET22がオン/オフ制御されて、MOSFET21とMOSFET22との接続点から出力端子4に内部電源電圧VHLが出力電圧Voutとして出力される構成としている。
【0005】
上記構成の半導体集積回路装置100の動作は、電源端子1に外部電源電圧VCCが供給されると、抵抗11と抵抗12との接続点で外部電源電圧VCCが所望の電圧レベルに分割され、演算増幅器13を介して内部電源回路10から内部電源電圧VHLとして出力される。内部電源回路10から内部電源電圧VHLが出力されている状態で、図10に示すように、入力信号Vinが“L=0”レベルから“H=VCC”レベルになり、スイッチング回路20のMOSFET21がオンすると、内部電源回路10からMOSFET21を介して出力端子4に接続されている容量性負荷CLに電流が流れ、出力電圧Voutは、内部電源電圧VHLまで立ち上がる。
【0006】
【発明が解決しようとする課題】
ところで、上記の半導体集積回路装置において、出力電圧Voutが、内部電源電圧VHLまで立ち上がるとき、MOSFET21のゲートの電位は“L”レベルであり、MOSFET21はフルにオンしている。これに対して、内部電源回路10の演算増幅器13は、外部電源電圧VCCが抵抗11と抵抗12との接続点で分割されて非反転入力端に供給されている状態で、MOSFET14のゲートの電位は“L=0”レベルにはならないため、MOSFET14はオンしているもののフルにはオンしていない。このとき、例えば、MOSFET14のサイズがMOSFET21と同じサイズに設計されているとすると、MOSFET21はフルにオンしているのに対して、MOSFET14はフルにはオンしていないため、MOSFET21の電流能力に対してMOSFET14の電流能力は十分ではなく、演算増幅器13は、電流変化に対する動作速度が遅く、スイッチング時の高速な電流変化に追随できず、図10に示すように、内部電源電圧VHLが一旦低下した後、所望の電圧になるまでの立ち上がり波形の傾きが緩やかなため、出力電圧Voutの立ち上がり波形の傾きも緩やかになるという問題がある。演算増幅器13の電流変化に対する動作速度を速くするために演算増幅器13に含まれる出力トランジスタ14のサイズを大きくすればよいが、半導体集積回路装置のチップサイズが大きくなるという問題がある。
本発明は上記問題点に鑑み、スイッチング回路がスイッチングオンしたとき瞬時に内部電源回路の電流能力を上げることによりスイッチング速度を速くした半導体集積回路装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の半導体集積回路装置は、入力信号に応答して容量性負荷への電圧供給をオン/オフ制御するスイッチング回路と、前記スイッチング回路の電源入力端に所望の電源電圧を供給するように制御される出力トランジスタを有する内部電源回路とを具備した半導体集積回路装置において、前記内部電源回路は、さらに、前記スイッチング回路がオン制御され前記出力トランジスタから前記容量性負荷に電流が流れるときに前記入力信号の前エッジを検出してワンショットパルスを生成するショット回路を有し、前記ワンショットパルスの期間に前記出力トランジスタの制御端子の電位を前記出力トランジスタの電流供給能力を増加させる方向にシフトさせることを特徴とする。
【0008】
【発明の実施の形態】
以下、この発明の第1実施例について図1を参照して説明する。尚、図8と同一のものについては同一符号を付してその説明を省略する。図において、200は、半導体集積回路装置で、電源端子1に外部電源VCCが接続され、接地端子2が接地され、入力端子3に入力信号Vinが供給され、出力端子4に容量性負荷CLが接続される。半導体集積回路装置200は、外部電源電圧VCCから所望の内部電源電圧VHLを生成する内部電源回路30と、入力信号Vinによりスイッチング制御して内部電源電圧VHLを出力端子4に出力する、図8に示したのと同一構成のスイッチング回路20とを具備している。
【0009】
内部電源回路30は、図8に示した内部電源回路10と同様に、直列接続された抵抗11と抵抗12との接続点で外部電源電圧VCCが所望の電圧レベルに分割され、演算増幅器13を介して内部電源電圧VHLとしてスイッチング回路20に出力される構成としているが、この他に本発明のポイントとなる以下の構成を有している。オンすることにより内部電源回路30の電流能力を上げるためのNチャネル型MOSFET31と、入力信号Vinの“H”レベルへの立ち上がりエッジで出力するワンショットパルスによりMOSFET31をオンさせるショット回路32とを有している。
【0010】
MOSFET31のドレインは、図2に示すように、演算増幅器13の出力段のハイサイド側を構成するPチャネル型MOSFET14のゲートに接続されている。MOSFET31のソースは、接地端子2に接続されている。ショット回路32は、図2に示すように、遅延回路33、インバータ34、2入力NAND回路35、およびインバータ36から構成されている。入力信号Vinは2入力NAND回路35の2入力の一方の入力端と遅延回路33の入力端に供給される。遅延回路33の出力はインバータ34を介して2入力NAND回路35の2入力の他方の入力端に供給される。2入力NAND回路35の出力はインバータ36を介して、ショット回路32の出力として、MOSFET31のゲートに供給される。
【0011】
上記構成の半導体集積回路装置200の動作は、電源端子1に外部電源電圧VCCが供給されると、抵抗11と抵抗12との接続点で外部電源電圧VCCが所望の電圧レベルに分割され、演算増幅器13を介して内部電源回路30から内部電源電圧VHLとして出力される。内部電源回路30から内部電源電圧VHLが出力されている状態で、図3に示すように、入力信号Vinが“L”レベルから“H”レベルになると、スイッチング回路20のMOSFET21がオンする。このとき入力信号Vinの“H”レベルへの立ち上がりエッジで内部電源回路30のショット回路32からワンショットパルスがMOSFET31のゲートに供給され、MOSFET31がオンする。MOSFET31がオンすると、内部電源回路30の演算増幅器13に含まれるMOSFET14のゲートの電位が“L”レベルになり、MOSFET14がフルにオンして外部電源VCCからMOSFET14およびMOSFET21を介して容量性負荷に急速に電流が流れ、内部電源回路30からの内部電源電圧VHLおよびスイッチング回路20からの出力電圧Voutは、急な傾きの立ち上がり波形で立ち上がる。
【0012】
以上説明したように、入力信号Vinの立ち上がりエッジで立ち上がるショット回路32からのワンショットパルスにより、MOSFET31をオンさせ、演算増幅器13に含まれるMOSFET14をフルにオンさせるので、ワンショットパルスの期間だけ演算増幅器13の電流能力が上がり、出力端子4からの出力電圧Voutの立ち上がり波形の傾きが急峻となる。
【0013】
次に、この発明の第2実施例について図4を参照して説明する。
図において、300は、半導体集積回路装置で、電源端子5に外部電源−VCCが接続され、接地端子6が接地され、入力端子7に入力信号−Vinが供給され、出力端子8に容量性負荷CLが接続される。半導体集積回路装置300は、外部電源電圧−VCCから所望の内部電源電圧−VHLを生成する内部電源回路40と、入力信号Vinによりスイッチング制御して内部電源電圧−VHLを出力端子8に出力するスイッチング回路60とを具備している。
【0014】
内部電源回路40は、図1に示した内部電源回路30と同様に、抵抗41、抵抗42、演算増幅器43、Pチャネル型MOSFET51およびショット回路52を有している。
演算増幅器43は、具体的な構成例を図5に示すように、直列接続されたNチャネル型MOSFET44とPチャネル型MOSFET45とを出力段に有し、MOSFET44のソースが電源端子5に接続され、MOSFET45のソースが接地端子6に接続され、MOSFET44とMOSFET45との接続点から内部電源電圧−VHLが出力される構成としている。
【0015】
MOSFET51のドレインは、図6に示すように、演算増幅器43の出力段のロウサイド側を構成するNチャネル型MOSFET44のゲートに接続されている。MOSFET51のソースは接地端子6に接続されている。ショット回路52は、図6に示すように、遅延回路53、インバータ54、2入力NOR回路55、およびインバータ56から構成されている。入力信号−Vinは2入力NOR回路55の2入力の一方の入力端と遅延回路53の入力端に供給される。遅延回路53の出力はインバータ54を介して2入力NOR回路55の2入力の他方の入力端に供給される。2入力NOR回路55の出力はインバータ56を介して、ショット回路52の出力として、MOSFET51のゲートに供給される。
【0016】
スイッチング回路60は、図8に示した内部電源回路20と同様に、Nチャネル型MOSFET61とPチャネル型MOSFET62とからなるCMOS構成を有し、MOSFET61のソースに内部電源電圧−VHLが供給され、MOSFET62のソースに接地端子6が接続され、入力端子7からの入力信号−Vinがインバータ63を介してMOSFET61およびMOSFET62のゲートに供給されることにより、MOSFET61およびMOSFET62がオン/オフ制御されて、MOSFET61とMOSFET62との接続点から出力端子8に内部電源電圧−VHLが出力電圧−Voutとして出力される構成としている。
【0017】
上記構成の半導体集積回路装置300の動作は、電源端子5に外部電源電圧−VCCが供給されると、抵抗41と抵抗42との接続点で外部電源電圧−VCCが所望の電圧レベルに分割され、演算増幅器43を介して内部電源回路40から内部電源電圧−VHLとして出力される。内部電源回路40から内部電源電圧−VHLが出力されている状態で、図7に示すように、入力信号−Vinが“H=0”レベルから“L=−VCC”レベルになると、スイッチング回路60のMOSFET61がオンする。このとき入力信号−Vinの“L”レベルへの立ち下がりエッジで内部電源回路40のショット回路52からワンショットパルスがMOSFET51のゲートに供給され、MOSFET51がオンする。MOSFET51がオンすると、内部電源回路40の演算増幅器43に含まれるMOSFET44のゲートの電位が“H”レベルになり、MOSFET44がフルにオンして外部電源−VCCからMOSFET44およびMOSFET61を介して容量性負荷に急速に電流が流れ、内部電源回路40からの内部電源電圧−VHLおよびスイッチング回路60からの出力電圧−Voutは、急な傾きの立ち下がり波形で立ち下がる。
【0018】
以上説明したように、入力信号−V inの立ち下がりエッジで立ち下がるショット回路52からのワンショットパルスにより、MOSFET51をオンさせ、演算増幅器43に含まれるMOSFET44をフルにオンさせるので、ワンショットパルスの期間だけ演算増幅器43の電流能力が上がり、出力端子8からの出力電圧−Voutの立ち下がり波形の傾きが急峻となる。
【0019】
【発明の効果】
以上に説明したように、本発明の半導体集積回路装置によれば、内部電源回路の回路規模をあまり大きくすることなく、例えば、演算増幅器に含まれる出力トランジスタのサイズを大きくすることなく、半導体集積回路装置のスイッチング速度を速くすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の半導体集積回路装置のブロック図。
【図2】 図1に示す半導体集積回路装置の内部電源回路の要部回路図。
【図3】図1に示す半導体集積回路装置の動作を説明するための波形図。
【図4】本発明の第2実施例の半導体集積回路装置のブロック図。
【図5】図4に示す半導体集積回路装置の内部電源回路に使用される一例の演算増幅器の回路図。
【図6】図4に示す半導体集積回路装置の内部電源回路の要部回路図。
【図7】図4に示す半導体集積回路装置の動作を説明するための波形図。
【図8】従来の半導体集積回路装置のブロック図。
【図9】図1および図8に示す半導体集積回路装置の内部電顕回路に使用される一例の演算増幅器の回路図。
【図10】 図8の半導体集積回路装置の動作を説明するための波形図
【符号の説明】
13、43 演算増幅器
14 Pチャンネル型MOSFET
44 Nチャンネル型MOSFET
20、60 スイッチング回路
30、40 内部電源回路
31 Nチャンネル型MOSFET
51 Pチャンネル型MOSFET
32、52 ショット回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device having an internal power supply circuit that generates an internal power supply voltage from an external power supply and a switching circuit that performs switching control and outputs the internal power supply voltage to a capacitive load.
[0002]
[Prior art]
An example of this type of conventional semiconductor integrated circuit device will be described with reference to FIG. In the figure, 100 is a semiconductor integrated circuit device, an external power supply VCC is connected to a power supply terminal 1, a ground terminal 2 is grounded, an input signal Vin is supplied to an input terminal 3, and a capacitive load CL is connected to an output terminal 4. Connected. The semiconductor integrated circuit device 100 includes an internal power supply circuit 10 that generates a desired internal power supply voltage VHL from the external power supply voltage VCC, and a switching circuit 20 that performs switching control according to an input signal Vin and outputs the internal power supply voltage VHL to the output terminal 4. It has.
[0003]
In the internal power supply circuit 10, the external power supply voltage VCC is divided into a desired voltage level at the connection point between the resistor 11 and the resistor 12 connected in series, and is output to the switching circuit 20 as the internal power supply voltage VHL via the operational amplifier 13. The configuration is as follows.
As shown in FIG. 9, the operational amplifier 13 has a P-channel MOSFET 14 and an N-channel MOSFET 15 connected in series at the output stage, and the source of the MOSFET 14 is connected to the power supply terminal 1. The source of the MOSFET 15 is connected to the ground terminal 2, and the internal power supply voltage VHL is output from the connection point between the MOSFET 14 and the MOSFET 15.
[0004]
The switching circuit 20 has a CMOS configuration including a P-channel type MOSFET 21 and an N-channel type MOSFET 22, the internal power supply voltage VHL is supplied to the source of the MOSFET 21, the ground terminal 2 is connected to the source of the MOSFET 22, and the input terminal 3 Is supplied to the gates of the MOSFET 21 and the MOSFET 22 via the inverter 23, whereby the MOSFET 21 and the MOSFET 22 are controlled to be turned on / off, and the internal power supply voltage VHL is applied to the output terminal 4 from the connection point between the MOSFET 21 and the MOSFET 22. The output voltage Vout is output.
[0005]
In the operation of the semiconductor integrated circuit device 100 having the above configuration, when the external power supply voltage VCC is supplied to the power supply terminal 1, the external power supply voltage VCC is divided into a desired voltage level at the connection point between the resistor 11 and the resistor 12. An internal power supply voltage VHL is output from the internal power supply circuit 10 through the amplifier 13. In a state where the internal power supply voltage VHL is output from the internal power supply circuit 10, the input signal Vin changes from “L = 0” level to “H = VCC” level as shown in FIG. When turned on, current flows from the internal power supply circuit 10 to the capacitive load CL connected to the output terminal 4 via the MOSFET 21, and the output voltage Vout rises to the internal power supply voltage VHL.
[0006]
[Problems to be solved by the invention]
In the semiconductor integrated circuit device, when the output voltage Vout rises to the internal power supply voltage VHL, the gate potential of the MOSFET 21 is at the “L” level, and the MOSFET 21 is fully turned on. On the other hand, the operational amplifier 13 of the internal power supply circuit 10 has the gate potential of the MOSFET 14 in a state where the external power supply voltage VCC is divided at the connection point between the resistor 11 and the resistor 12 and supplied to the non-inverting input terminal. Since “L = 0” level is not reached, MOSFET 14 is on but not fully on. At this time, for example, if the size of the MOSFET 14 is designed to be the same size as the MOSFET 21, the MOSFET 21 is fully turned on, whereas the MOSFET 14 is not fully turned on. On the other hand, the current capability of the MOSFET 14 is not sufficient, and the operational amplifier 13 has a low operating speed with respect to the current change and cannot follow the high-speed current change at the time of switching. As shown in FIG. 10, the internal power supply voltage VHL temporarily decreases. After that, the slope of the rising waveform until reaching the desired voltage is gentle, so that the slope of the rising waveform of the output voltage Vout also becomes gentle. Although the size of the output transistor 14 included in the operational amplifier 13 may be increased in order to increase the operation speed with respect to the current change of the operational amplifier 13, there is a problem that the chip size of the semiconductor integrated circuit device increases.
In view of the above problems, an object of the present invention is to provide a semiconductor integrated circuit device in which the switching speed is increased by instantaneously increasing the current capability of an internal power supply circuit when the switching circuit is switched on.
[0007]
[Means for Solving the Problems]
A semiconductor integrated circuit device according to the present invention controls a switching circuit that performs on / off control of voltage supply to a capacitive load in response to an input signal, and supplies a desired power supply voltage to a power supply input terminal of the switching circuit. In the semiconductor integrated circuit device comprising the internal power supply circuit having the output transistor, the internal power supply circuit further includes the input when the switching circuit is on-controlled and a current flows from the output transistor to the capacitive load. A shot circuit that detects a leading edge of a signal and generates a one-shot pulse, and shifts the potential of the control terminal of the output transistor in a direction to increase the current supply capability of the output transistor during the one-shot pulse; It is characterized by that.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIG. 8 that are the same as those in FIG. In the figure, reference numeral 200 denotes a semiconductor integrated circuit device, in which an external power supply VCC is connected to a power supply terminal 1, a ground terminal 2 is grounded, an input signal Vin is supplied to an input terminal 3, and a capacitive load CL is applied to an output terminal 4. Connected. The semiconductor integrated circuit device 200 generates an internal power supply circuit 30 that generates a desired internal power supply voltage VHL from the external power supply voltage VCC, and outputs the internal power supply voltage VHL to the output terminal 4 by switching control according to the input signal Vin. A switching circuit 20 having the same configuration as shown is provided.
[0009]
As in the internal power supply circuit 10 shown in FIG. 8, the internal power supply circuit 30 divides the external power supply voltage VCC into a desired voltage level at the connection point between the resistor 11 and the resistor 12 connected in series. The internal power supply voltage VHL is output to the switching circuit 20 through the above configuration. In addition to this, the following configuration which is a point of the present invention is provided. It has an N-channel MOSFET 31 for increasing the current capability of the internal power supply circuit 30 by turning on, and a shot circuit 32 for turning on the MOSFET 31 by a one-shot pulse output at the rising edge of the input signal Vin to the “H” level. doing.
[0010]
As shown in FIG. 2, the drain of the MOSFET 31 is connected to the gate of a P-channel MOSFET 14 constituting the high side of the output stage of the operational amplifier 13. The source of the MOSFET 31 is connected to the ground terminal 2. As shown in FIG. 2, the shot circuit 32 includes a delay circuit 33, an inverter 34, a two-input NAND circuit 35, and an inverter 36. The input signal Vin is supplied to one input terminal of the two inputs of the two-input NAND circuit 35 and the input terminal of the delay circuit 33. The output of the delay circuit 33 is supplied to the other input terminal of the two inputs of the two-input NAND circuit 35 via the inverter 34. The output of the 2-input NAND circuit 35 is supplied to the gate of the MOSFET 31 as the output of the shot circuit 32 via the inverter 36.
[0011]
In the operation of the semiconductor integrated circuit device 200 having the above configuration, when the external power supply voltage VCC is supplied to the power supply terminal 1, the external power supply voltage VCC is divided into a desired voltage level at the connection point between the resistor 11 and the resistor 12. The internal power supply circuit 30 outputs the internal power supply voltage VHL through the amplifier 13. In a state where the internal power supply voltage VHL is being output from the internal power supply circuit 30, as shown in FIG. 3, when the input signal Vin changes from “L” level to “H” level, the MOSFET 21 of the switching circuit 20 is turned on. At this time, a one-shot pulse is supplied from the shot circuit 32 of the internal power supply circuit 30 to the gate of the MOSFET 31 at the rising edge of the input signal Vin to the “H” level, and the MOSFET 31 is turned on. When the MOSFET 31 is turned on, the potential of the gate of the MOSFET 14 included in the operational amplifier 13 of the internal power supply circuit 30 becomes “L” level, the MOSFET 14 is fully turned on, and is supplied from the external power supply VCC to the capacitive load via the MOSFET 14 and the MOSFET 21. Current flows rapidly, and the internal power supply voltage VHL from the internal power supply circuit 30 and the output voltage Vout from the switching circuit 20 rise with a rising waveform having a steep slope.
[0012]
As described above, the MOSFET 31 is turned on by the one-shot pulse from the shot circuit 32 rising at the rising edge of the input signal Vin, and the MOSFET 14 included in the operational amplifier 13 is fully turned on. The current capability of the amplifier 13 increases, and the slope of the rising waveform of the output voltage Vout from the output terminal 4 becomes steep.
[0013]
Next, a second embodiment of the present invention will be described with reference to FIG.
In the figure, reference numeral 300 denotes a semiconductor integrated circuit device, in which an external power supply -VCC is connected to a power supply terminal 5, a ground terminal 6 is grounded, an input signal -Vin is supplied to an input terminal 7, and a capacitive load is applied to an output terminal 8. CL is connected. The semiconductor integrated circuit device 300 includes an internal power supply circuit 40 that generates a desired internal power supply voltage -VHL from the external power supply voltage -VCC, and switching that outputs the internal power supply voltage -VHL to the output terminal 8 by performing switching control according to the input signal Vin. Circuit 60.
[0014]
Similar to the internal power supply circuit 30 shown in FIG. 1, the internal power supply circuit 40 includes a resistor 41, a resistor 42, an operational amplifier 43, a P-channel MOSFET 51, and a shot circuit 52.
As shown in FIG. 5, the operational amplifier 43 has an N-channel MOSFET 44 and a P-channel MOSFET 45 connected in series at the output stage, and the source of the MOSFET 44 is connected to the power supply terminal 5. The source of the MOSFET 45 is connected to the ground terminal 6, and the internal power supply voltage −VHL is output from the connection point between the MOSFET 44 and the MOSFET 45.
[0015]
As shown in FIG. 6, the drain of the MOSFET 51 is connected to the gate of an N-channel MOSFET 44 that forms the low side of the output stage of the operational amplifier 43. The source of the MOSFET 51 is connected to the ground terminal 6. As shown in FIG. 6, the shot circuit 52 includes a delay circuit 53, an inverter 54, a two-input NOR circuit 55, and an inverter 56. The input signal −Vin is supplied to one input terminal of the two inputs of the two-input NOR circuit 55 and the input terminal of the delay circuit 53. The output of the delay circuit 53 is supplied to the other input terminal of the two inputs of the two-input NOR circuit 55 via the inverter 54. The output of the 2-input NOR circuit 55 is supplied to the gate of the MOSFET 51 as the output of the shot circuit 52 via the inverter 56.
[0016]
As with the internal power supply circuit 20 shown in FIG. 8, the switching circuit 60 has a CMOS configuration including an N-channel MOSFET 61 and a P-channel MOSFET 62, and the internal power supply voltage −VHL is supplied to the source of the MOSFET 61. Is connected to the ground terminal 6, and the input signal −Vin from the input terminal 7 is supplied to the gates of the MOSFET 61 and the MOSFET 62 via the inverter 63, so that the MOSFET 61 and the MOSFET 62 are on / off controlled. The internal power supply voltage −VHL is output as the output voltage −Vout from the connection point with the MOSFET 62 to the output terminal 8.
[0017]
In the operation of the semiconductor integrated circuit device 300 having the above configuration, when the external power supply voltage −VCC is supplied to the power supply terminal 5, the external power supply voltage −VCC is divided to a desired voltage level at the connection point between the resistor 41 and the resistor 42. The internal power supply circuit 40 outputs the internal power supply voltage −VHL through the operational amplifier 43. When the internal power supply voltage -VHL is being output from the internal power supply circuit 40 and the input signal -Vin is changed from "H = 0" level to "L = -VCC" level as shown in FIG. MOSFET 61 is turned on. At this time, a one-shot pulse is supplied from the shot circuit 52 of the internal power supply circuit 40 to the gate of the MOSFET 51 at the falling edge of the input signal −Vin to the “L” level, and the MOSFET 51 is turned on. When the MOSFET 51 is turned on, the potential of the gate of the MOSFET 44 included in the operational amplifier 43 of the internal power supply circuit 40 becomes “H” level, the MOSFET 44 is fully turned on, and the capacitive load is supplied from the external power supply −VCC via the MOSFET 44 and the MOSFET 61. A current flows rapidly, and the internal power supply voltage −VHL from the internal power supply circuit 40 and the output voltage −Vout from the switching circuit 60 fall with a steep falling waveform.
[0018]
As described above, the MOSFET 51 is turned on by the one-shot pulse from the shot circuit 52 falling at the falling edge of the input signal −V in and the MOSFET 44 included in the operational amplifier 43 is fully turned on. During this period, the current capability of the operational amplifier 43 increases, and the slope of the falling waveform of the output voltage −Vout from the output terminal 8 becomes steep.
[0019]
【The invention's effect】
As described above, according to the semiconductor integrated circuit device of the present invention, the semiconductor integrated circuit device does not increase the circuit scale of the internal power supply circuit, for example, without increasing the size of the output transistor included in the operational amplifier. The switching speed of the circuit device can be increased.
[Brief description of the drawings]
FIG. 1 is a block diagram of a semiconductor integrated circuit device according to a first embodiment of the present invention.
[2] main portion circuitry diagram of the internal power supply circuit of the semiconductor integrated circuit device shown in FIG.
3 is a waveform diagram for explaining the operation of the semiconductor integrated circuit device shown in FIG. 1; FIG.
FIG. 4 is a block diagram of a semiconductor integrated circuit device according to a second embodiment of the present invention.
5 is a circuit diagram of an example operational amplifier used in the internal power supply circuit of the semiconductor integrated circuit device shown in FIG. 4;
6 is a main part circuit diagram of an internal power supply circuit of the semiconductor integrated circuit device shown in FIG. 4;
7 is a waveform diagram for explaining the operation of the semiconductor integrated circuit device shown in FIG. 4; FIG.
FIG. 8 is a block diagram of a conventional semiconductor integrated circuit device.
9 is a circuit diagram of an example operational amplifier used in the internal electron microscope circuit of the semiconductor integrated circuit device shown in FIGS. 1 and 8. FIG.
10 is a waveform diagram for explaining the operation of the semiconductor integrated circuit device of FIG. 8;
[Explanation of symbols]
13, 43 operational amplifier 14 P-channel MOSFET
44 N-channel MOSFET
20, 60 Switching circuit 30, 40 Internal power supply circuit 31 N-channel MOSFET
51 P-channel MOSFET
32, 52 shot circuit

Claims (6)

入力信号に応答して容量性負荷への電圧供給をオン/オフ制御するスイッチング回路と、前記スイッチング回路の電源入力端に所望の電源電圧を供給するように制御される出力トランジスタを有する内部電源回路とを具備した半導体集積回路装置において、
前記内部電源回路は、さらに、前記スイッチング回路がオン制御され前記出力トランジスタから前記容量性負荷に電流が流れるときに前記入力信号の前エッジを検出してワンショットパルスを生成するショット回路を有し、前記ワンショットパルスの期間に前記出力トランジスタの制御端子の電位を前記出力トランジスタの電流供給能力を増加させる方向にシフトさせることを特徴とする半導体集積回路装置。
An internal power supply circuit having a switching circuit that controls on / off of voltage supply to a capacitive load in response to an input signal, and an output transistor that is controlled to supply a desired power supply voltage to a power supply input terminal of the switching circuit In a semiconductor integrated circuit device comprising:
The internal power supply circuit further includes a shot circuit that detects a leading edge of the input signal and generates a one-shot pulse when the switching circuit is on-controlled and a current flows from the output transistor to the capacitive load. A semiconductor integrated circuit device , wherein the potential of the control terminal of the output transistor is shifted in the direction of increasing the current supply capability of the output transistor during the one-shot pulse period .
前記ワンショットパルスにより前記出力トランジスタの制御端子の電位を前記出力トランジスタがフルにオンする電位にすることを特徴とする請求項1記載の半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the potential of the control terminal of the output transistor is set to a potential at which the output transistor is fully turned on by the one-shot pulse. 前記外部電源電圧および内部電源電圧が所定電位に対して正極性電圧であり、前記出力トランジスタがPチャネル型MOSトランジスタであることを特徴とする請求項1記載の半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the external power supply voltage and the internal power supply voltage are positive voltages with respect to a predetermined potential, and the output transistor is a P-channel MOS transistor. 前記外部電源電圧および内部電源電圧が所定電位に対して負極性電圧であり、前記出力トランジスタがNチャネル型MOSトランジスタであることを特徴とする請求項1記載の半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the external power supply voltage and the internal power supply voltage are negative voltages with respect to a predetermined potential, and the output transistor is an N-channel MOS transistor. 前記MOSトランジスタのゲートと前記所定電位間にNチャネル型MOSトランジスタを接続し、このゲートに前記ショット回路を接続したことを特徴とする請求項3記載の半導体集積回路装置。4. The semiconductor integrated circuit device according to claim 3, wherein an N-channel MOS transistor is connected between the gate of the MOS transistor and the predetermined potential, and the shot circuit is connected to the gate. 前記MOSトランジスタのゲートと前記所定電位間にPチャネル型MOSトランジスタを接続し、このゲートに前記ショット回路を接続したことを特徴とする請求項4記載の半導体集積回路装置。5. The semiconductor integrated circuit device according to claim 4, wherein a P-channel MOS transistor is connected between the gate of the MOS transistor and the predetermined potential, and the shot circuit is connected to the gate.
JP2001062893A 2001-03-07 2001-03-07 Semiconductor integrated circuit device Expired - Fee Related JP3674520B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001062893A JP3674520B2 (en) 2001-03-07 2001-03-07 Semiconductor integrated circuit device
US10/092,169 US6518804B2 (en) 2001-03-07 2002-03-06 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062893A JP3674520B2 (en) 2001-03-07 2001-03-07 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JP2002271145A JP2002271145A (en) 2002-09-20
JP3674520B2 true JP3674520B2 (en) 2005-07-20

Family

ID=18921966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062893A Expired - Fee Related JP3674520B2 (en) 2001-03-07 2001-03-07 Semiconductor integrated circuit device

Country Status (2)

Country Link
US (1) US6518804B2 (en)
JP (1) JP3674520B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811653A1 (en) * 2006-01-20 2007-07-25 Stmicroelectronics SA Amplifier input switch configuration with improved PSRR
US7812647B2 (en) * 2007-05-21 2010-10-12 Advanced Analogic Technologies, Inc. MOSFET gate drive with reduced power loss
JP4498400B2 (en) * 2007-09-14 2010-07-07 Okiセミコンダクタ株式会社 Trimming circuit
US8532602B2 (en) 2009-06-30 2013-09-10 Skyworks Solutions, Inc. Switching system with linearizing circuit
WO2011002455A1 (en) * 2009-06-30 2011-01-06 Skyworks Solutions, Inc. Switching system with linearizing circuit
US8880014B2 (en) * 2010-06-07 2014-11-04 Skyworks Solutions, Inc. CMOS RF switch device and method for biasing the same
CN103080864B (en) * 2010-09-02 2014-09-17 瑞萨电子株式会社 Data processing device and data processing system
CN106208692B (en) * 2016-08-31 2020-05-22 杰华特微电子(杭州)有限公司 Control method of switching circuit, control circuit and switching circuit device
CN106329918B (en) * 2016-08-31 2018-08-28 杰华特微电子(张家港)有限公司 A kind of control method of switching circuit, control circuit and switch circuit devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259115A (en) 1991-02-14 1992-09-14 Toshiba Corp Pre-charge circuit
US5742193A (en) * 1996-10-24 1998-04-21 Sgs-Thomson Microelectronics, Inc. Driver circuit including preslewing circuit for improved slew rate control
JP2001024495A (en) * 1999-07-05 2001-01-26 Mitsubishi Electric Corp Output buffer circuit

Also Published As

Publication number Publication date
US20020125922A1 (en) 2002-09-12
JP2002271145A (en) 2002-09-20
US6518804B2 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
EP0963044A2 (en) Slew rate output circuit with capability of driving an output MOS field effect transistor
US5491429A (en) Apparatus for reducing current consumption in a CMOS inverter circuit
KR20010049227A (en) Level adjustment circuit and data output circuit thereof
EP1217744A1 (en) An output buffer with constant switching current
JP3674520B2 (en) Semiconductor integrated circuit device
JPH04229714A (en) Integrated circuit having buffer
KR20000047812A (en) Mos transistor output circuit
JP4576717B2 (en) Comparator circuit
US5864245A (en) Output circuit with overvoltage protection
JP2666347B2 (en) Output circuit
JP3684210B2 (en) CMOS output buffer circuit
CN110011657B (en) Input/output circuit
JPH07105709B2 (en) Voltage conversion circuit
JP3159182B2 (en) Output circuit of semiconductor device
JP3271269B2 (en) Output drive circuit
JP3485314B2 (en) Discharge control circuit
JPH0634676A (en) Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit
JPH0677805A (en) Output buffer circuit
JP3612991B2 (en) Output buffer circuit
JP2541289B2 (en) Output circuit
JP2535402Y2 (en) Power supply ripple filter circuit
JP4434438B2 (en) Output buffer circuit
JPH08274606A (en) Output buffer circuit
JP2976497B2 (en) Semiconductor integrated circuit
JP4797644B2 (en) Clamp circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees