JP3671621B2 - Magnetization method of permanent magnet type eddy current reduction device - Google Patents

Magnetization method of permanent magnet type eddy current reduction device Download PDF

Info

Publication number
JP3671621B2
JP3671621B2 JP28304497A JP28304497A JP3671621B2 JP 3671621 B2 JP3671621 B2 JP 3671621B2 JP 28304497 A JP28304497 A JP 28304497A JP 28304497 A JP28304497 A JP 28304497A JP 3671621 B2 JP3671621 B2 JP 3671621B2
Authority
JP
Japan
Prior art keywords
support ring
magnet
magnet support
eddy current
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28304497A
Other languages
Japanese (ja)
Other versions
JPH11113224A (en
Inventor
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP28304497A priority Critical patent/JP3671621B2/en
Publication of JPH11113224A publication Critical patent/JPH11113224A/en
Application granted granted Critical
Publication of JP3671621B2 publication Critical patent/JP3671621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は大型貨物車両などに搭載される永久磁石式渦電流減速装置、特に渦電流減速装置の組立て後に永久磁石を磁石化する、永久磁石式渦電流減速装置の着磁方法に関するものである。
【0002】
【従来の技術】
永久磁石(以下これを単に磁石という)を使用した渦電流減速装置では、磁性体からなる磁石支持環(継鉄)の外周面に、偶数個(8〜24極)の磁石を外面の磁極が周方向に交互に異なるように、接着剤、取付金具(アルミニウム、ステンレス、合成樹脂などの非磁性材)などにより取り付けられている。磁石を着磁する時は、予め磁石を1個ずつ着磁するかまたは全部を同時に着磁してから磁石支持環に取り付けるか、着磁してない全部の磁石(厳密には希土類金属などの磁石材)を磁石支持環に接着剤、取付金具などにより取り付けてから、数個ずつ着磁するかまたは全部を同時に着磁していた。
【0003】
しかし、磁石を1個ずつ着磁するのでは手間が掛かり、例えば全部で12個の磁石を、磁石支持環の外周面に環状に並べて結合した後に、磁石支持環の外周側から磁界を付与して同時に着磁するのでは、手間は省けるものの、多数の強磁性板(ポールピース)を有する保護筒ないし案内筒の内部へ該磁石支持環を組み付ける時、案内筒に対する磁石の強力な吸引力に抗するため、剛性の高い強固な組付治具を必要とし、作業者が指などを怪我しないように細心の注意を要する。
【0004】
なお、直流回転機のロータの着磁方法として、特開平2-133100号公報に開示されるようなものがあるが、この方法を永久磁石式渦電流減速装置の磁石支持環に適用しても上述の問題は解決できない。
【0005】
【発明が解決しようとする課題】
本発明の課題は上述のような磁石支持環を案内筒へ組み付ける手間を省き、強固な組付治具を不要とするために、磁石を磁石支持環に結合しかつ案内筒に組み付けた後に着磁するようにした永久磁石式渦電流減速装置の着磁方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の方法は永久磁石を用いて渦電流による制動力を発生させる渦電流減速装置において、磁性体からなる少なくとも1つの磁石支持環の外周面に着磁前の偶数個の永久磁石を周方向等間隔に結合し、非磁性体からなりかつ前記永久磁石と同数の強磁性板を周方向等間隔に有する案内筒の内部に前記磁石支持環を収容し、前記案内筒の各強磁性板に前記磁石支持環の各永久磁石が全面的に重なるように固定した後、各強磁性板の外面に対向する磁極を有する筒状の着磁装置により、前記磁石支持環の外周側から前記永久磁石に極性が周方向に交互に異なるように着磁し、前記案内筒の各強磁性板に前記磁石支持環の周方向に隣接しかつ極性が互いに異なる2つの永久磁石が重なるように前記磁石支持環を回動し、前記筒状の着磁装置から前記案内筒を引き出すことを特徴とする
【0007】
また、本発明の方法は永久磁石を用いて渦電流による制動力を発生させる渦電流減速装置において、磁性体からなる少なくとも1つの磁石支持環の外周面に着磁前の偶数個の永久磁石を周方向等間隔に結合し、非磁性体からなりかつ前記永久磁石の半数の強磁性板を周方向等間隔に有する案内筒の内部に前記磁石支持環を収容し、前記案内筒の各強磁性板に前記磁石支持環の2つの永久磁石がそれぞれ全面的に重なるように固定した後、各強磁性板の外面に対向する磁極を有する筒状の着磁装置により、前記磁石支持環の外周側から前記永久磁石に極性が周方向に2つずつ異なるように着磁し、前記案内筒の各強磁性板に前記磁石支持環の周方向に隣接しかつ極性が互いに異なる2つの永久磁石が重なるように前記磁石支持環を回動し、前記筒状の着磁装置から前記案内筒を引き出すことを特徴とする
【0010】
【発明の実施の形態】
本発明では磁石を着磁する前に、磁石を磁石支持環に結合したうえ案内筒の内部へ組み込み、次いで着磁装置の内部へ配置する。強磁性板のない非磁性体の薄板からなる案内筒の場合は、着磁装置の各磁極を案内筒の外側から各磁石へ対向させ、各磁極の電磁コイルに直流電流を流して着磁する。
【0011】
多数の強磁性板を有する案内筒の場合は、予め各強磁性板に磁石支持環の各磁石が全面的に重なるように固定してから、着磁装置の内部へ配置する。着磁装置の各磁極を案内筒の外側から強磁性板へ対向させ、各磁心の電磁コイルに直流電流を流して着磁する。多数の強磁性板を有する案内筒の内部に2つ以上の磁石支持環が配設される場合は、各強磁性板に各磁石支持環の磁石が全面的に重なるように固定し、当該磁石が全部同極性となるように着磁する。上述の案内筒に収容した磁石支持環について、全部の磁石をまとめて同時に着磁しても、幾つかの磁石を数回に分けて順次着磁してもよい。
【0012】
磁石支持環の磁石に着磁した後には、周方向に隣接する2つの磁石が案内筒の各強磁性板に部分的に重なるように磁石支持環を回動し、着磁装置から案内筒を引き出す。
【0013】
【実施例】
図2は本発明が適用される永久磁石式渦電流減速装置の上半分を示す正面断面図、図3は同側面断面図である。本発明に係る永久磁石式渦電流減速装置は、電気導体からなる制動ドラム13を回転軸4に結合される。このため、車両用変速機の歯車箱2の端壁に軸受3により支持されかつ端壁から突出する出力回転軸4に、スプライン孔5aを有する取付フランジ5が嵌合され、かつ抜け出ないようにナツト6により締結される。取付フランジ5に駐車ブレーキの制動ドラム7の端壁と、渦電流減速装置の制動ドラム13のボス部9と一体のフランジ部9aとが重ね合され、複数のボルト10とナツト10aにより締結される。
【0014】
制動ドラム13は鉄などの透磁率の大なる材料からなり、基端部をボス部9から放射方向へ延びる多数の支持腕(スポーク)12に結合される。制動ドラム13の外周壁には周方向等間隔に、多数の放熱フイン13aが備えられる。
【0015】
制動ドラム13の内部に、断面箱形の内空部15を有する案内筒18が同軸に配設される。非磁性体からなる不動の案内筒18は、歯車箱2の突壁2aに外嵌固定した枠板31に、軸方向のボルト32aと径方向のボルト32により固定される。案内筒18は外周壁部18aと内周壁部18bとの両端に環状の端壁板を結合して構成してもよいが、図示の案内筒18は鉄などの磁性体からなる左半部の断面コ字形をなす筒部分と、アルミニウムなどの非磁性体からなる右半部の断面逆L字形をなす筒部分とを、多数のボルト14により結合して構成される。
【0016】
制動ドラム13の内周面と対向する案内筒18の外周壁部18aに、周方向等間隔に多数の開口が設けられ、各開口に強磁性板(ポールピース)21が嵌合固定される。実際には、強磁性板21は外周壁部18aをアルミニウムから鋳造する際に鋳ぐるまれる。
【0017】
補強リブ31aを有する枠板31に、周方向等間隔に複数のアクチユエータ(図示せず)が支持される。アクチユエータはシリンダにピストンを嵌合して1対の流体圧室を区画し、ピストンから案内筒18の内空部15へ突出するロツド17の端部に磁石支持環19を結合される。磁石支持環19は案内筒18の内空部15に軸方向移動可能に支持される。磁石支持環19の外周壁に、偶数個または4n個(nは自然数)の強磁性板21にそれぞれ対向する磁石20が、極性が周方向に交互に異なるように結合される。
【0018】
制動時、磁石支持環19は図2,3に示すように、アクチユエータのロツド17により制動ドラム13の内部へ突出される。回転する制動ドラム13が磁石20から強磁性板21を経て制動ドラム13の内周面へ及ぶ磁界を横切る時、制動ドラム13に渦電流が発生し、制動ドラム13に制動トルクを及ぼす。この時、図3に示すように、磁石支持環19と制動ドラム13との間に磁気回路40が形成される。制動ドラム13は渦電流により発熱し、直接または放熱フイン13aを介して外気により冷却される。
【0019】
非制動時、アクチユエータにより磁石支持環19を図2の左方へ移動し、制動ドラム13から引退させれば、磁石20は制動ドラム13へ磁界を及ぼさなくなり、制動ドラム13は制動トルクを発生しない。上述のように、渦電流減速装置は磁石20と制動ドラム13の相対回転により発生する渦電流に基づく制動力を発生する。
【0020】
図1に示すように、本発明は上述したような永久磁石式渦電流減速装置において、着磁する前の磁石20(厳密には磁石材というべきもの)を磁石支持環19に取付金具54により結合してから、案内筒18の内空部15へ収容する。このため、予め磁石支持環19を案内筒18の内周壁部18bへ嵌装してから、内周壁部18bを外周壁部18aに多数のボルト14(図2)により結合する。各磁石20は断面台形をなすものであり、偶数個の磁石20を磁石支持環19の外周面に周方向等間隔に並べたうえ、磁石相互間に断面逆台形の非磁性体からなる取付金具54を介装し、かつ各取付金具54を貫通する複数のボルト55を磁石支持環19へ締結する。上述のようにして着磁前の磁石20を結合した磁石支持環19を案内筒18の内部へ、各磁石20が各強磁性板21に全面的に重なるように収容し、次いで、案内筒18を着磁装置50の内部へ配置する。
【0021】
着磁装置50は磁性体からなる円筒形の継鉄51の内周壁に、多数の磁心53(磁石20と同数)を周方向等間隔に配設し、各磁心53に電磁コイル52を巻装してなる。各磁心53は継鉄51の中心へ延びる、断面長方形のものであり、各磁心53の先端つまり磁極53aの端面の周方向寸法と軸方向寸法は、強磁性板21と同寸に形成される。
【0022】
案内筒18は各強磁性板21が着磁装置50の各磁極53aに重なるように配置され、また各磁石20が各強磁性板21に重なるように位置決めされる。次いで、周方向に相隣接する電磁コイル52に互いに逆方向の直流電流を流すと、図1に矢印yで示すように磁気回路が発生する。すなわち、着磁用磁極53aから、強磁性板21、磁石20、磁石支持環19、隣りの磁石20、強磁性板21、磁心53、継鉄51、隣りの磁心53へと磁気回路yが生じ、磁石20が着磁される。次いで、各電磁コイル52への通電を停止し、案内筒18に対して磁石支持環19を磁石20の配列ピツチの半分だけ回動すると、周方向に隣接する1対の磁石20が共通の強磁性板21に部分的に重なることになる。着磁された磁石20が磁極53aに及ぼす吸引力が弱くなり、案内筒18を着磁装置50から簡単に引き出すことができ、強磁性板21により案内筒18の引き出し後の反磁界の発生が抑えられ、磁石20は減磁を生じない。上述の実施例において、全部の磁石20をまとめて着磁する代りに、幾つかの磁石20を数回に分けて着磁してもよい。
【0023】
多数の強磁性板21を有する案内筒18の内部に2つ以上の磁石支持環19,19aが配設される場合は、各強磁性板21に各磁石支持環19,19aの磁石20,20aを全面的に重ね合せ、当該磁石20,20aを全部同極性に着磁する。すなわち、図4,5に示すように、断面箱形の内空部15を有する案内筒18の外周壁部18aに周方向等間隔に偶数個(2n個、nは自然数)の強磁性板21が結合される一方、内周壁部18bには軸受22aにより磁石支持環19aが回動可能に支持され、磁石支持環19aの左半部の薄肉円筒部19bに軸受22により磁石支持環19が回動可能に支持される。磁石支持環19aは薄肉円筒部19bから案内筒18の左端壁のスリツト28を経て外方へ突出される腕26を、アクチユエータ24のピストンロツド25に連結される。同様に、磁石支持環19も案内筒18の左端壁のスリツトを経て外方へ突出される腕を、別のアクチユエータのピストンロツドに連結される。アクチユエータ24はシリンダ27にピストンを嵌挿してなり、ピストンからピストンロツド25が外部へ突出される。
【0024】
図5に示すように、磁石支持環19の外周面には各強磁性板21に2個ずつ対向するように、4n個の磁石20が所定間隔を存して結合される。磁石支持環19aの外周面にも各強磁性板21に2個ずつ対向するように、4n個の磁石20aが所定間隔を存して結合される。
【0025】
各磁石20,20aを着磁させるには、図4に示すように、予め着磁してない磁石20,20aを各磁石支持環19,19aに結合し、かつ案内筒18へそれぞれ回動可能に収容し、それぞれ2つの磁石20,20aが全面的に各強磁性板21に対向するように位置決めする。次いで、案内筒18を着磁装置50の内部へ、強磁性板21が磁極53aに全面的に対向するように配置する。磁心53に巻装した電磁コイル52に、相隣接する磁心53を通る磁界の方向が互いに逆になるように直流電流を流すと、図1に示す実施例と同様に各強磁性板21に対向する4つの磁石20,20aが同極に着磁される。
【0026】
次いで、電磁コイル52への通電を停止し、各磁石支持環19,19aを磁石20,20aの配列ピツチ分だけ回動すると、図5に示すように、各強磁性板21に対向して周方向に並ぶ磁石20,20aの極性が互いに逆になり、各強磁性板21と各磁石支持環19,19aとの間に短絡的磁気回路40aが生じ、磁石20,20aが磁極53aに及ぼす吸引力が小さくなり、案内筒18を着磁装置50から容易に引き出すことができる。
【0027】
図5は実際には制動ドラム13の内部に案内筒18が配設された渦電流式減速装置を示す。図示の非制動状態では、各強磁性板21と磁石支持環19,19aとの間に短絡的磁気回路40aが生じ、制動ドラム13に制動力を及ぼさない。磁石支持環19,19aを磁石20,20aの配列ピツチ分だけ回動すると、各強磁性板21に対向する4個の磁石20,20aの極性が同じになり、磁石20,20aの磁界が強磁性板21を透過して回転する制動ドラム13に作用し、渦電流に基づく制動力を制動ドラム13に及ぼす。この時、4個の磁石20,20aが図3に示す磁石20と同じ働きをし、磁石支持環19,19aと制動ドラム13との間に磁気回路が形成される。
【0028】
なお、本発明は上述の各実施例に限定されるものではなく、特願平7-336180号に開示されるような、強磁性板のない非磁性体からなる薄肉の案内筒の内部へ磁石支持環を収容してなる永久磁石式渦電流減速装置にも適用できる。この場合は、着磁装置の各磁極を薄肉の案内筒の外周側から磁石支持環の各磁石へ対向させ、各磁心の電磁コイルに直流電流を流して着磁する。着磁した後に着磁装置から案内筒を取り出すには、着磁装置から磁性体の筒体の内部へ案内筒を軸方向に移動する。
【0029】
【発明の効果】
本発明は上述のように、永久磁石を用いて渦電流による制動力を発生させる渦電流減速装置において、磁性体からなる少なくとも1つの磁石支持環の外周面に着磁前の偶数個の永久磁石を周方向等間隔に結合し、非磁性体からなりかつ前記永久磁石と同数または半数の強磁性板を周方向等間隔に有する案内筒の内部に前記磁石支持環を収容し、前記案内筒の各強磁性板に前記磁石支持環の各永久磁石が全面的に重なるように固定した後、各強磁性板の外面に対向する磁極を有する筒状の着磁装置により、前記磁石支持環の外周側から前記永久磁石に極性が周方向に交互にまたは2つずつ異なるように着磁し、前記案内筒の各強磁性板に前記磁石支持環の周方向に隣接しかつ極性が互いに異なる2つの永久磁石が重なるように前記磁石支持環を回動し、前記筒状の着磁装置から前記案内筒を引き出すようにしたから次のような効果が得られる。
【0030】
案内筒に対する磁石支持環の組付性が向上し、磁石支持環の組付けに当り作業者が指や手を傷つける心配がない。
【0031】
磁石支持環の磁石に着磁した後には、周方向に隣接する2つの磁石が案内筒の強磁性板に部分的に重なる位置へ磁石支持環を回動すれば、磁石が着磁装置へ及ぼす吸引力が弱くなり、案内筒を着磁装置から容易に引き出すことができる。
【図面の簡単な説明】
【図1】本発明に係る往復動型永久磁石式渦電流減速装置の着磁方法を示す正面断面図である。
【図2】同渦電流式減速装置の側面断面図である。
【図3】同渦電流式減速装置の制動時の正面断面図である。
【図4】本発明に係る回動型永久磁石式渦電流減速装置の着磁方法を示す側面断面図である。
【図5】同渦電流式減速装置の非制動時の正面断面図である。
【符号の説明】
4:回転軸 9:ボス部 9a:フランジ部 12:支持腕 13:制動ドラム13a:放熱フイン 14:ボルト 15:内空部 17:ロツド 18:案内筒 18a:外周壁部 18b:内周壁部 19,19a:磁石支持筒 19b:薄肉円筒部 20,20a:永久磁石 21:強磁性板 22,22a:軸受 24:アクチユエータ 25:ロツド 26:腕 27:シリンダ 28:スリツト 31:枠板 40,40a:磁気回路 50:着磁装置 51:継鉄52:電磁コイル 53:磁心 53a:磁極 54:取付金具 55:ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type eddy current reduction device mounted on a large freight vehicle or the like, and more particularly to a method for magnetizing a permanent magnet type eddy current reduction device in which a permanent magnet is magnetized after assembly of the eddy current reduction device.
[0002]
[Prior art]
In an eddy current reduction device using a permanent magnet (hereinafter simply referred to as a magnet), an even number (8 to 24 poles) of magnets are provided on the outer peripheral surface of a magnet support ring (a yoke) made of a magnetic material. It is attached with an adhesive, a mounting bracket (nonmagnetic material such as aluminum, stainless steel, synthetic resin) or the like so as to be alternately changed in the circumferential direction. When magnetizing magnets, magnets are magnetized one by one in advance, or all magnets are magnetized at the same time and then attached to the magnet support ring, or all magnets that are not magnetized (strictly, such as rare earth metals) After attaching the magnet material) to the magnet support ring with an adhesive, a mounting bracket, etc., several magnets were magnetized, or all were magnetized simultaneously.
[0003]
However, magnetizing magnets one by one is troublesome. For example, after a total of 12 magnets are arranged in a ring on the outer peripheral surface of the magnet support ring, a magnetic field is applied from the outer peripheral side of the magnet support ring. However, when magnetizing the magnet support ring inside the protective cylinder or guide cylinder having a large number of ferromagnetic plates (pole pieces), the magnet's strong attractive force with respect to the guide cylinder can be reduced. In order to resist it, a rigid and strong assembling jig is required, and careful attention is required so that the operator will not injure his finger.
[0004]
As a method for magnetizing a rotor of a DC rotating machine, there is one disclosed in Japanese Patent Laid-Open No. 2-133100. Even if this method is applied to a magnet support ring of a permanent magnet type eddy current reduction device, The above problem cannot be solved.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to eliminate the labor of assembling the magnet support ring as described above to the guide cylinder and eliminate the need for a strong assembling jig, and then attach the magnet to the magnet support ring and attach it after the assembly to the guide cylinder. It is an object of the present invention to provide a magnetizing method for a permanent magnet type eddy current reduction device that is magnetized.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method of the present invention is an eddy current reduction device that generates a braking force due to an eddy current using a permanent magnet, and is arranged on the outer peripheral surface of at least one magnet support ring made of a magnetic material before magnetization. An even number of permanent magnets are coupled at equal intervals in the circumferential direction, the magnet support ring is accommodated in a guide tube made of a non-magnetic material and having the same number of ferromagnetic plates as the permanent magnets at equal intervals in the circumferential direction, The permanent magnets of the magnet support ring are fixed to the ferromagnetic plates of the guide cylinder so as to completely overlap, and then the magnet support is provided by a cylindrical magnetizing device having a magnetic pole facing the outer surface of each of the ferromagnetic plates. Two permanent magnets are magnetized from the outer peripheral side of the ring so that the polarities of the permanent magnets are alternately different in the circumferential direction, and are adjacent to the ferromagnetic plates of the guide tube in the circumferential direction of the magnet support ring and have different polarities. Rotate the magnet support ring so that the magnets overlap And wherein the withdrawing the guide tube from the tubular magnetizing apparatus.
[0007]
Further, the method of the present invention is an eddy current reduction device that generates a braking force by eddy current using a permanent magnet. An even number of permanent magnets before magnetization are provided on the outer peripheral surface of at least one magnet support ring made of a magnetic material. The magnet support ring is accommodated in a guide cylinder that is coupled at equal intervals in the circumferential direction and is made of a non-magnetic material and has half the ferromagnetic plates of the permanent magnets at equal intervals in the circumferential direction. After fixing the two permanent magnets of the magnet support ring on the plate so as to completely overlap each other, a cylindrical magnetizing device having a magnetic pole facing the outer surface of each ferromagnetic plate, the outer peripheral side of the magnet support ring The permanent magnets are magnetized so that the polarities are different by two in the circumferential direction, and two permanent magnets that are adjacent in the circumferential direction of the magnet support ring and have different polarities overlap each ferromagnetic plate of the guide tube. Rotate the magnet support ring so that the Characterized in that from Jo polarizing device draw said guide cylinder.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, before magnetizing the magnet, the magnet is coupled to the magnet support ring and incorporated into the guide tube, and then disposed inside the magnetizing device. In the case of a guide tube made of a non-magnetic thin plate without a ferromagnetic plate, each magnetic pole of the magnetizing device is opposed to each magnet from the outside of the guide tube, and magnetized by flowing a direct current through the electromagnetic coil of each magnetic pole. .
[0011]
In the case of a guide cylinder having a large number of ferromagnetic plates, the magnets of the magnet support ring are fixed to each ferromagnetic plate in advance so as to entirely overlap, and then arranged inside the magnetizing device. Each magnetic pole of the magnetizing device is opposed to the ferromagnetic plate from the outside of the guide tube, and a direct current is passed through the electromagnetic coil of each magnetic core to magnetize it. When two or more magnet support rings are arranged inside a guide cylinder having a large number of ferromagnetic plates, the magnets of each magnet support ring are fixed to each ferromagnetic plate so as to be entirely overlapped, and the magnets Are magnetized so that they all have the same polarity. About the magnet support ring accommodated in the above-mentioned guide cylinder, all the magnets may be magnetized simultaneously, or several magnets may be magnetized sequentially in several times.
[0012]
After magnetizing the magnet of the magnet support ring, the magnet support ring is rotated so that two magnets adjacent in the circumferential direction partially overlap each ferromagnetic plate of the guide cylinder, and the guide cylinder is moved from the magnetizing device. Pull out.
[0013]
【Example】
FIG. 2 is a front sectional view showing the upper half of the permanent magnet type eddy current reduction device to which the present invention is applied, and FIG. 3 is a side sectional view of the same. In the permanent magnet type eddy current reduction device according to the present invention, a braking drum 13 made of an electric conductor is coupled to a rotating shaft 4. For this reason, the mounting flange 5 having the spline hole 5a is fitted to the output rotating shaft 4 supported by the bearing 3 on the end wall of the gear box 2 of the vehicle transmission and protruding from the end wall so that it does not come out. Fastened by nut 6. The end wall of the braking drum 7 of the parking brake and the boss 9 of the braking drum 13 of the eddy current speed reducing device 9 are integrated with the mounting flange 5 and are fastened by a plurality of bolts 10 and nuts 10a. .
[0014]
The brake drum 13 is made of a material having a high magnetic permeability such as iron, and the base end portion is coupled to a number of support arms (spokes) 12 extending in the radial direction from the boss portion 9. A large number of heat radiation fins 13 a are provided on the outer peripheral wall of the brake drum 13 at equal intervals in the circumferential direction.
[0015]
Inside the brake drum 13, a guide cylinder 18 having an inner space 15 having a box-shaped cross section is disposed coaxially. The stationary guide cylinder 18 made of a non-magnetic material is fixed to a frame plate 31 that is externally fitted and fixed to the protruding wall 2a of the gear box 2 by an axial bolt 32a and a radial bolt 32 . The guide tube 18 may be configured by connecting annular end wall plates to both ends of the outer peripheral wall portion 18a and the inner peripheral wall portion 18b. However, the illustrated guide tube 18 is formed on the left half portion made of a magnetic material such as iron. A cylindrical portion having a U-shaped cross section and a cylindrical portion having an inverted L-shaped cross section in the right half made of a nonmagnetic material such as aluminum are connected by a large number of bolts 14.
[0016]
A large number of openings are provided at equal intervals in the circumferential direction on the outer peripheral wall 18a of the guide cylinder 18 facing the inner peripheral surface of the brake drum 13, and a ferromagnetic plate (pole piece) 21 is fitted and fixed to each opening. Actually, the ferromagnetic plate 21 is cast when the outer peripheral wall portion 18a is cast from aluminum.
[0017]
A plurality of actuators (not shown) are supported on the frame plate 31 having the reinforcing ribs 31a at equal intervals in the circumferential direction. The actuator fits a piston into a cylinder to define a pair of fluid pressure chambers, and a magnet support ring 19 is coupled to the end of a rod 17 projecting from the piston to the inner space 15 of the guide tube 18. The magnet support ring 19 is supported by the inner space 15 of the guide tube 18 so as to be movable in the axial direction. Magnets 20 facing the even or 4n (n is a natural number) ferromagnetic plates 21 are coupled to the outer peripheral wall of the magnet support ring 19 so that the polarities are alternately different in the circumferential direction.
[0018]
At the time of braking, the magnet support ring 19 is protruded into the brake drum 13 by the rod 17 of the actuator as shown in FIGS. When the rotating brake drum 13 crosses the magnetic field extending from the magnet 20 through the ferromagnetic plate 21 to the inner peripheral surface of the brake drum 13, an eddy current is generated in the brake drum 13 and applies a braking torque to the brake drum 13. At this time, as shown in FIG. 3, a magnetic circuit 40 is formed between the magnet support ring 19 and the brake drum 13. The brake drum 13 generates heat by eddy current, and is cooled by outside air directly or through the heat radiation fin 13a.
[0019]
During non-braking, if the magnet support ring 19 is moved to the left in FIG. 2 by the actuator and retracted from the braking drum 13, the magnet 20 does not exert a magnetic field on the braking drum 13, and the braking drum 13 does not generate braking torque. . As described above, the eddy current reduction device generates a braking force based on the eddy current generated by the relative rotation of the magnet 20 and the braking drum 13.
[0020]
As shown in FIG. 1, in the permanent magnet type eddy current reduction device as described above, the present invention is configured such that a magnet 20 before magnetizing (strictly speaking, a magnet material) is attached to a magnet support ring 19 by a mounting bracket 54. After being combined, the guide tube 18 is accommodated in the inner space 15. For this reason, after the magnet support ring 19 is fitted in the inner peripheral wall portion 18b of the guide cylinder 18 in advance, the inner peripheral wall portion 18b is coupled to the outer peripheral wall portion 18a by a large number of bolts 14 (FIG. 2). Each magnet 20 has a trapezoidal cross section, and an even number of magnets 20 are arranged on the outer peripheral surface of the magnet support ring 19 at equal intervals in the circumferential direction, and a mounting bracket made of a nonmagnetic material having a reverse trapezoidal cross section between the magnets. A plurality of bolts 55 that interpose 54 and penetrate each mounting bracket 54 are fastened to the magnet support ring 19. As described above, the magnet support ring 19 to which the magnets 20 before magnetization are coupled is accommodated inside the guide cylinder 18 so that each magnet 20 overlaps each ferromagnetic plate 21, and then the guide cylinder 18. Is placed inside the magnetizing device 50.
[0021]
The magnetizing device 50 has a large number of magnetic cores 53 (the same number as the magnets 20) arranged at equal intervals in the circumferential direction on the inner peripheral wall of a cylindrical yoke 51 made of a magnetic material, and an electromagnetic coil 52 is wound around each magnetic core 53. Do it. Each magnetic core 53 has a rectangular cross section extending to the center of the yoke 51, and the circumferential dimension and the axial dimension of the tip of each magnetic core 53, that is, the end face of the magnetic pole 53 a, are formed to be the same as those of the ferromagnetic plate 21. .
[0022]
The guide cylinder 18 is disposed so that each ferromagnetic plate 21 overlaps each magnetic pole 53 a of the magnetizing device 50, and is positioned so that each magnet 20 overlaps each ferromagnetic plate 21. Next, when direct currents in opposite directions are passed through the electromagnetic coils 52 adjacent to each other in the circumferential direction, a magnetic circuit is generated as shown by an arrow y in FIG. That is, a magnetic circuit y is generated from the magnetizing magnetic pole 53a to the ferromagnetic plate 21, the magnet 20, the magnet support ring 19, the adjacent magnet 20, the ferromagnetic plate 21, the magnetic core 53, the yoke 51, and the adjacent magnetic core 53. The magnet 20 is magnetized. Next, when the energization of each electromagnetic coil 52 is stopped and the magnet support ring 19 is rotated by half of the arrangement pitch of the magnets 20 with respect to the guide cylinder 18, a pair of magnets 20 adjacent in the circumferential direction have a common strength. The magnetic plate 21 partially overlaps. The attracting force exerted on the magnetic pole 53a by the magnetized magnet 20 becomes weak, the guide tube 18 can be easily pulled out from the magnetizing device 50, and the ferromagnetic plate 21 generates a demagnetizing field after the guide tube 18 is pulled out. The magnet 20 is not demagnetized. In the above-described embodiment, instead of magnetizing all the magnets 20 together, several magnets 20 may be magnetized in several times.
[0023]
When two or more magnet support rings 19, 19 a are arranged inside the guide cylinder 18 having a large number of ferromagnetic plates 21, the magnets 20, 20 a of the magnet support rings 19, 19 a are arranged on each ferromagnetic plate 21. And magnets 20 and 20a are all magnetized to the same polarity. That is, as shown in FIGS. 4 and 5, an even number (2n, n is a natural number) of ferromagnetic plates 21 at equal intervals in the circumferential direction on the outer peripheral wall portion 18 a of the guide tube 18 having the inner space 15 having a box-shaped cross section. The magnet support ring 19a is rotatably supported by the bearing 22a on the inner peripheral wall portion 18b, and the magnet support ring 19 is rotated by the bearing 22 on the thin cylindrical portion 19b in the left half of the magnet support ring 19a. It is supported movably. The magnet support ring 19a is connected to the piston rod 25 of the actuator 24 with the arm 26 protruding outward from the thin cylindrical portion 19b through the slit 28 on the left end wall of the guide tube 18. Similarly, the magnet support ring 19 is connected to the piston rod of another actuator with the arm protruding outward through the slit of the left end wall of the guide tube 18. The actuator 24 is formed by inserting a piston into the cylinder 27, and the piston rod 25 projects outward from the piston.
[0024]
As shown in FIG. 5, 4n magnets 20 are coupled to the outer peripheral surface of the magnet support ring 19 at a predetermined interval so as to face two ferromagnetic plates 21. 4n magnets 20a are coupled to each of the outer peripheral surfaces of the magnet support ring 19a so as to face each of the ferromagnetic plates 21 at a predetermined interval.
[0025]
In order to magnetize the magnets 20 and 20a, as shown in FIG. 4, the magnets 20 and 20a that are not magnetized in advance are coupled to the magnet support rings 19 and 19a and can be rotated to the guide cylinder 18, respectively. The two magnets 20 and 20a are positioned so as to face the respective ferromagnetic plates 21 entirely. Next, the guide tube 18 is disposed inside the magnetizing device 50 so that the ferromagnetic plate 21 is completely opposed to the magnetic pole 53a. When a direct current is applied to the electromagnetic coil 52 wound around the magnetic core 53 so that the directions of the magnetic fields passing through the adjacent magnetic cores 53 are opposite to each other, the respective ferromagnetic plates 21 are opposed to each other as in the embodiment shown in FIG. The four magnets 20 and 20a are magnetized to the same polarity.
[0026]
Next, when the energization of the electromagnetic coil 52 is stopped and the magnet support rings 19 and 19a are rotated by the arrangement pitches of the magnets 20 and 20a, the peripheral surfaces of the magnets 21 face each other as shown in FIG. The polarities of the magnets 20 and 20a arranged in the direction are opposite to each other, a short-circuit magnetic circuit 40a is generated between each ferromagnetic plate 21 and each magnet support ring 19 and 19a, and the magnet 20 and 20a attracts the magnetic pole 53a. The force is reduced, and the guide tube 18 can be easily pulled out from the magnetizing device 50.
[0027]
FIG. 5 shows an eddy current type speed reducer in which a guide cylinder 18 is actually arranged inside the brake drum 13. In the illustrated non-braking state, a short-circuit magnetic circuit 40 a is generated between each ferromagnetic plate 21 and the magnet support rings 19, 19 a, and no braking force is exerted on the braking drum 13. When the magnet support rings 19 and 19a are rotated by the arrangement pitch of the magnets 20 and 20a, the polarities of the four magnets 20 and 20a facing the ferromagnetic plates 21 are the same, and the magnetic fields of the magnets 20 and 20a are strong. It acts on the brake drum 13 that rotates through the magnetic plate 21, and applies a braking force based on the eddy current to the brake drum 13. At this time, the four magnets 20, 20 a function in the same manner as the magnet 20 shown in FIG. 3, and a magnetic circuit is formed between the magnet support rings 19, 19 a and the brake drum 13.
[0028]
The present invention is not limited to the above-described embodiments, and a magnet is inserted into a thin guide tube made of a non-magnetic material without a ferromagnetic plate as disclosed in Japanese Patent Application No. 7-336180. The present invention can also be applied to a permanent magnet type eddy current reduction device that houses a support ring. In this case, each magnetic pole of the magnetizing device is opposed to each magnet of the magnet support ring from the outer peripheral side of the thin guide tube, and magnetized by flowing a direct current through the electromagnetic coil of each magnetic core. In order to take out the guide tube from the magnetizing device after magnetization, the guide tube is moved in the axial direction from the magnetizing device to the inside of the magnetic cylinder.
[0029]
【The invention's effect】
As described above, the present invention provides an eddy current reduction device that generates a braking force by an eddy current using a permanent magnet, and an even number of permanent magnets before magnetization on the outer peripheral surface of at least one magnet support ring made of a magnetic material. The magnet support ring is accommodated in a guide cylinder made of a non-magnetic material and having the same or half ferromagnetic plates as the permanent magnet at equal intervals in the circumferential direction. After fixing the permanent magnets of the magnet support ring to each ferromagnetic plate so as to overlap the entire surface, the outer periphery of the magnet support ring is formed by a cylindrical magnetizing device having a magnetic pole facing the outer surface of each ferromagnetic plate. From the side, the permanent magnets are magnetized so that the polarities are alternately or two different in the circumferential direction, and the two ferromagnetic plates of the guide cylinder are adjacent to each other in the circumferential direction of the magnet support ring and have different polarities. The magnet support ring so that the permanent magnets overlap. Dynamic and, effects such as the following are obtained from the from the tubular magnetizing apparatus to draw the guide tube.
[0030]
Assembling property of the magnet support ring to the guide cylinder is improved, and there is no fear that an operator may hurt a finger or a hand when assembling the magnet support ring.
[0031]
After magnetizing the magnet of the magnet support ring, if the magnet support ring is rotated to a position where two magnets adjacent in the circumferential direction partially overlap the ferromagnetic plate of the guide tube, the magnet exerts on the magnetizing device. The attraction force becomes weak and the guide tube can be easily pulled out from the magnetizing device.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a magnetization method of a reciprocating permanent magnet eddy current reduction device according to the present invention.
FIG. 2 is a side sectional view of the eddy current type speed reducer.
FIG. 3 is a front sectional view of the eddy current type speed reducer during braking.
FIG. 4 is a side sectional view showing a magnetization method of the rotating permanent magnet type eddy current reduction device according to the present invention.
FIG. 5 is a front cross-sectional view of the eddy current type speed reducer during non-braking.
[Explanation of symbols]
4: Rotating shaft 9: Boss portion 9a: Flange portion 12: Support arm 13: Braking drum 13a: Radiation fin 14: Bolt 15: Inner space portion 17: Rod 18: Guide tube 18a: Outer peripheral wall portion 18b: Inner peripheral wall portion 19 19a: Magnet support tube 19b: Thin cylindrical portion 20, 20a: Permanent magnet 21: Ferromagnetic plate 22, 22a: Bearing 24: Actuator 25: Rod 26: Arm 27: Cylinder 28: Slit 31: Frame plate 40, 40a: Magnetic circuit 50: Magnetizing device 51: yoke 52: electromagnetic coil 53: magnetic core 53a: magnetic pole 54: mounting bracket 55: bolt

Claims (2)

永久磁石を用いて渦電流による制動力を発生させる渦電流減速装置において、磁性体からなる少なくとも1つの磁石支持環の外周面に着磁前の偶数個の永久磁石を周方向等間隔に結合し、非磁性体からなりかつ前記永久磁石と同数の強磁性板を周方向等間隔に有する案内筒の内部に前記磁石支持環を収容し、前記案内筒の各強磁性板に前記磁石支持環の各永久磁石が全面的に重なるように固定した後、各強磁性板の外面に対向する磁極を有する筒状の着磁装置により、前記磁石支持環の外周側から前記永久磁石に極性が周方向に交互に異なるように着磁し、前記案内筒の各強磁性板に前記磁石支持環の周方向に隣接しかつ極性が互いに異なる2つの永久磁石が重なるように前記磁石支持環を回動し、前記筒状の着磁装置から前記案内筒を引き出すことを特徴とする、永久磁石式渦電流減速装置の着磁方法。In an eddy current reduction device that generates a braking force by an eddy current using a permanent magnet, an even number of permanent magnets before magnetization are coupled to the outer peripheral surface of at least one magnet support ring made of a magnetic material at equal intervals in the circumferential direction. The magnet support ring is housed in a guide tube made of a non-magnetic material and having the same number of ferromagnetic plates as the permanent magnets at equal intervals in the circumferential direction, and the magnet support ring is placed on each ferromagnetic plate of the guide tube. After fixing the permanent magnets so as to overlap with each other, the cylindrical magnetizing device having a magnetic pole facing the outer surface of each ferromagnetic plate causes the permanent magnet to have a polarity in the circumferential direction from the outer peripheral side of the magnet support ring. The magnet support ring is rotated so that two permanent magnets adjacent to each other in the circumferential direction of the magnet support ring and having different polarities overlap each ferromagnetic plate of the guide cylinder. Pull the guide tube from the cylindrical magnetizing device. It characterized Succoth, magnetizing method of the permanent magnet type eddy current reduction apparatus. 永久磁石を用いて渦電流による制動力を発生させる渦電流減速装置において、磁性体からなる少なくとも1つの磁石支持環の外周面に着磁前の偶数個の永久磁石を周方向等間隔に結合し、非磁性体からなりかつ前記永久磁石の半数の強磁性板を周方向等間隔に有する案内筒の内部に前記磁石支持環を収容し、前記案内筒の各強磁性板に前記磁石支持環の2つの永久磁石がそれぞれ全面的に重なるように固定した後、各強磁性板の外面に対向する磁極を有する筒状の着磁装置により、前記磁石支持環の外周側から前記永久磁石に極性が周方向に2つずつ異なるように着磁し、前記案内筒の各強磁性板に前記磁石支持環の周方向に隣接しかつ極性が互いに異なる2つの永久磁石が重なるように前記磁石支持環を回動し、前記筒状の着磁装置から前記案内筒を引き出すことを特徴とする、永久磁石式渦電流減速装置の着磁方法。In an eddy current reduction device that generates a braking force by an eddy current using a permanent magnet, an even number of permanent magnets before magnetization are coupled to the outer peripheral surface of at least one magnet support ring made of a magnetic material at equal intervals in the circumferential direction. The magnet support ring is housed in a guide tube made of a non-magnetic material and having half the ferromagnetic plates of the permanent magnet at equal intervals in the circumferential direction, and the magnet support ring is placed on each ferromagnetic plate of the guide tube. After fixing the two permanent magnets so as to overlap each other, the permanent magnet is polarized from the outer peripheral side of the magnet support ring by a cylindrical magnetizing device having a magnetic pole facing the outer surface of each ferromagnetic plate. The magnet support ring is magnetized so as to be different two by two in the circumferential direction, and the two permanent magnets adjacent to each other in the circumferential direction of the magnet support ring and having different polarities overlap each ferromagnetic plate of the guide cylinder. Rotate and forward from the cylindrical magnetizer Characterized in that withdrawing the guide tube, magnetizing method of the permanent magnet type eddy current reduction apparatus.
JP28304497A 1997-09-30 1997-09-30 Magnetization method of permanent magnet type eddy current reduction device Expired - Fee Related JP3671621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28304497A JP3671621B2 (en) 1997-09-30 1997-09-30 Magnetization method of permanent magnet type eddy current reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28304497A JP3671621B2 (en) 1997-09-30 1997-09-30 Magnetization method of permanent magnet type eddy current reduction device

Publications (2)

Publication Number Publication Date
JPH11113224A JPH11113224A (en) 1999-04-23
JP3671621B2 true JP3671621B2 (en) 2005-07-13

Family

ID=17660493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28304497A Expired - Fee Related JP3671621B2 (en) 1997-09-30 1997-09-30 Magnetization method of permanent magnet type eddy current reduction device

Country Status (1)

Country Link
JP (1) JP3671621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958174A (en) * 2009-07-09 2011-01-26 通用电气公司 The In-situ Magnetization device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600156B2 (en) * 2005-05-31 2010-12-15 住友金属工業株式会社 Eddy current reducer
JP4604857B2 (en) * 2005-06-07 2011-01-05 住友金属工業株式会社 Eddy current reducer
CN100429524C (en) * 2006-07-27 2008-10-29 南京大学 DC magnetic field sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958174A (en) * 2009-07-09 2011-01-26 通用电气公司 The In-situ Magnetization device
US8766753B2 (en) 2009-07-09 2014-07-01 General Electric Company In-situ magnetizer

Also Published As

Publication number Publication date
JPH11113224A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
EP0948118A2 (en) Eddy current reduction apparatus
JP3651255B2 (en) Eddy current reducer
US6220403B1 (en) Eddy current braking system
JP3671621B2 (en) Magnetization method of permanent magnet type eddy current reduction device
JP3760745B2 (en) Eddy current reducer
JP3685835B2 (en) Magnet magnetizing method and DC motor using magnet magnetized thereby
JP3687380B2 (en) Eddy current reducer
JP3963082B2 (en) Eddy current reducer
JP3937743B2 (en) Eddy current reducer
JP2004173474A (en) Eddy current type decelerator
JP3216665B2 (en) Eddy current type reduction gear
JP3800310B2 (en) Eddy current reducer
JPH04289761A (en) Eddy current type deceleration gear
JPH0747989Y2 (en) Magnetic shield casing for eddy current type speed reducer
JP3285043B2 (en) Eddy current type reduction gear
JP4023099B2 (en) Eddy current reducer
JP3651256B2 (en) Eddy current reducer
JPH11196563A (en) Magnetizing device of magnet for eddy current generated retarder and magnetizing method using the same
JP2566803Y2 (en) Eddy current type reduction gear
JP2573695Y2 (en) Eddy current type reduction gear
JP2001327154A (en) Eddy current reduction gear
JP2005143262A (en) Eddy current reduction gear
JP3627432B2 (en) Eddy current reducer
JP3233166B2 (en) Eddy current type reduction gear
JP4411912B2 (en) Eddy current reducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees