JP3667633B2 - Airfield control support system - Google Patents

Airfield control support system Download PDF

Info

Publication number
JP3667633B2
JP3667633B2 JP2000395202A JP2000395202A JP3667633B2 JP 3667633 B2 JP3667633 B2 JP 3667633B2 JP 2000395202 A JP2000395202 A JP 2000395202A JP 2000395202 A JP2000395202 A JP 2000395202A JP 3667633 B2 JP3667633 B2 JP 3667633B2
Authority
JP
Japan
Prior art keywords
route
aircraft
airfield
unit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000395202A
Other languages
Japanese (ja)
Other versions
JP2002197600A (en
Inventor
智彦 谷本
秀範 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000395202A priority Critical patent/JP3667633B2/en
Publication of JP2002197600A publication Critical patent/JP2002197600A/en
Application granted granted Critical
Publication of JP3667633B2 publication Critical patent/JP3667633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飛行場の効率的運用と安全性の向上が可能な飛行場管制支援システムに関する。
【0002】
【従来の技術】
現状の飛行場における地上走行の管制は、管制官が航空機や走行する車両を目視し、それらと無線を介して音声通信を行うことにより、進行許可、経路指定、待機などの指示を発し、管制を行っている。通常は、無線の周波数は一つであり、一時に一機に対して指示を行っている。
また、夜間や霧など、見通しが悪い場合、誘導路の中心線灯等の灯火類を点灯して誘導路の存在を示し、表示板などにより誘導路の識別を行っている。
【0003】
【発明が解決しようとする課題】
上述したように、飛行場における地上走行の管制が行われているため、管制官は目視確認を行い、さらに航空機や走行車両との交信を行い、安全かつ円滑な交通を考慮して経路を策定し、各種の誘導機器類の操作を行うなど、負担が大きく、飛行場の運用効率の向上を見込んだ管制を行うには限界がある。
【0004】
特に、混雑時には管制の対象となる航空機数が多く、目視確認や交信の回数が増える上に、速やかに指示する必要性が増し、効率的な運用に関しては考慮する時間が限られ、一層この問題点が顕著になる。
また、夜間や霧など視程が悪いときには、目視にも時間がかかり、飛行場の運用効率は低くならざるを得ない。
【0005】
本発明(請求項1対応)は、上記状況に対処するためになされたもので、その目的は、混雑時や低視程時においても飛行場の運用効率を高める航空機の地上走行経路を策定し、それを管制官に提示して地上走行管制業務を支援する飛行場管制支援システムを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の飛行場管制支援システムの発明は、飛行場の滑走路、誘導路および車両の走行路の位置、長さ、駐機するスポット位置等、管制に必要な経路形状情報を格納する経路形状情報格納手段と、飛行場の滑走路および誘導路を走行する航空機および車両の位置を検出する位置検出手段と、前記位置検出手段により得られた航空機や車両の位置情報から速度を算出する移動体速度算出手段と、滑走路離脱位置から目的スポットまでの航空機が走行する経路を策定する経路策定手段と、前記位置検出手段による位置情報と前記移動体速度算出手段による速度情報に基づき前記経路策定手段によって策定された経路における航空機および車両の時刻ごとの位置を予測する将来位置予測手段と、飛行場全体の運用効率を評価する運用効率評価手段と、前記経路策定手段によって策定された経路と管制の対象に関する情報を表示すると共に経路確定入力を行う経路確定入出力処理手段とを備え、前記経路策定手段は、複数の経路候補を策定し、各経路候補について前記将来位置予測手段により予測された航空機および車両の時刻ごとの位置から、複数の航空機または車両の経路が重複または交差することによる航空機または車両の待ち時間を求め、前記待ち時間を用いて前記運用効率評価手段で求められた飛行場全体の運用効率の評価結果により最適な経路を策定することを特徴とする。
請求項1記載の発明によると、航空機や車両の位置が簡単に把握できるので、管制官は注意を安全確保業務に振り向けることができ、安全性も向上する。
【0007】
請求項2記載の発明は、請求項1記載の飛行場管制支援システムにおいて、経路策定手段は、飛行場の誘導路のネットワークを複数の区域に区分して、各区域ごとの標準経路あるいは各区域ごとに求めた経路を組合わせて、一つの経路を構成することを特徴とする。
【0008】
請求項2記載の発明によると、経路策定部に経路ネットワークを分割して各区域の経路の組合わせとして構成することにより、システムが経路策定や評価に要する時間が短縮され、状況の変化に素早く対応でき、緊急事態への対応も短時間で可能となる。
【0009】
請求項3記載の発明は、請求項1記載の飛行場管制支援システムにおいて、誘導路の中心線や誘導表示板等の灯火を制御することによって、指示経路を与える地上側経路指示手段を備えることを特徴とする。
【0010】
請求項3記載の発明によると、管制官の決定経路の入力に応じて、地上側経路指示制御部による制御で必要な部分の灯火類が点消灯され、管制官が決定した経路が明らかに示される。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1実施形態(請求項1及び請求項2対応)の飛行場管制支援システムのブロック構成図である。
【0012】
図1に示すように、本実施形態の飛行場管制支援システムは、飛行場の滑走路および誘導路を走行するすべての航空機および車両の特性を格納する移動体特性データ格納部1と、飛行場の滑走路、誘導路および車両の走行路の位置、長さ、駐機するスポット位置等、管制に必要な経路形状情報を格納する経路形状情報格納部2と、飛行場の滑走路および誘導路を走行するすべての航空機および車両の位置を検出する位置検出部3と、位置検出部3によって検出された対象を特定する検出対象特定部4と、位置検出部3により得られた航空機や車両の位置情報と検出対象特定部4の識別情報から、検出対象それぞれの速度を算出する移動体速度算出部5と、位置検出部3による航空機や車両の位置情報と、検出対象特定部4による識別情報と、速度算出部5によるそれらの速度情報と、移動体特性データ格納部1に格納された移動体の走行特性に基づいて、経路策定部7によって策定された経路における航空機および車両の時刻ごとの位置を予測する将来位置予測部6と、滑走路離脱位置から目的スポットまで、あるいは滞在スポットから滑走路進入待機位置まで、または滞在スポットから他のスポットまでの間における航空機の現在位置と、目標位置を結ぶ経路を策定する経路策定部7と、航空機の発着便数、発着時刻、航空機の走行距離、走行時間等の情報に基づき、飛行場全体の運用効率を評価する運用効率評価部8と、経路策定部7によって策定された経路案と、対象を特定するコールサインなどの識別情報をはじめとする管制の対象に関する情報を表示するとともに、管制官による経路確定入力を行う経路確定入出力処理部9とから構成されている。
【0013】
次に、本実施形態の各部の作用について説明する。
移動体特性データ格納部1には、飛行場の滑走路および誘導路を走行するすべての航空機および車両の加減速性能、最高速度、旋回半径などの走行特性や、機体寸法、ジェットブラストの長さ等の特性が格納され、必要に応じて対象とする航空機および車両ごとに、検出対象特定部4、移動体速度算出部5、将来位置予測部6、経路策定部7、経路確定入出力処理部9にその特性情報が呼び出される。
【0014】
経路形状情報格納部2には、飛行場の滑走路、誘導路および車両の走行路の位置、長さ、駐機するスポット位置等、管制に必要な経路の位置・形状に関する情報が格納され、経路策定時や、将来位置予測時、経路情報表示時などに必要に応じて、検出対象特定部4、移動体速度算出部5、将来位置予測部6、経路策定部7、経路確定入出力処理部9に情報が呼び出される。
【0015】
位置検出部3では、飛行場の滑走路および誘導路を走行するすべての航空機および車両の位置を検出する。この検出には通過センサのような一点のみで検出するセンサを多数設置するほか、レーダによる電波の反射、音波や磁気を利用したセンサなどが用いられ得る。
【0016】
位置検出部3の処理の一例を図2のフロー図を参照して説明する。
位置検出対象を設定し(S1)、個別のセンサからの入力信号があると(S2)、検出したセンサの設置位置情報とセンサからの距離情報から検出位置を求め、経路上の位置に変換し(S3)、レーダ処理装置から信号入力の場合にはレーダからの距離・方位を経路上の位置に変換し(S4)、GPS情報のような全地球座標系として得た場合はそれを経路上の位置に変換し(S5)、検出対象特定部4、移動体速度算出部5、将来位置予測部6、経路策定部7、経路確定入出力処理部9の必要とされるところへ出力する(S6)。
【0017】
また、位置検出部3のみでは存在を検出することが可能でも、どの航空機あるいは車両であるかを特定することができない。したがって、トランスポンダのような無線による自動応答装置あるいは航空機や車両を写して画像を処理して対象を特定する検出対象特定部4を備え、対象を特定し、識別する。
【0018】
検出対象特定部4の処理の一例を図3のフロー図を参照して説明する。
移動体すべての最新の時刻、位置、速度、方向、特性、識別情報を把握し(S1)、検出対象を設定する(S2)。各々の航空機または車両について、トランスポンダやレーダシステムによる識別情報があれば(S3)、その情報を移動体速度算出部5、将来位置予測部6、経路策定部7、経路確定入出力処理部9に出力する(S7)。識別情報がなければ(S3)、直前の情報を求め(S4)、直前の情報から求めた現時点の予測位置と実際の位置を比較し(S5)、最も近くかつ方向や速度が逆になっているなどの物理的に矛盾を生じないものを同一対象と特定し(S6)、移動体速度算出部5、将来位置予測部6、経路策定部7、経路確定入出力処理部9に出力する(S7)。
【0019】
移動体速度算出部5は、位置検出部3により得られた航空機や車両の位置情報と検出対象特定部4による対象の識別情報から、検出された対象全てについて検出位置と検出時刻の直前の値と最新の値の差分を取って速度を算出し、経路策定部7に出力する。
【0020】
将来位置予測部6の処理内容の一例を図4のフロー図に示す。
将来位置予測対象を設定(S1)、位置検出部3による航空機や車両の位置情報と、検出対象特定部4からの識別情報、速度算出部5によるそれらの速度情報および移動体特性データ格納部1に格納された移動体走行特性データに基づいて(S2)、経路策定部7によって策定された経路における航空機および車両の時刻ごとの位置を計算し(S3)、区間・交差点ごとの占有時間帯を算出する(S4)。
【0021】
経路策定部7は、滑走路離脱位置から目的スポットまで、あるいは滞在スポットから滑走路進入待機位置まで、または滞在スポットから他のスポットまでの間における航空機の現在位置と目標位置を結ぶ経路を立案構成するとともに、将来位置予測部6による航空機や車両の時刻ごとの予測位置を照合して、経路を選択・構成し、運用効率評価部8による評価結果に応じて経路の選択・構成を修正する。
【0022】
この経路の策定には飛行場の誘導路の形状に応じて様々な方法が取られ得る。例えば、図5に示すような滑走路101とエプロン102の間に比較的単純な形状の経路ネットワーク103がある場合には、すべての経路を網羅して標準とする経路から優先順に記憶しておくことも可能であるが、複雑な経路の場合には経路のネットワークを複数の区域に分割し、各区域内の標準とする経路あるいはその他の経路の組合わせとして経路を構成する。
【0023】
例えば、図6に示すような飛行場を例として説明すると、滑走路101とエプロン102の間にエプロン誘導路を含めて、破線で示す経路ネットワーク103がある。単純にA地点からC地点へ向かう経路を、同じ交差点を2度通らないとして長短合せて全て数えれば1,369本あるので、他のネットワーク入口と出口についての全てを記憶しておくことは困難である。また、全てを評価するのは時間がかかり、リアルタイムに移動に追従することすら困難である。
【0024】
そこで、図6に示すように誘導路の経路ネットワーク103を複数の区域103A,103B,103Cに分割して各区域について順次、経路評価を行い、それらを統合して経路を策定する。
【0025】
図7は経路策定部7の処理の一例を示したフロー図であり、図8は出発機が滑走路に向かう場合の経路策定部7の経路策定処理を説明するための空港の経路形状を示す図、図9は到着機が到着地点に向かう場合の経路策定部7の経路策定処理を説明するための空港の経路形状を示す図である。
【0026】
今、図8および図9に示すように、出発機104が経路ネットワーク103B内の確定経路105Bと経路ネットワーク103C内の確定経路105Cを持ち、滑走路に向かう場合に、到着機106がA地点からC地点に向かう場合の経路策定部7の経路策定処理について説明する。
【0027】
なお、A1,A2,A3は区域103Aの各経路の出口、B1,B2,B3は区域103Bの各経路の出口、a1,a2,a3は区域103A内の経路候補、b1,b2,b3は区域103B内の経路候補、c1,c2,c3は区域103C内の経路候補である。
【0028】
今、経路策定対象を設定し(S1)、対象機の現在位置と目的位置、到着予定時間等の情報を取得し(S2)、到着機の走行の妨害となる出発機の存在する区域103B内の経路105Bでの出発機の走行予定時間帯を求め、同様に区域103C内の経路105Cに関する走行予定時間帯を求める(S3)。次に、到達機が区域103A内での最短通過経路(S4)を通過する時刻、図9の例では出口A1,A2,A3での時刻を求め、区域103Bの経路について出発機と経路が重なるもの、図9の例では経路候補b2について出発機と必要間隔が取れるようになるまでの待ち時間を求める(S5)。さらに、他の区域内の経路、図9の例では区域103C内の経路候補c1について、出発機をやり過ごすための待ち時間、出発機を待たせる場合の待ち時間、あるいは出発機に影響しない走行時間帯を求める(S6)。
【0029】
区域103A、103B、103C内の経路を組合わせ(S7)、上記のとおりにして得られた情報を運用効率評価部8に出力し、運用効率評価部8で待ち時間、方向転換回数、その他の運用効率評価を行い(S8)、その結果により最も適切なものを全体経路とする(S9)。
【0030】
運用効率評価部8では、航空機の発着便数、発着時刻、航空機の走行距離、走行時間等の情報に基づき、飛行場全体の運用効率を評価する。この評価方法は、飛行場ごとにどういった要素を優先するかが異なり、その飛行場ごとに決められるべきものであるが、例えば1日に飛行場を離発着する全飛行機の遅れ時間を合計し評価するなどの方法がある。その処理内容の例を図10に示す。
【0031】
図10は運用効率評価部8の処理フロー図である。
対象となる全ての航空機について(S1)、特性、現在位置情報、策定経路、の情報を得て(S2,S3)、離発着予想時刻の遅れをとって総和を求め(S4,S5)、全対象が終了すると(S6)、経路策定部7に出力する(S7)。
【0032】
経路確定入出力処理部9では、経路策定部7が策定した経路と、対象の識別符号や速度などの情報を管制官に提示して、管制官の指示決定の補助とするとともに、管制官の決定した経路に次の経路策定の条件として入力する。例えば、タッチパネルに飛行場経路地図と航空機や車両の位置、識別符号、速度その他の情報と策定経路を表示し、管制官によって選択された経路をキーボードあるいはタッチスイッチによって入力する。
【0033】
本実施形態によれば、目視確認や交信のための時間が取られて飛行場の効率向上に関して考慮する時間が限られる場合でも、飛行場の効率を勘案した誘導経路案を管制官に提供でき、飛行場の効率的運用を行うことができる。
さらに、航空機や車両の位置が簡単に把握できるので、管制官は注意を安全確保業務に振り向けることができ、安全性も向上する。
【0034】
また、経路策定部に経路ネットワークを分割して各区域の経路の組合わせとして構成することにより、システムが経路策定や評価に要する時間が短縮され、状況の変化に素早く対応でき、緊急事態への対応も短時間で可能となる。
【0035】
図11は本発明の第2実施形態(請求項3対応)の飛行場管制支援システムのブロック構成図であり、図1の第1実施形態と相違する構成は、地上側経路指示制御部10及び地上設置経路表示機器類11と対機上経路通信部12及び機上側経路表示部13を追加した点であり、その他共通する構成には同一符号を付して重複説明は省略する。
【0036】
本実施例は、管制官による経路決定入力に基づき、誘導路上の中心線灯や表示板、並びに停止線灯などを制御し、指示経路を灯火で指示する地上側経路指示制御部10と、地上設置経路表示機器類11を備えており、機上に対して無線によって経路を与える対機上経路指示部12と、機上において指定された経路を表示する機上側指示経路表示部13を備えている。
さらに、経路策定部7は運用効率評価部8の結果に基づき策定経路を自律的に高効率な経路に修正する。
【0037】
本実施例は上記のように構成されているので、管制官の決定経路の入力に応じて、地上側経路指示制御部10による制御で必要な部分の灯火類が点消灯され、管制官が決定した経路が明らかに示される。さらに、対機上経路指示部12によって機上に対して管制官の決定した経路が指示される。また、策定される経路が運用効率が高いものとなる。
【0038】
通常、無線を用いた音声によって経路指示などを行っているが、交信に要する時間が短縮され、管制官のみならずパイロットに対しても目視確認など安全のために要する時間と注意力が確保され、安全性が向上する。
なお、本発明は、その本旨を逸脱しない範囲で適宜変更して実施されるもので、上記実施例の他に、これと同様な装置でも利用できることは勿論である。
【0039】
【発明の効果】
以上説明したように、本発明によれば、目視確認や交信のための時間が取られて飛行場の効率向上に関して考慮する時間が限られた場合でも、飛行場の効率を勘案して誘導経路案を管制官に提供でき、飛行場の効率的運用を行うことができる。
さらに、航空機や車両の位置が簡単に把握できるので、管制官は注意を安全確保業務に振り向けることができ、安全性も向上する。
【図面の簡単な説明】
【図1】本発明の第1実施形態である飛行場管制支援システムのブロック構成図。
【図2】図1の位置検出部の処理を示すフローチャート。
【図3】図1の検出対象特定部の処理を示すフローチャート。
【図4】図1の将来位置予測部の処理を示すフローチャート。
【図5】単純な空港の経路形状の例を示す図。
【図6】複雑な空港の経路形状の例を示す図。
【図7】図1の経路策定部の処理を示すフローチャート。
【図8】図1の経路策定部(出発機が滑走路に向かう場合)の動作を説明するための空港の経路形状を示す図。
【図9】図1の経路策定部(到着機が到着地点に向かう場合)の動作を説明するための空港の経路形状を示す図。
【図10】図1の運用効率評価部の処理を示すフローチャート。
【図11】本発明の第2実施形態である飛行場管制支援システムのブロック構成図。
【符号の説明】
1…移動体特性データ格納部、2…経路形状情報格納部、3…位置検出部、4…検出対象特定部、5…移動体速度算出部、6…将来位置予測部、7…経路策定部、8…運用効率評価部、9…経路確定入出力処理部、10…地上側経路指示制御部、11…地上設置経路表示機器類、12…対機上経路通信部、13…機上側指示経路表示部、101…滑走路、102…エプロン、103…経路ネットワーク、103A,103B,103C…区分された経路ネットワーク、104…出発機、105B,105C…出発機の確定経路、106…到着機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an airfield control support system capable of improving the efficiency and safety of an airfield.
[0002]
[Prior art]
In the current airfield control of the airfield, the controller visually observes the aircraft and the traveling vehicle and performs voice communication with them by radio, thereby issuing instructions such as progress permission, route designation, standby, etc. Is going. Normally, there is one radio frequency, and instructions are given to one device at a time.
Also, when the visibility is poor, such as at night or in fog, lights such as center line lights of the taxiway are turned on to indicate the existence of the taxiway, and the taxiway is identified by a display board or the like.
[0003]
[Problems to be solved by the invention]
As mentioned above, since the control of ground travel at the airport is performed, the controller performs visual confirmation and further communicates with the aircraft and the traveling vehicle, and formulates a route in consideration of safe and smooth traffic. However, there is a limit in carrying out control in anticipation of improvement in operational efficiency of the airfield, such as operating various guidance devices.
[0004]
In particular, there are many aircraft that are subject to control during congestion, and the number of visual confirmations and communication increases.In addition, the need for prompt instructions increases, and the time to consider for efficient operation is limited. The point becomes prominent.
In addition, when visibility is poor such as at night or in fog, it takes time for visual observation, and the operational efficiency of the airport must be lowered.
[0005]
The present invention (corresponding to claim 1) was made to cope with the above-mentioned situation, and its purpose is to formulate an aircraft ground travel route that improves the operational efficiency of an airfield even in times of congestion and low visibility. Is to provide an airfield control support system that supports the ground control operation by presenting to the controller.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the airfield control support system according to the first aspect of the present invention provides a route necessary for control, such as the location and length of the airport runway, taxiway and vehicle travel route, and the spot position for parking. Route shape information storage means for storing shape information, position detection means for detecting the positions of aircraft and vehicles traveling on runways and taxiways of the airport, and position information of aircraft and vehicles obtained by the position detection means A moving body speed calculating means for calculating a speed; a route determining means for determining a route on which the aircraft travels from the runway departure position to the target spot; position information by the position detecting means; and speed information by the moving body speed calculating means. a future position prediction means for predicting the position of each time the aircraft and vehicles in the developed route by the route established means based on, airfield overall operational efficiency And operational efficiency evaluating means for evaluating, and a path determination output processing means for performing route confirmation input as to display information about the target control the development route by said route formulating means, said path developing means has a plurality The waiting time of the aircraft or the vehicle due to the overlap or crossing of a plurality of aircraft or vehicle routes from the position of the aircraft and the vehicle at each time predicted by the future position prediction means for each route candidate And using the waiting time, the optimum route is formulated based on the evaluation result of the operational efficiency of the entire airport determined by the operational efficiency evaluation means .
According to the first aspect of the present invention, since the position of the aircraft or the vehicle can be easily grasped, the controller can direct attention to the safety ensuring operation, and the safety is also improved.
[0007]
According to a second aspect of the present invention, in the airfield control support system according to the first aspect, the route planning means divides the airport taxiway network into a plurality of areas, and the standard route for each area or for each area. One route is configured by combining the obtained routes.
[0008]
According to the invention of claim 2, by dividing the route network into the route formulation unit and configuring it as a combination of routes in each area, the time required for the route formulation and evaluation is shortened, and the situation changes quickly. It is possible to respond to emergency situations in a short time.
[0009]
According to a third aspect of the present invention, in the airfield control support system according to the first aspect, the airfield control support system further comprises ground side path indicating means for providing an instruction path by controlling lights such as a center line of the taxiway and a guidance display board. Features.
[0010]
According to the third aspect of the present invention, in response to the input of the determined route of the controller, the lights of parts necessary for the control by the ground side route instruction control unit are turned on and off, and the route determined by the controller is clearly shown. It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of an airfield control support system according to a first embodiment (corresponding to claims 1 and 2) of the present invention.
[0012]
As shown in FIG. 1, the airfield control support system of the present embodiment includes a moving body characteristic data storage unit 1 that stores characteristics of all aircrafts and vehicles traveling on an airfield runway and a taxiway, and an airfield runway. , Route shape information storage unit 2 for storing route shape information necessary for control, such as the position and length of taxiways and vehicle running paths, spot positions for parking, etc. Position detector 3 for detecting the position of the aircraft and the vehicle, detection target specifying unit 4 for specifying the object detected by the position detector 3, and position information and detection of the aircraft and vehicle obtained by the position detector 3 From the identification information of the target specifying unit 4, the moving body speed calculating unit 5 that calculates the speed of each detection target, the position information of the aircraft or vehicle by the position detecting unit 3, the identification information by the detection target specifying unit 4, Based on the speed information by the degree calculation unit 5 and the traveling characteristics of the moving body stored in the moving body characteristic data storage unit 1, the position of the aircraft and the vehicle for each time in the route formulated by the route formulation unit 7 is determined. The predicted future position prediction unit 6 is connected to the target position and the current position of the aircraft from the runway departure position to the destination spot, or from the stay spot to the runway entry standby position, or from the stay spot to another spot. A route formulation unit 7 that formulates a route, an operation efficiency evaluation unit 8 that evaluates the operational efficiency of the entire airport based on information such as the number of flights to and from the aircraft, arrival and departure times, aircraft travel distance, and travel time, and route formulation unit 7 In addition to displaying the route plan formulated by the company and information on the subject of control, including identification information such as call signs that identify the subject, And a path determination output processing unit 9 for performing route confirmation input by.
[0013]
Next, the operation of each part of this embodiment will be described.
The moving body characteristic data storage unit 1 includes traveling characteristics such as acceleration / deceleration performance, maximum speed, turning radius, aircraft dimensions, jet blast length, etc. of all aircrafts and vehicles traveling on the airport runway and taxiway. Characteristics are stored, and for each target aircraft and vehicle as necessary, a detection target specifying unit 4, a moving body speed calculating unit 5, a future position predicting unit 6, a route formulating unit 7, a route confirmation input / output processing unit 9 The characteristic information is called.
[0014]
The route shape information storage unit 2 stores information on the position and shape of the route necessary for control, such as the position and length of the airport runway, the taxiway and the vehicle driveway, and the spot position for parking. The detection target specifying unit 4, the moving body speed calculating unit 5, the future position predicting unit 6, the route formulating unit 7, the route determination input / output processing unit, as necessary at the time of formulation, at the time of future position prediction, at the time of displaying route information, etc. The information is called to 9.
[0015]
The position detection unit 3 detects the positions of all aircraft and vehicles traveling on the runway and taxiway of the airfield. For this detection, a number of sensors that detect only at one point, such as a passing sensor, may be installed, and a sensor that uses radio waves reflected by radar, sound waves or magnetism, and the like may be used.
[0016]
An example of processing of the position detection unit 3 will be described with reference to the flowchart of FIG.
When a position detection target is set (S1) and there is an input signal from an individual sensor (S2), a detection position is obtained from the detected sensor installation position information and distance information from the sensor, and converted to a position on the path. (S3) In the case of signal input from the radar processing device, the distance / azimuth from the radar is converted to a position on the route (S4), and when obtained as a global coordinate system such as GPS information, (S5) and output to the required locations of the detection target specifying unit 4, the moving body speed calculating unit 5, the future position predicting unit 6, the route formulating unit 7, and the route confirmation input / output processing unit 9 ( S6).
[0017]
Further, even if it is possible to detect the presence with only the position detection unit 3, it is not possible to specify which aircraft or vehicle it is. Accordingly, a wireless automatic response device such as a transponder or a detection target specifying unit 4 that processes an image by copying an aircraft or a vehicle and specifies a target is specified to identify and identify the target.
[0018]
An example of processing of the detection target specifying unit 4 will be described with reference to the flowchart of FIG.
The latest time, position, speed, direction, characteristics, and identification information of all the moving objects are grasped (S1), and a detection target is set (S2). If there is identification information by each transponder or radar system for each aircraft or vehicle (S3), the information is sent to the moving body speed calculation unit 5, the future position prediction unit 6, the route formulation unit 7, and the route determination input / output processing unit 9. Output (S7). If there is no identification information (S3), the immediately preceding information is obtained (S4), the current predicted position obtained from the immediately preceding information is compared with the actual position (S5), and the closest direction and speed are reversed. Those that do not cause any physical contradiction, such as being, are identified as the same target (S6), and output to the moving body speed calculation unit 5, the future position prediction unit 6, the route formulation unit 7, and the route determination input / output processing unit 9 ( S7).
[0019]
The moving body speed calculation unit 5 calculates the value immediately before the detection position and the detection time for all the detected targets from the position information of the aircraft and the vehicle obtained by the position detection unit 3 and the identification information of the target by the detection target specifying unit 4. The speed is calculated by taking the difference between the current value and the latest value, and is output to the route formulation unit 7.
[0020]
An example of the processing content of the future position prediction unit 6 is shown in the flowchart of FIG.
The future position prediction target is set (S1), the position information of the aircraft or vehicle by the position detection unit 3, the identification information from the detection target specifying unit 4, the speed information by the speed calculation unit 5, and the moving body characteristic data storage unit 1 (S2), the position of the aircraft and vehicle in the route formulated by the route formulation unit 7 for each time is calculated (S3), and the occupied time zone for each section / intersection is calculated. Calculate (S4).
[0021]
The route formulation unit 7 plans and constructs a route connecting the current position of the aircraft and the target position from the runway departure position to the target spot, from the stay spot to the runway entry standby position, or from the stay spot to another spot. At the same time, the future position prediction unit 6 collates the predicted positions of the aircraft and the vehicle for each time, selects and configures the route, and corrects the selection and configuration of the route according to the evaluation result by the operational efficiency evaluation unit 8.
[0022]
Various methods can be used to formulate this route depending on the shape of the airport taxiway. For example, when there is a relatively simple route network 103 between the runway 101 and the apron 102 as shown in FIG. 5, all routes are covered and stored in order of priority from the standard route. However, in the case of a complicated route, the route network is divided into a plurality of areas, and the route is configured as a standard route in each area or a combination of other routes.
[0023]
For example, taking an airfield as shown in FIG. 6 as an example, there is a route network 103 indicated by a broken line including an apron taxiway between the runway 101 and the apron 102. It is difficult to memorize all the other network entrances and exits because there are 1,369 routes if you simply count all the routes from point A to point C, assuming that they do not pass the same intersection twice. It is. Moreover, it takes time to evaluate all, and it is difficult to follow the movement in real time.
[0024]
Therefore, as shown in FIG. 6, the route network 103 of the taxiway is divided into a plurality of areas 103A, 103B, and 103C, route evaluation is performed sequentially for each area, and these are integrated to formulate a route.
[0025]
FIG. 7 is a flowchart showing an example of the process of the route formulation unit 7, and FIG. 8 shows the route shape of the airport for explaining the route formulation process of the route formulation unit 7 when the departure aircraft heads the runway. FIG. 9 and FIG. 9 are diagrams showing airport route shapes for explaining route formulation processing of the route formulation unit 7 when the arrival aircraft heads for the arrival point.
[0026]
As shown in FIGS. 8 and 9, when the departure aircraft 104 has a confirmed route 105B in the route network 103B and a confirmed route 105C in the route network 103C and heads for the runway, the arrival device 106 moves from the point A. The route formulation process of the route formulation unit 7 when heading to the point C will be described.
[0027]
A1, A2 and A3 are exits for each route in area 103A, B1, B2 and B3 are exits for each route in area 103B, a1, a2 and a3 are route candidates in area 103A, and b1, b2 and b3 are areas. Route candidates in 103B, c1, c2, and c3 are route candidates in the area 103C.
[0028]
Now, the route formulation target is set (S1), information such as the current position and target position of the target aircraft, the estimated arrival time, etc. is acquired (S2), and within the area 103B where the departure aircraft that interferes with the arrival aircraft is present The scheduled traveling time zone of the departure machine on the route 105B is obtained, and similarly, the scheduled traveling time zone relating to the route 105C in the area 103C is obtained (S3). Next, the time when the arrival aircraft passes through the shortest passage route (S4) in the area 103A, that is, the times at the exits A1, A2, and A3 in the example of FIG. 9 is obtained, and the route of the area 103B overlaps with the departure aircraft. However, in the example of FIG. 9, a waiting time until a necessary interval from the departure machine is obtained for the route candidate b2 is obtained (S5). Furthermore, for the route in another area, in the example of FIG. 9, for the route candidate c1 in the area 103C, the waiting time for passing the departure aircraft, the waiting time for waiting the departure aircraft, or the travel time that does not affect the departure aircraft A band is obtained (S6).
[0029]
The routes in the areas 103A, 103B, and 103C are combined (S7), and the information obtained as described above is output to the operational efficiency evaluation unit 8, where the operational efficiency evaluation unit 8 waits, the number of direction changes, The operational efficiency is evaluated (S8), and the most appropriate one based on the result is set as the entire route (S9).
[0030]
The operational efficiency evaluation unit 8 evaluates the operational efficiency of the entire airport based on information such as the number of flights to and from the aircraft, the departure and arrival times, the travel distance of the aircraft, and the travel time. In this evaluation method, what elements are prioritized differs depending on the airfield, and should be determined for each airfield. For example, the total delay time of all airplanes leaving and landing on the airfield is evaluated and evaluated. There is a way. An example of the processing content is shown in FIG.
[0031]
FIG. 10 is a process flow diagram of the operational efficiency evaluation unit 8.
For all target aircraft (S1), obtain information on characteristics, current location information, formulation route (S2, S3), take the delay of expected departure / arrival time and calculate the sum (S4, S5), all targets Is completed (S6), it outputs to the route formulation unit 7 (S7).
[0032]
The route confirmation input / output processing unit 9 presents the route formulated by the route formulation unit 7 and information such as the target identification code and speed to the controller, assisting the controller in determining instructions, The determined route is input as a condition for formulating the next route. For example, an airfield route map, aircraft and vehicle positions, identification codes, speed, and other information and a formulated route are displayed on the touch panel, and the route selected by the controller is input by a keyboard or a touch switch.
[0033]
According to the present embodiment, it is possible to provide the controller with a guidance route plan that takes into account the efficiency of the airfield, even when the time for visual confirmation and communication is taken and the time to consider for improving the efficiency of the airfield is limited, Can be operated efficiently.
Furthermore, since the position of the aircraft and the vehicle can be easily grasped, the controller can direct attention to the safety ensuring operation, and the safety is also improved.
[0034]
In addition, by dividing the route network into the route planning unit and configuring it as a combination of routes in each area, the system takes less time to formulate and evaluate routes, can respond quickly to changes in the situation, and respond to emergencies Correspondence is also possible in a short time.
[0035]
FIG. 11 is a block diagram of an airfield control support system according to the second embodiment (corresponding to claim 3) of the present invention. The configuration different from the first embodiment of FIG. The installation route display device 11, the on-machine route communication unit 12 and the on-machine route display unit 13 are added. Other common components are denoted by the same reference numerals, and redundant description is omitted.
[0036]
The present embodiment controls a center line lamp, a display board, a stop line lamp, and the like on a taxiway based on a route determination input by a controller, An installation route display device 11 is provided, and an on-machine route instruction unit 12 that gives a route wirelessly to the machine and an upper-side instruction route display unit 13 that displays a route designated on the machine are provided. Yes.
Further, the route formulation unit 7 autonomously corrects the formulation route to a highly efficient route based on the result of the operation efficiency evaluation unit 8.
[0037]
Since the present embodiment is configured as described above, in accordance with the input of the decision path of the controller, the necessary lights are turned on and off by the control by the ground side route instruction control unit 10, and the controller determines The route is clearly shown. Furthermore, the route determined by the controller is instructed to the aircraft by the onboard route instruction unit 12. In addition, the route to be formulated becomes highly efficient.
[0038]
Usually, route instructions etc. are performed by voice using radio, but the time required for communication is shortened, and time and attention required for safety such as visual confirmation are secured not only for the controller but also for the pilot. , Improve safety.
It should be noted that the present invention is implemented with appropriate modifications within a range not departing from the gist thereof, and it is needless to say that the present invention can be used in apparatuses similar to the above-described embodiments.
[0039]
【The invention's effect】
As described above, according to the present invention, even when the time for visual confirmation and communication is taken and the time to consider for improving the efficiency of the airfield is limited, the guidance route plan is taken into consideration with the efficiency of the airfield. It can be provided to the controller and the airfield can be operated efficiently.
Furthermore, since the position of the aircraft and the vehicle can be easily grasped, the controller can direct attention to the safety ensuring operation, and the safety is also improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of an airfield control support system according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing processing of a position detection unit in FIG.
FIG. 3 is a flowchart showing processing of a detection target specifying unit in FIG. 1;
FIG. 4 is a flowchart showing processing of a future position prediction unit in FIG. 1;
FIG. 5 is a diagram showing an example of a simple airport route shape;
FIG. 6 is a diagram showing an example of a complicated airport route shape;
FIG. 7 is a flowchart showing processing of the route formulation unit in FIG. 1;
FIG. 8 is a view showing the route shape of the airport for explaining the operation of the route formulation unit (when the departure machine heads for the runway) of FIG. 1;
9 is a diagram showing the route shape of the airport for explaining the operation of the route formulation unit (when the arrival aircraft heads for the arrival point) in FIG. 1;
10 is a flowchart showing processing of the operational efficiency evaluation unit in FIG. 1;
FIG. 11 is a block configuration diagram of an airfield control support system according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Mobile body characteristic data storage part, 2 ... Path | route shape information storage part, 3 ... Position detection part, 4 ... Detection object specific | specification part, 5 ... Mobile body speed calculation part, 6 ... Future position prediction part, 7 ... Path | route formulation part , 8 ... Operation efficiency evaluation part, 9 ... Route confirmation input / output processing part, 10 ... Ground side route instruction control part, 11 ... Ground installation route display equipment, 12 ... On-machine route communication part, 13 ... Aircraft upper side instruction route Display unit 101 ... Runway 102 ... Apron 103 ... Route network 103A, 103B, 103C ... Divided route network 104 ... Departure machine 105B, 105C ... Determined route of departure machine 106 ... Arriving machine

Claims (3)

飛行場の滑走路、誘導路および車両の走行路の位置、長さ、駐機するスポット位置等、管制に必要な経路形状情報を格納する経路形状情報格納手段と、飛行場の滑走路および誘導路を走行する航空機および車両の位置を検出する位置検出手段と、前記位置検出手段により得られた航空機や車両の位置情報から速度を算出する移動体速度算出手段と、滑走路離脱位置から目的スポットまでの航空機が走行する経路を策定する経路策定手段と、前記位置検出手段による位置情報と前記移動体速度算出手段による速度情報に基づき前記経路策定手段によって策定された経路における航空機および車両の時刻ごとの位置を予測する将来位置予測手段と、飛行場全体の運用効率を評価する運用効率評価手段と、前記経路策定手段によって策定された経路と管制の対象に関する情報を表示すると共に経路確定入力を行う経路確定入出力処理手段とを備え、前記経路策定手段は、複数の経路候補を策定し、各経路候補について前記将来位置予測手段により予測された航空機および車両の時刻ごとの位置から、複数の航空機または車両の経路が重複または交差することによる航空機または車両の待ち時間を求め、前記待ち時間を用いて前記運用効率評価手段で求められた飛行場全体の運用効率の評価結果により最適な経路を策定することを特徴とする飛行場管制支援システム。Route shape information storage means for storing the route shape information necessary for control, such as the location and length of the runway, taxiway and vehicle runway of the airport, the spot position for parking, and the runway and taxiway of the airport Position detecting means for detecting the position of the traveling aircraft and the vehicle, moving body speed calculating means for calculating the speed from the position information of the aircraft and the vehicle obtained by the position detecting means, and from the runway departure position to the target spot Route planning means for formulating a route on which the aircraft travels, and position of the aircraft and vehicle at each time in the route formulated by the route planning means based on the position information by the position detection means and the speed information by the moving body speed calculation means a future position prediction means for predicting, and operational efficiency evaluating means for evaluating the operational efficiency of the entire airfield route was developed by the path established means And a path determination output processing means for performing route confirmation input as to display information about control of the target, said path developing means has formulated a plurality of path candidates are predicted by the future position prediction means for each path candidate The airfield obtained by the operational efficiency evaluation means using the waiting time by obtaining the waiting time of the aircraft or the vehicle by overlapping or intersecting the routes of the plurality of aircraft or vehicles from the position of the aircraft and the vehicle at each time An airfield control support system characterized by formulating an optimal route based on the overall operational efficiency evaluation results . 請求項1記載の飛行場管制支援システムにおいて、前記経路策定手段は、飛行場の誘導路のネットワークを複数の区域に区分して、各区域ごとの標準経路あるいは各区域ごとに求めた経路を組合わせて、一つの経路を構成することを特徴とする飛行場管制支援システム。2. The airfield control support system according to claim 1, wherein the route planning means divides a network of airfield taxiways into a plurality of areas, and combines a standard route for each area or a route obtained for each area. An airfield control support system characterized in that it constitutes a single route. 請求項1記載の飛行場管制支援システムにおいて、誘導路の中心線や誘導表示板等の灯火を制御することによって、指示経路を与える地上側経路指示手段を備えることを特徴とする飛行場管制支援システム。  The airfield control support system according to claim 1, further comprising ground side route instruction means for giving an instruction route by controlling lights such as a center line of a guideway and a guidance display board.
JP2000395202A 2000-12-26 2000-12-26 Airfield control support system Expired - Lifetime JP3667633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395202A JP3667633B2 (en) 2000-12-26 2000-12-26 Airfield control support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000395202A JP3667633B2 (en) 2000-12-26 2000-12-26 Airfield control support system

Publications (2)

Publication Number Publication Date
JP2002197600A JP2002197600A (en) 2002-07-12
JP3667633B2 true JP3667633B2 (en) 2005-07-06

Family

ID=18860701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395202A Expired - Lifetime JP3667633B2 (en) 2000-12-26 2000-12-26 Airfield control support system

Country Status (1)

Country Link
JP (1) JP3667633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361771A (en) * 2014-10-27 2015-02-18 广州市中南民航空管通信网络科技有限公司 Safety control method and safety control system for runways

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597911B2 (en) 2006-06-02 2010-12-15 太陽誘電株式会社 Optical recording / reproducing method and apparatus, signal processing circuit, optical recording / reproducing program, and information recording medium
US7479919B2 (en) * 2007-02-07 2009-01-20 Honeywell International Inc. Surface vehicle transponder
JP5201018B2 (en) * 2009-03-10 2013-06-05 株式会社日立製作所 Airport air traffic control system
JP5398342B2 (en) * 2009-05-12 2014-01-29 三菱電機株式会社 MOBILE BODY MONITORING DEVICE, COMPUTER PROGRAM, AND MOBILE BODY MONITORING METHOD
JP5609032B2 (en) * 2009-07-15 2014-10-22 三菱電機株式会社 Multi-lateration device and airport surface monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361771A (en) * 2014-10-27 2015-02-18 广州市中南民航空管通信网络科技有限公司 Safety control method and safety control system for runways

Also Published As

Publication number Publication date
JP2002197600A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
EP3118581B1 (en) Vehicle operation device and method
US6606563B2 (en) Incursion alerting system
US7117089B2 (en) Ground runway awareness and advisory system
US6144915A (en) Aerodrome control support system
US9482541B2 (en) Navigation system
CN109727461B (en) Signal control system for emergency vehicle
KR101301169B1 (en) Navigation system used in transportation for airport or harbor
EP1311871B1 (en) Method and apparatus for determination of position
JP7115282B2 (en) Traffic management device, traffic management system, traffic management method, and traffic management computer program
US6571167B2 (en) Airport takeoff window
JP3165030B2 (en) Airport surface traffic monitoring system
JP3667633B2 (en) Airfield control support system
JP2001250200A (en) Airport surface guidance system
JP4673138B2 (en) Airport control system
JP4402859B2 (en) Ground travel guidance support device
JP2006301933A (en) Traveling guidance support system and method
JP4542825B2 (en) Airport surface guidance support system and airport surface guidance support method
JP4145558B2 (en) Airport control support system
JP2003085700A (en) Guidance and traffic control supporting system for airplane
JP4000070B2 (en) Airport light control system and airport light control method
KR101695533B1 (en) System and method for controlling of airport surface traffic
JP4181072B2 (en) Travel guidance support system in airport and travel guidance support method in airport
JP2008059162A (en) Airport guidance light control system
JP4651989B2 (en) Controller decision making support system and method
JP2003030800A (en) Method and device for guiding ground travel of aircraft

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9