JP3661452B2 - Vehicle battery prevention device - Google Patents

Vehicle battery prevention device Download PDF

Info

Publication number
JP3661452B2
JP3661452B2 JP32501798A JP32501798A JP3661452B2 JP 3661452 B2 JP3661452 B2 JP 3661452B2 JP 32501798 A JP32501798 A JP 32501798A JP 32501798 A JP32501798 A JP 32501798A JP 3661452 B2 JP3661452 B2 JP 3661452B2
Authority
JP
Japan
Prior art keywords
cut
vehicle
power supply
battery
travel distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32501798A
Other languages
Japanese (ja)
Other versions
JP2000142275A (en
Inventor
英充 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP32501798A priority Critical patent/JP3661452B2/en
Publication of JP2000142275A publication Critical patent/JP2000142275A/en
Application granted granted Critical
Publication of JP3661452B2 publication Critical patent/JP3661452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両のバッテリ上がり防止装置に関し、特に、車両のバッテリ電源から車両用電子制御装置へ電力供給するよう構成された車両に用いて好適な車両のバッテリ上がり防止装置に関する。
【0002】
【従来の技術】
車両に搭載されるバッテリはエンジン駆動時に充電され、車載される各種照明灯や各種インテリア機器及びエンジン補機で消費される。このようなバッテリは長期間放置されると自然放電する上に、特に、各種のインテリアランプ等が消し忘れされたまま放置されると、バッテリ上がりが生じてしまう。従来、このようなインテリアランプ等の消し忘れによるバッテリ上がりを防止できるバッテリ上がり防止装置が知られている。
【0003】
この種のバッテリ上がり防止装置は、車両が新車物流或いは新車保管時、即ち納車前と見做される積算走行距離、例えば24Km程度の状態にある時の電源のカット待ち時間と、それ以上の積算走行距離の納車後での電源のカット待ち時間とをそれぞれ予め設定しておき、その上で、車両のイグニッションキースイッチをオフする毎に、現走行距離において予め設定されている各カット待ち時間の経過を待ち、経過した場合にインテリアランプの電源回路を遮断し、バッテリ上がりを防止している。この場合、納車前の積算走行距離域にある時には3分程度の短いカット待ち時間で、納車後の積算走行距離域にある時には20分程度、即ち、通常使用時に問題を生じ無いカット待ち時間でインテリアランプの電源回路を遮断し、インテリアランプ消し忘れによるバッテリ上がりを防止している。
【0004】
【発明が解決しようとする課題】
上述のようなバッテリ上がり防止装置は、車両の積算走行距離より推測される使用状態に適したカット待ち時間で無駄なくインテリアランプの電源回路を遮断し、バッテリ上がりを防止できるが、このバッテリ上がりはインテリアランプの消し忘れ以外のその他の要因によっても発生している。
例えば、車両にはエンジン制御、各種走行状態制御、インテリア機器の制御等、に多種の車両用電子制御装置を用いている。なお、特開平10−80070号公報には車両停止時における車両用電子制御装置の消費電力低減を図れる電子制御装置が開示される。
【0005】
これらより明らかなように、車両用電子制御装置のバックアップメモリはイグニッションキーのオフ時にも待機状態を保持すべく低電流を消費している。このようなバックアップメモリに供給される低電流もこれが長期に亘って流れ続けるとバッテリ上がりを生じさせ、問題と成っている。
本発明の目的は、バックアップメモリと車室内ランプの2系統の電源回路の内の少なくともバックアップメモリの電源回路を走行距離に応じた設定時点で遮断しバッテリ上がりを的確に防止できる車両のバッテリ上がり防止装置を提供することにあり、更に、車室内ランプの消し忘れによるバッテリ上がりを防止することができる車両のバッテリ上がり防止装置を提供することにある。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明では、
走行距離算出手段により車両の積算走行距離を算出し、イグニッションキースイッチオンオフ状態検出手段により車両のイグニッションキースイッチのオンオフ状態を検出し、第1電源カット手段が車両のバッテリから車両用電子制御装置のバックアップメモリヘの電源回路をカットできるように配設し、第2電源カット手段が前記バッテリから車室内ランプヘの電源回路をカットできるように配設し、制御手段により前記積算走行距離が所定値以下の場合にはイグニッションキースイッチオフ後の設定カット待ち時間の経過後に前記第1電源カット手段と第2電源カット手段の内の少なくとも一つを駆動させる制御手段とを備え、更に、前記制御手段は、複数の積算走行距離域と同各積算走行距離域毎のカット待ち時間とを予め設定しておき、前記イグニッションキースイッチのオフ後の経過時間が現積算走行距離での設定カット待ち時間を経過した時に前記第1電源カット手段及びまたは第2電源カット手段を駆動させるようにしている。
ここでは、積算走行距離が所定値以下の場合に、イグニッションキースイッチオフ後の設定カット待ち時間の経過後に少なくとも第1電源カット手段を駆動している。このため、積算走行距離が所定値以下の走行距離域で、例えば、納車前であってバックアップメモリのデータ保持を必要としない走行距離域では、バックアップメモリへの無駄な電力供給を無くしてバッテリ上がりを防止でき、所定値以上の走行距離域では、車室内ランプヘの無駄な電力供給を無くしてバッテリ上がりをより確実に防止することができる。
更に、走行距離域とそれに応じた設定カット待ち時間を求め、現走行距離での設定カット待ち時間の経過後に前記第1電源カット手段及びまたは第2電源カット手段を駆動しているため、走行距離域を多数域に区分し、各走行距離域毎に異なる電力カット条件を設定すると共に各走行距離域毎にバックアップメモリヘの電力供給カットと車室内ランプヘの電力供給カット処理とを選択的に設定でき、各走行距離域に適した電力供給カットを行い、バッテリ上がりをより確実に防止することができる。
前記制御手段は積算連続走行距離を算出しておき、納車後の可能性のある走行距離域で積算連続走行距離が所定値を上回る場合には納車後と判断することが良い。この場合、特に電力供給カット制御の信頼性が向上する。
【0008】
請求項の発明は、請求項1記載の車両のバッテリ上がり防止装置において、特に、運転席ドアの開閉を検知する運転席ドア開閉検出手段と、前記バッテリから車室内ランプへの電源回路内に配設された電流検知手段とを備え、前記制御手段は、前記運転席ドア開閉検出手段からの信号及びまたは前記電流検知手段からの信号の入力時であって前記イグニッションキースイッチオフ後の経過時間が設定経過時間を過ぎると前記第2電源カット手段を駆動するようにしている。
この場合、運転席ドア開閉操作時及びまたは車室内ランプへの電力供給時であってイグニッションキースイッチのオフ後に設定カット待ち時間を過ぎると、車室内ランプヘの電力供給をカットして、バッテリ上がりを防止することができ、本処理を走行距離域に応じてのバックアップメモリや車室内ランプヘの無駄な電力供給を無くす処理と選択的に組み合わすことにより、バッテリ上がりをより確実に防止することができる。
【0009】
【発明の実施の形態】
図1、図2には本発明の適用された車両のバッテリ上がり防止装置を示した。この車両のバッテリ上がり防止装置1は、走行距離域を多数域、ここでは0〜30マイル、30〜90マイル、90マイル以上の3走行距離域に区分し、各走行距離域毎に異なる電力カット条件を設定すると共に各走行距離域毎にバックアップメモリ10ヘの電力供給カットと車室内ランプ6ヘの電力供給カットとを選択的に設定する。
【0010】
ここでの車両のバッテリ上がり防止装置1は、図1に示すような電気回路Cを有する。この電気回路Cは、バッテリ4と、これにヒューズボックス9を介し接続された出力端子11と、出力端子11に接続されるコントロールユニット12と、出力端子11と車両用電子制御装置ECUのバックアップメモリ(ROM)10を接続する第1電源回路5と、第1電源回路5に配設されると共に後述の第1電源カット手段A3を成すキープリレー〔1〕13と、出力端子11と車室内ランプ6を接続する第2電源回路7と、第2電源回路7に配設されると共に後述の第2電源カット手段A4を成すキープリレー〔2〕14と、コントロールユニット12に車速パルス信号vを出力する車速パルス信号発生器2と、コントロールユニット12にオンオフ信号(ACC位置信号)IGを出力するイグニッションキースイッチ(以後単にIGスイッチと記す)3と、コントロールユニット12に切り換え信号dsを出力する運転席ドアスイッチ8とを備える。
【0011】
車両用電子制御装置ECUは車両のエンジン制御機能、各種走行状態の制御機能を備え、バッテリ4とバックアップメモリ(ROM)10を接続する第1電源回路5中にキープリレー〔1〕13が配設される。なお、キープリレー〔1〕13の出力端子131側は図示しないが分岐しており、図示しないその他の車両制御手段を成す複数個の車両用電子制御装置に接続されている。図1において、キープリレー〔2〕14の出力端子141は一対の車室内ランプ6,6と接続されている。なお、キープリレー〔2〕14の出力端子141側は図示しないが分岐しており、図示しないその他の複数の車室内ランプにも分岐して接続されるように構成されている。
【0012】
コントロールユニット12は周知のマイクロコンピュータ(以後単にマイコンと記す)15と、第2電源回路7の電流値信号iを検知してマイクロコンピュータ15に出力する電流検知回路16と、第1キープリレー切り換え回路17と、第2キープリレー切り換え回路18とを備える。第1キープリレー切り換え回路17はマイコン15の駆動信号に応じてキープリレー〔1〕13のソレノイド132を励磁させ常閉接点133を開放に切り換え、第1電源回路5を遮断する。第2キープリレー切り換え回路18はマイコン15の駆動信号に応じてキープリレー〔2〕14のソレノイド142を励磁させ常閉接点143を開放に切り換え、第2電源回路7を遮断する。
ここで、車両のバッテリ上がり防止装置1は、図2に示すように、走行距離算出手段A1と、IGスイッチオンオフ状態検出手段A2と、第1電源カット手段A3、第2電源カット手段A4と、運転席ドア開閉検出手段A5と、電流検知手段A6と、制御手段A7としての各機能を備え、特に、制御手段A7としての機能をマイコン15が行うように構成される。
【0013】
走行距離算出手段A1は図示しない車両の積算走行距離Nを算出するもので、車速パルス信号発生器2よりの車速パルス信号vをマイコン15でカウントして積算走行距離Nを算出する。
IGスイッチオンオフ状態検出手段A2はIGスイッチ3から成り、OFF位置よりACC位置に達した際にオン信号IGをマイコン15に出力する。
第1電源カット手段A3はキープリレー〔1〕13から成り、電源であるバッテリ4から車両用電子制御装置ECUのバックアップメモリ10ヘの第1電源回路5を適時に遮断(カット)し、或いは導通する。
【0014】
第2電源カット手段A4はキープリレー〔2〕14から成り、バッテリ4から車室内ランプ6ヘの第2電源回路7を適時に遮断(カット)し、或いは導通する。
運転席ドア開閉検出手段A5は運転席ドアスイッチ8から成り、図示しない運転席ドアの開閉を検出し、切り換え信号dsをマイコン15に出力する。
電流検知手段A6は電流検知回路16により要部が構成され、バッテリ4と車室内ランプ6とを接続する第2電源回路7内に配設され、第2電源回路7の電流値信号iを検知してマイコン15に出力する。
【0015】
制御手段A7としての機能はマイコン15で行われる。この制御手段A7は、走行距離算出手段A1からの積算走行距離Nが所定値以下の場合において、IGスイッチ3のオフ後の設定カット待ち時間Tnの経過後に第1電源カット手段A3と第2電源カット手段A4の内の少なくとも第1電源カット手段A3を駆動させる。特にここでは、積算走行距離域を多数域(後述の0〜30マイル、30〜90マイル、90マイル以上の3走行距離域)に区分し、積算走行距離N毎に予め各カット待ち時間Tn(後述の3分、36時間)を設定しておき、IGスイッチ3のオフ後の経過時間tが現積算走行距離Nに応じた設定カット待ち時間Tnを経過した時に第1電源カット手段A3と第2電源カット手段A4を共に駆動させるよう機能する。更に、この制御手段A7は、運転席ドア開閉検出手段A5からの切り換え信号ds及びまたは電流検知手段A6からの電流値信号iの入力時であってIGスイッチ3のオフ後の経過時間tが設定カット待ち時間Tnを過ぎると第2電源カット手段A4を駆動させて車室内ランプ6への電源回路7をカットするようにも機能する。
【0016】
このような制御手段A7としてのマイコン15は図3、図4、図5に示す電源切り換え制御処理ルーチンに沿ってキープリレー〔1〕13とキープリレー〔2〕14を切り換え制御する。
ここでのメインルーチンはIGスイッチ3のオン時に実行される。ここではデータ取り込み処理a1に進み、ここで、各運転状態のデータを取り込み、後述の納車後フラグFLG1をオフ(=0)に初期設定し、その後、IGON積算時間算出処理a2に進む。ここではIGスイッチオン開始毎にIGON積算時間の算出処理を行い、最新値をストアする。次いで、積算走行距離算出処理a3を実行し、ここでは車速パルス信号発生器2よりの車速パルス信号vの入力時において車速パルス信号vをカウントして積算走行距離Nを算出し、最新値をストアする。次いで、連続走行距離算出処理a4を実行し、ここでは車速パルス信号vの入力時において、車速パルス信号vのレベルが設定値以上にある間の連続走行距離を算出し、最新値をストアする。一方、IGスイッチ3のオフ時に所定の時間割込みにより、図4の納車前切り換えルーチン、図5の納車後切り換えルーチンをこの順で実行する。
【0017】
図4の納車前切り換えルーチンに達すると、ステップs1では納車後判定用の納車後フラグFLG1がオンか否か判断し、納車後ではリターンし、納車前ではステップs2に進む。ここでは、IGスイッチがオンではこの処理を終了し、オフではステップs3に進む。ステップs3では最新のIGON積算時間を取り込み、この値が10時間以上か否か判断し、以上では納車後であると見做しステップs4でキープリレー〔1〕13及びキープリレー〔2〕14を非励磁に切り換え、即ち、両キープリレーの第1電源回路5、第2電源回路7を連続導通(ON)に保持し、納車後フラグFIG1をオンし、リターンする。
【0018】
一方、IGON積算時間が10時間を下回っているとステップs5に進み、ここでは、最新の積算走行距離Nを取り込み、この値が30マイル以下か否か判断し、30マイルを上回っているとステップs6にそうでないとステップs7に進む。ステップs6では最新の積算走行距離Nが90マイル以下か否か判断し、90マイルを上回っていると、納車後であると見做しステップs4に進み、90マイル以下ではステップs8に進む。ここでは、30マイル以上90マイル以下にあり、更に、現時点での最新の連続走行距離を取り込み、これが35マイル以上か否か判断し、35マイル以上では納車後であると見做しステップs4に進み、35マイルを下回るとステップs9に進む。ここでは35マイルを下回り納車前と見做すが、但し、納車後の可能性を考慮し、IGスイッチオフ後連続36時間が経過するのを待ち、この時点に達するようでは納車前の在庫車と判断し、キープリレー〔1〕13及びキープリレー〔2〕14を励磁(オン)に切り換え、即ち、両キープリレーの第1電源回路5及び第2電源回路7を連続遮断(オフ)に保持し、納車後フラグFIG1をオフ(=0)し、メインルーチンにリターンする。この場合、納車前と見做し、この時点ではECUのバックアップメモリ10へのデータ記憶の必要性もなくバックアップメモリ10及び車室内ランプ14への電力供給を確実にカットしバッテリ上がりを防止できる。しかも、IGスイッチオフ後連続36時間が経過する前に再度IGスイッチ3がオンすると、この処理をキャンセルしメインルーチンにリターンする。
【0019】
次に、ステップs5で最新の積算走行距離Nが30マイル以下と判断してステップs7に達すると、ここでは、最新の連続走行距離を取り込み、この値が10マイル以上か否か判断し、10マイル以上ではステップs9に進み、ここで納車後の可能性を考慮し、IGスイッチオフ後連続36時間が経過するのを待ち、この時点に達するようでは納車前と判断し、両キープリレーの両電源回路5,7を連続遮断(オフ)に保持し、メインルーチンにリターンする。一方、ステップs7で、10マイルを下回るとしてステップs10に進むと、ここでは、納車前と判断し、IGスイッチオフ後3分が経過するのを待ち、キープリレー〔1〕13及びキープリレー〔2〕14を励磁(オン)に切り換え保持し、即ち、両キープリレーの両電源回路5,7を連続遮断(オフ)に保持し、納車後フラグFIG1をオフ(=0)し、メインルーチンにリターンする。この納車前の時点ではECUのバックアップメモリ10へのデータ記憶の必要性もなくバックアップメモリ10及び車室内ランプ14への電力供給を早期に確実にカットしバッテリ上がりを防止する。
【0020】
次に、図5の納車後切り換えルーチンに達すると、ステップb1では納車後判定用の納車後フラグFLG1がオンか否か判断し、納車前ではリターンし、納車後ではステップb2に進む。ここでは、IGスイッチがオフか否か判断し、IGスイッチがオンではこの処理を終了し、オフではステップb3に進む。ステップb3では電流検知回路16よりの第2電源回路7の電流値信号iを検知して、通電中ではステップb4に非通電ではステップb5に進む。ステップb5では非通電で車室内ランプ6は消灯(オフ)しており、正常状態と見做し、キープリレー〔2〕14を非励磁に切り換えられ、第2電源回路7を連続導通(ON)に保持し、本電源カットシステムをキャンセルし、リターンする。なお、キープリレー〔1〕13は納車後フラグFLG1=1であるので、当然、非励磁(オン)に切り換え保持されている。
【0021】
一方、ステップb3で、第2電源回路7の電流値信号iを検知して、通電中としてステップb4に達すると、ここでは、運転席ドアスイッチ8の切り換え信号dsがオン→オフに切り換え変化完了か否か判断し、切り換え変化が完了してないと、ステップb6に、完了しているとステップb7に進む。ステップb6で切り換え変化が完了前では、ドア閉処理が遅れているか、半ドアで放置と見做し、30分のカット待ち時間をカウントし、この待ち時間径時に達してもドア閉処理が成されていないと、運転席ドアスイッチ8故障等と見做しキープリレー〔2〕14を励磁(オフ)に保持し、第2電源回路7を連続遮断(オフ)に保持し、メインルーチンにリターンする。この場合、通電中の車室内ランプ6を消灯し、車室内ランプ6への電力供給を早期に確実にカットしバッテリ上がりを防止する。なお、納車であり、この時点ではECUのバックアップメモリ10が使用中であるので、バックアップメモリ10の第1電源回路5の遮断処理は当然なされない。
【0022】
ステップb4より、運転席ドアスイッチ8の切り換え信号dsがオン→オフに切り換え変化したと判断しステップb7に進むと、ここでは、3分のカット待ち時間の後キープリレー〔2〕14を励磁(オフ)に切り換え、第2電源回路7を連続遮断(オフ)に保持し、メインルーチンにリターンする。この場合、乗員が降車済にもかかわらず電流値信号iを検知していることより、車室内ランプ6の消し忘れと見做し、電力供給を早期にカットしバッテリ上がりを防止する。なお、納車済であり、この時点ではECUのバックアップメモリ10が使用中であるので、バックアップメモリ10の第1電源回路5の遮断処理はなされない。
【0023】
このように、車両のバッテリ上がり防止装置1は納車前の車両における複数の車両用電子制御装置ECUのバックアップメモリ10が電力消費することを防止し、更に、車室内ランプ6,6の消し忘れによる電力消費を防止してバッテリ4の無駄な電力消費を抑え、車両のバッテリ上がりによる始動不良等を確実に防止できる。
上述の処において、積算走行距離域を0〜30マイル、30〜90マイル、90マイル以上の3つに区分して各積算走行距離域に適したカット待ち時間を設定していたが、その他の積算走行距離域の区分けを行っても良い。その場合も図1の車両のバッテリ上がり防止装置1と同様の作用効果を得られる。
【0024】
更に、図1の車両のバッテリ上がり防止装置1では0〜30マイルと30〜90マイルの両積算走行距離域で積算連続走行距離を設定値と比較し(ステップs7、s9)、これにより納車済の場合か否かの判定の信頼性を向上させていたが、場合により、この積算連続走行距離の設定値との比較処理を排除し、電力供給カット制御の簡素化を図っても良い。
【0025】
【発明の効果】
以上のように、請求項1の発明は、積算走行距離が所定値以下の場合に、イグニッションキースイッチオフ後の設定カット待ち時間の経過後に少なくとも第1電源カット手段を駆動して、バックアップメモリヘの電力供給をカットするので、積算走行距離が所定値以下の走行距離域で、バックアップメモリへの無駄な電力供給を無くしてバッテリ上がりを防止でき、所定値以上の走行距離域では、車室内ランプヘの無駄な電力供給を無くしてバッテリ上がりをより確実に防止することができる。特に、複数の積算走行距離域と同各積算走行距離域毎のカット待ち時間とを予め設定しておき、現走行距離域とそれに応じた設定カット待ち時間を求め、現走行距離での設定カット待ち時間の経過後に前記第1電源カット手段及びまたは第2電源カット手段を駆動しているので、走行距離域を多数域に区分し、各走行距離域毎に異なる電力カット条件を設定すると共に各走行距離域毎にバックアップメモリヘの電力供給カットと車室内ランプヘの電力供給カット処理とを選択的に設定でき、各走行距離域に適した電力供給カットを行い、バッテリ上がりをより確実に防止することができる。
【0027】
請求項の発明は、特に、運転席ドア開閉検出手段からの信号及びまたは電流検知手段からの信号の入力時であってイグニッションキースイッチのオフ後の経過時間が設定経過時間を過ぎると前記第2電源カット手段を駆動するようにしているので、この場合、運転席ドア開閉操作時及びまたは車室内ランプへの電力供給時であってイグニッションキースイッチのオフ後に設定カット待ち時間を過ぎると、車室内ランプヘの電力供給をカットして、バッテリ上がりを防止することができ、本処理を走行距離域に応じてのバックアップメモリや車室内ランプヘの無駄な電力供給を無くす処理と選択的に組み合わすことにより、バッテリ上がりをより確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の車両のバッテリ上がり防止装置の電気回路図である。
【図2】図1の車両のバッテリ上がり防止装置の機能ブロック図である。
【図3】図1の車両のバッテリ上がり防止装置が用いる電源切り換え制御処理のメインルーチンのフローチャートである。
【図4】図1の車両のバッテリ上がり防止装置が用いる電源切り換え制御処理の納車前切り換えルーチンのフローチャートである。
【図5】図1の車両のバッテリ上がり防止装置が用いる電源切り換え制御処理の納車後切り換えルーチンのフローチャートである。
【符号の説明】
3 IGスイッチ
4 バッテリ
5 第1電源回路
6 車室内ランプ
7 第2電源回路
10 バックアップメモリ
A1 走行距離算出手段
A2 IGスイッチオンオフ状態検出手段
A3 第1電源カット手段
A4 第2電源カット手段
A5 運転席ドア開閉検出手段
A6 電流検知手段
A7 制御手段
N 積算走行距離
Tn カット待ち時間
N 積算走行距離
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle battery prevention device, and more particularly to a vehicle battery prevention device suitable for use in a vehicle configured to supply electric power from a vehicle battery power source to a vehicle electronic control device.
[0002]
[Prior art]
A battery mounted on the vehicle is charged when the engine is driven, and is consumed by various on-vehicle lighting lamps, various interior devices, and engine auxiliary equipment. Such a battery discharges spontaneously when left for a long period of time, and particularly when various interior lamps are left forgotten to be turned off, the battery runs out. 2. Description of the Related Art Conventionally, there has been known a battery rise prevention device that can prevent battery rise due to forgetting to turn off such an interior lamp.
[0003]
This kind of battery run-off prevention device is used when the vehicle is in new car distribution or new car storage, that is, when the vehicle is considered to be pre-delivery, for example, the cumulative travel distance, for example, about 24 km, and the power cut waiting time The power cut waiting time after delivery of the mileage is set in advance, and each time the ignition key switch of the vehicle is turned off, each cut waiting time set in advance at the current mileage is set. Waiting for the progress, when it passes, the power circuit of the interior lamp is shut off to prevent the battery from running out. In this case, a short cut waiting time of about 3 minutes when in the accumulated mileage range before delivery, and about 20 minutes when in the accumulated mileage range after delivery, that is, a cut waiting time that does not cause a problem during normal use. The power circuit of the interior lamp is cut off, preventing the battery from running out due to forgetting to turn off the interior lamp.
[0004]
[Problems to be solved by the invention]
The above-mentioned battery rise prevention device can cut off the power supply circuit of the interior lamp without waste with a cut waiting time suitable for the use state estimated from the accumulated travel distance of the vehicle, and can prevent the battery rise. It is caused by other factors besides forgetting to turn off the interior lamp.
For example, a variety of vehicle electronic control devices are used for vehicles such as engine control, various running state controls, and interior equipment control. Japanese Patent Application Laid-Open No. 10-80070 discloses an electronic control device capable of reducing power consumption of the vehicle electronic control device when the vehicle is stopped.
[0005]
As is apparent from these, the backup memory of the vehicle electronic control device consumes a low current to maintain the standby state even when the ignition key is turned off. Such a low current supplied to the backup memory also causes a problem if the battery continues to flow for a long time, causing a problem.
SUMMARY OF THE INVENTION An object of the present invention is to prevent a battery from running out of a vehicle, which can prevent battery running-out accurately by shutting off at least a backup memory power circuit out of two power circuits, ie, a backup memory and a vehicle interior lamp, at a set time according to the travel distance. Another object of the present invention is to provide an apparatus for preventing the battery from running out and to prevent the battery from running out due to forgetting to turn off the vehicle interior lamp.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1
The travel distance calculation means calculates the cumulative travel distance of the vehicle, the ignition key switch on / off state detection means detects the on / off state of the ignition key switch of the vehicle, and the first power cut means detects the vehicle electronic control device from the vehicle battery. The power supply circuit to the backup memory is arranged so as to be cut, and the second power cut means is arranged to cut the power supply circuit from the battery to the vehicle interior lamp, and the integrated traveling distance is less than a predetermined value by the control means. in the case of a control means for driving at least one of said first power supply cut means and the second power supply cutting means after a set cut waiting time after the ignition key switch off, further, the control means The cut waiting time for each cumulative travel distance area and the same cumulative travel distance area are set in advance. , The elapsed time after off of the ignition key switch is so as to drive the first power supply cutting means and or the second power supply cutting means when the lapse of the setting cut waiting time at the current accumulated mileage.
Here, when the cumulative travel distance is less than or equal to a predetermined value, at least the first power cut means is driven after the set cut waiting time after the ignition key switch is turned off. For this reason, in a mileage range where the accumulated mileage is less than or equal to a predetermined value, for example, in a mileage range that does not require data storage in the backup memory before the vehicle is delivered, there is no wasteful power supply to the backup memory and the battery runs out. In a travel distance range of a predetermined value or more, wasteful power supply to the vehicle interior lamp can be eliminated, and the battery can be prevented more reliably.
Further, since the travel distance area and the set cut waiting time corresponding thereto are obtained and the first power cut means and / or the second power cut means are driven after the set cut wait time at the current travel distance has elapsed, the travel distance Dividing the area into multiple areas, setting different power cut conditions for each mileage area, and selectively setting power supply cut to backup memory and power supply cut process to vehicle interior lamp for each mileage area It is possible to cut the power supply suitable for each mileage range, and more reliably prevent the battery from running out.
The control means may calculate an integrated continuous travel distance, and determine that the vehicle has been delivered when the integrated continuous travel distance exceeds a predetermined value in a travel distance area that may have been delivered. In this case, particularly the reliability of power supply cut control is improved.
[0008]
According to a second aspect of the present invention, there is provided a battery rising prevention device according to the first aspect of the invention, in particular, in a driver's seat door open / close detecting means for detecting opening / closing of the driver's seat door, and a power supply circuit from the battery to the vehicle interior lamp Current control means arranged, and the control means is an elapsed time after the ignition key switch is turned off at the time of inputting a signal from the driver door opening / closing detection means and / or a signal from the current detection means When the set elapsed time has passed, the second power cut means is driven.
In this case, if the set cut waiting time has passed after the ignition key switch is turned off during the opening / closing operation of the driver's door and / or the power supply to the vehicle interior lamp, the power supply to the vehicle interior lamp is cut off and the battery power is increased. By selectively combining this process with a process that eliminates wasteful power supply to the backup memory and the vehicle interior lamp according to the travel distance, it is possible to more reliably prevent the battery from running out. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 show a battery rising prevention device for a vehicle to which the present invention is applied. This vehicle battery prevention device 1 divides a mileage range into a number of mileage ranges, in this case, three mileage ranges of 0 to 30 miles, 30 to 90 miles, and 90 miles or more. The condition is set and the power supply cut to the backup memory 10 and the power supply cut to the vehicle interior lamp 6 are selectively set for each mileage range.
[0010]
The vehicle battery rising prevention device 1 here has an electric circuit C as shown in FIG. The electric circuit C includes a battery 4, an output terminal 11 connected to the battery 4 via a fuse box 9, a control unit 12 connected to the output terminal 11, and a backup memory of the output terminal 11 and the vehicle electronic control unit ECU. (ROM) 10 is connected to a first power supply circuit 5; a keep relay [1] 13 which is disposed in the first power supply circuit 5 and forms first power cut means A3 which will be described later; an output terminal 11; 6 is connected to the second power supply circuit 7, the keep power relay [2] 14 which is disposed in the second power supply circuit 7 and forms the second power cut means A 4 described later, and the vehicle speed pulse signal v is output to the control unit 12. A vehicle speed pulse signal generator 2 that performs an on / off signal (ACC position signal) IG to the control unit 12 (hereinafter simply referred to as “I”). Referred to as switch) includes a 3, and a driver's seat door switch 8 for outputting a signal ds switching to the control unit 12.
[0011]
The vehicle electronic control unit ECU has a vehicle engine control function and various running state control functions, and a keep relay [1] 13 is provided in a first power supply circuit 5 that connects a battery 4 and a backup memory (ROM) 10. Is done. Note that the output terminal 131 side of the keep relay [1] 13 is branched although not shown, and is connected to a plurality of vehicle electronic control devices constituting other vehicle control means (not shown). In FIG. 1, the output terminal 141 of the keep relay [2] 14 is connected to a pair of vehicle interior lamps 6 and 6. The output terminal 141 side of the keep relay [2] 14 is branched although not shown, and is configured to be branched and connected to a plurality of other interior lamps not shown.
[0012]
The control unit 12 includes a known microcomputer (hereinafter simply referred to as a microcomputer) 15, a current detection circuit 16 that detects the current value signal i of the second power supply circuit 7 and outputs it to the microcomputer 15, and a first keep relay switching circuit. 17 and a second keep relay switching circuit 18. The first keep relay switching circuit 17 excites the solenoid 132 of the keep relay [1] 13 in accordance with the drive signal of the microcomputer 15 to switch the normally closed contact 133 to open, and shuts off the first power supply circuit 5. The second keep relay switching circuit 18 excites the solenoid 142 of the keep relay [2] 14 according to the drive signal of the microcomputer 15 to switch the normally closed contact 143 to open, and shuts off the second power supply circuit 7.
Here, as shown in FIG. 2, the vehicle battery prevention device 1 includes a travel distance calculation unit A1, an IG switch on / off state detection unit A2, a first power cut unit A3, a second power cut unit A4, The driver door opening / closing detection means A5, the current detection means A6, and the control means A7 are provided. In particular, the microcomputer 15 is configured to perform the function as the control means A7.
[0013]
The travel distance calculation means A1 calculates an integrated travel distance N of a vehicle (not shown). The microcomputer 15 counts the vehicle speed pulse signal v from the vehicle speed pulse signal generator 2 to calculate the integrated travel distance N.
The IG switch on / off state detection means A2 comprises an IG switch 3, and outputs an on signal IG to the microcomputer 15 when the ACC position is reached from the OFF position.
The first power cut means A3 comprises a keep relay [1] 13, which cuts off or cuts off the first power supply circuit 5 from the battery 4 as a power source to the backup memory 10 of the vehicle electronic control unit ECU in time. To do.
[0014]
The second power cut means A4 comprises a keep relay [2] 14, and shuts off (cuts) or conducts the second power supply circuit 7 from the battery 4 to the vehicle interior lamp 6 in a timely manner.
The driver's seat door open / close detection means A5 is composed of a driver's seat door switch 8, detects the opening / closing of a driver's seat door (not shown), and outputs a switching signal ds to the microcomputer 15.
The current detection means A6 is constituted by a current detection circuit 16 and is disposed in a second power supply circuit 7 that connects the battery 4 and the vehicle interior lamp 6, and detects a current value signal i of the second power supply circuit 7. And output to the microcomputer 15.
[0015]
The function as the control means A7 is performed by the microcomputer 15. When the integrated travel distance N from the travel distance calculation means A1 is equal to or less than a predetermined value, the control means A7 is connected to the first power cut means A3 and the second power supply after the set cut waiting time Tn after the IG switch 3 is turned off. At least the first power cut means A3 of the cut means A4 is driven. In particular, here, the accumulated travel distance area is divided into a large number of areas (three travel distance areas of 0 to 30 miles, 30 to 90 miles, 90 miles or more, which will be described later), and each cut waiting time Tn ( (3 minutes, 36 hours to be described later) is set, and when the elapsed time t after the IG switch 3 is turned off has passed the set cut waiting time Tn corresponding to the current accumulated travel distance N, It functions to drive the two power cut means A4 together. Further, the control means A7 sets the elapsed time t after the IG switch 3 is turned off when the switching signal ds from the driver door opening / closing detection means A5 and / or the current value signal i from the current detection means A6 are input. When the cut waiting time Tn is passed, the second power cut means A4 is driven to function to cut the power supply circuit 7 to the vehicle interior lamp 6.
[0016]
The microcomputer 15 as the control means A7 switches and controls the keep relay [1] 13 and the keep relay [2] 14 in accordance with the power source switching control processing routine shown in FIGS.
The main routine here is executed when the IG switch 3 is turned on. Here, the process proceeds to a data capture process a1, where the data of each driving state is captured, a post-delivery flag FLG1 described later is initially set to OFF (= 0), and then the process proceeds to an IGON integrated time calculation process a2. Here, every time the IG switch is turned on, an IGON integration time is calculated, and the latest value is stored. Next, an integrated travel distance calculation process a3 is executed. Here, when the vehicle speed pulse signal v is input from the vehicle speed pulse signal generator 2, the vehicle speed pulse signal v is counted to calculate the integrated travel distance N, and the latest value is stored. To do. Next, the continuous travel distance calculation process a4 is executed. Here, when the vehicle speed pulse signal v is input, the continuous travel distance is calculated while the level of the vehicle speed pulse signal v is equal to or higher than the set value, and the latest value is stored. On the other hand, the pre-delivery switching routine of FIG. 4 and the post-delivery switching routine of FIG. 5 are executed in this order by interruption for a predetermined time when the IG switch 3 is turned off.
[0017]
When the pre-delivery switching routine of FIG. 4 is reached, in step s1, it is determined whether or not a post-delivery flag FLG1 for post-delivery determination is on. After delivery, the process returns, and before delivery, the process proceeds to step s2. Here, when the IG switch is on, the process is terminated, and when the IG switch is off, the process proceeds to step s3. In step s3, the latest IGON accumulated time is fetched, and it is determined whether or not this value is 10 hours or more. In the above, it is assumed that the vehicle has been delivered. In step s4, keep relay [1] 13 and keep relay [2] 14 are turned on. Switching to non-excitation, that is, the first power supply circuit 5 and the second power supply circuit 7 of both keep relays are kept in continuous conduction (ON), the post-delivery flag FIG1 is turned on, and the process returns.
[0018]
On the other hand, if the IGON accumulated time is less than 10 hours, the process proceeds to step s5, where the latest accumulated mileage N is fetched and it is determined whether or not this value is 30 miles or less. Otherwise, go to step s7. In step s6, it is determined whether or not the latest accumulated travel distance N is 90 miles or less. If it exceeds 90 miles, it is determined that the vehicle has been delivered, and the process proceeds to step s4. If it is 90 miles or less, the process proceeds to step s8. Here, the distance is from 30 miles to 90 miles, and the latest continuous mileage at the present time is taken in. It is determined whether or not this is 35 miles or more. Proceed and if less than 35 miles, proceed to step s9. Here, it is assumed that it is less than 35 miles and before delivery. However, considering the possibility after delivery, it waits for 36 hours after the IG switch is turned off. The keep relay [1] 13 and the keep relay [2] 14 are switched to excitation (on), that is, the first power supply circuit 5 and the second power supply circuit 7 of both keep relays are continuously cut off (off). Then, after delivery, the flag FIG1 is turned off (= 0), and the process returns to the main routine. In this case, it is considered that the vehicle has not been delivered. At this time, there is no need to store data in the backup memory 10 of the ECU, and the power supply to the backup memory 10 and the vehicle interior lamp 14 can be reliably cut to prevent the battery from running out. In addition, if the IG switch 3 is turned on again after 36 hours have elapsed since the IG switch was turned off, this process is canceled and the process returns to the main routine.
[0019]
Next, when it is determined in step s5 that the latest accumulated travel distance N is 30 miles or less and reaches step s7, here, the latest continuous travel distance is taken in, and it is determined whether this value is 10 miles or more. If it is more than mile, the process proceeds to step s9, considering the possibility after delivery, waiting for 36 consecutive hours after the IG switch is turned off. The power supply circuits 5 and 7 are held continuously off (off), and the process returns to the main routine. On the other hand, in step s7, if it goes below 10 miles and proceeds to step s10, it is determined that the vehicle has not been delivered, waits for 3 minutes after the IG switch is turned off, and keep relay [1] 13 and keep relay [2 ] 14 is switched to excitation (on), that is, both power supply circuits 5 and 7 of both keep relays are held continuously cut off (off), the post-delivery flag FIG1 is turned off (= 0), and the process returns to the main routine. To do. Before the vehicle is delivered, there is no need to store data in the backup memory 10 of the ECU, and the power supply to the backup memory 10 and the vehicle interior lamp 14 is surely cut early to prevent the battery from running out.
[0020]
Next, when the post-delivery switching routine of FIG. 5 is reached, in step b1, it is determined whether or not a post-delivery flag FLG1 for post-delivery determination is on, the process returns before delivery, and the process proceeds to step b2 after delivery. Here, it is determined whether or not the IG switch is off. If the IG switch is on, the process ends. If the IG switch is off, the process proceeds to step b3. In step b3, the current value signal i of the second power supply circuit 7 is detected from the current detection circuit 16, and the process proceeds to step b4 during energization and proceeds to step b5 when deenergization. In step b5, the vehicle interior lamp 6 is not energized and is turned off (off). Assuming that the vehicle interior lamp 6 is in a normal state, the keep relay [2] 14 is switched to non-excitation, and the second power supply circuit 7 is continuously turned on (ON). To cancel this power cut system and return. Note that the keep relay [1] 13 has the post-delivery flag FLG1 = 1, so that it is naturally kept switched to non-excitation (ON).
[0021]
On the other hand, when the current value signal i of the second power supply circuit 7 is detected in step b3 and step b4 is reached as being energized, here, the switching signal ds of the driver's seat door switch 8 is switched from on to off and the change is completed. If the switching change is not completed, the process proceeds to step b6. If completed, the process proceeds to step b7. Before the change of switching is completed in step b6, it is assumed that the door closing process is delayed or left halfway, and the cut waiting time is counted for 30 minutes. Otherwise, it is assumed that the driver's door switch 8 has failed, etc., the keep relay [2] 14 is held in the excited (off) state, the second power supply circuit 7 is held in the continuous cutoff (off) state, and the process returns to the main routine. To do. In this case, the vehicle interior lamp 6 that is energized is turned off, and the power supply to the vehicle interior lamp 6 is surely cut early to prevent the battery from running out. Since the vehicle is delivered and the backup memory 10 of the ECU is in use at this time, the shut-off process of the first power supply circuit 5 of the backup memory 10 is not naturally performed.
[0022]
From step b4, it is determined that the switching signal ds of the driver's seat door switch 8 has been switched from on to off, and when the process proceeds to step b7, the keep relay [2] 14 is energized after a cut waiting time of 3 minutes. The second power supply circuit 7 is kept in a continuous interruption (off) state, and the process returns to the main routine. In this case, since the occupant has detected the current value signal i even after getting off, it is considered that the passenger has forgotten to turn off the vehicle interior lamp 6, and the power supply is cut early to prevent the battery from running out. In addition, since the vehicle has been delivered and the backup memory 10 of the ECU is in use at this time, the shut-off process of the first power supply circuit 5 of the backup memory 10 is not performed.
[0023]
As described above, the vehicle battery rising prevention device 1 prevents the backup memory 10 of the plurality of vehicle electronic control units ECU in the vehicle before delivery from consuming electric power, and further, forgets to turn off the vehicle interior lamps 6 and 6. It is possible to prevent power consumption, suppress unnecessary power consumption of the battery 4, and reliably prevent a starting failure due to battery exhaustion of the vehicle.
In the above-mentioned process, the accumulated mileage area was divided into three areas of 0 to 30 miles, 30 to 90 miles, and 90 miles or more, and a cut waiting time suitable for each accumulated mileage area was set. The total travel distance area may be classified. In this case, the same effect as that of the vehicle battery prevention device 1 of FIG. 1 can be obtained.
[0024]
Further, in the vehicle battery prevention device 1 of FIG. 1, the integrated continuous travel distance is compared with the set value in both the integrated travel distance ranges of 0 to 30 miles and 30 to 90 miles (steps s7 and s9), and the vehicle has been delivered. However, in some cases, the comparison with the set value of the integrated continuous travel distance may be eliminated to simplify the power supply cut control.
[0025]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the cumulative travel distance is equal to or less than the predetermined value, at least the first power cut means is driven after the set cut waiting time after the ignition key switch is turned off, to the backup memory. Therefore, in the travel distance area where the integrated travel distance is less than the predetermined value, the wasteful power supply to the backup memory can be eliminated to prevent the battery from running out. Therefore, it is possible to more reliably prevent the battery from running out. In particular, multiple accumulated travel distance areas and cut waiting times for each accumulated travel distance area are set in advance, the current travel distance area and the set cut wait time corresponding thereto are obtained, and the set cut at the current travel distance is performed. Since the first power cut means and / or the second power cut means are driven after the waiting time has elapsed, the travel distance area is divided into a large number of areas, and different power cut conditions are set for each travel distance area. The power supply cut to the backup memory and the power supply cut processing to the vehicle interior lamp can be selectively set for each mileage area, and the power supply cut suitable for each mileage area is performed to prevent battery exhaustion more reliably. be able to.
[0027]
The invention of claim 2 is particularly suitable when the signal from the driver's door opening / closing detection means and / or the signal from the current detection means is input and the elapsed time after the ignition key switch is turned off exceeds the set elapsed time. In this case, if the set cut waiting time is exceeded after the ignition key switch is turned off when the driver's door is opened or closed and / or when power is supplied to the vehicle interior lamp, The power supply to the interior lamp can be cut to prevent the battery from running out, and this process can be selectively combined with a process that eliminates wasteful power supply to the backup memory and the interior lamp according to the distance traveled. As a result, it is possible to more reliably prevent the battery from running out.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram of a vehicle battery preventing apparatus according to the present invention.
FIG. 2 is a functional block diagram of the battery rising prevention device for the vehicle in FIG. 1;
FIG. 3 is a flowchart of a main routine of a power supply switching control process used by the vehicle battery prevention device of FIG.
FIG. 4 is a flowchart of a pre-delivery switching routine of a power switching control process used by the vehicle battery prevention device of FIG. 1;
FIG. 5 is a flowchart of a post-delivery switching routine of a power source switching control process used by the vehicle battery prevention device of FIG. 1;
[Explanation of symbols]
3 IG switch 4 battery 5 first power supply circuit 6 vehicle interior lamp 7 second power supply circuit 10 backup memory A1 travel distance calculation means A2 IG switch on / off state detection means A3 first power cut means A4 second power cut means A5 driver's seat door Open / close detection means A6 Current detection means A7 Control means N Accumulated travel distance Tn Cut waiting time N Accumulated travel distance

Claims (2)

車両の積算走行距離を算出する走行距離算出手段と、車両のイグニッションキースイッチのオンオフ状態を検出するイグニッションキースイッチオンオフ状態検出手段と、車両のバッテリから車両用電子制御装置のバックアップメモリヘの電源回路をカットする第1電源カット手段、前記バッテリから車室内ランプヘの電源回路をカットする第2電源カット手段と、前記積算走行距離が所定値以下の場合にはイグニッションキースイッチオフ後の設定カット待ち時間の経過後に前記第1電源カット手段と第2電源カット手段の内の少なくとも一つを駆動させる制御手段とを備え、
前記制御手段は、複数の積算走行距離域と同各積算走行距離域毎のカット待ち時間とを予め設定しておき、前記イグニッションキースイッチのオフ後の経過時間が現積算走行距離での設定カット待ち時間を経過した時に前記第1電源カット手段及びまたは第2電源カット手段を駆動させることを特徴とする車両のバッテリ上がり防止装置。
Travel distance calculation means for calculating the cumulative travel distance of the vehicle, ignition key switch on / off state detection means for detecting the on / off state of the ignition key switch of the vehicle, and a power supply circuit from the vehicle battery to the backup memory of the vehicle electronic control device A first power cut means for cutting the power supply, a second power cut means for cutting the power supply circuit from the battery to the vehicle interior lamp, and a set cut waiting time after the ignition key switch is turned off when the integrated travel distance is less than a predetermined value Control means for driving at least one of the first power cut means and the second power cut means after elapse of
The control means presets a plurality of integrated travel distance areas and a cut waiting time for each of the integrated travel distance areas, and the elapsed time after the ignition key switch is turned off is a set cut at the current integrated travel distance. vehicles of dead battery preventing device, characterized in that to drive the first power supply cutting means and or the second power supply cutting means when the lapse of the waiting time.
運転席ドアの開閉を検知する運転席ドア開閉検出手段と、前記バッテリから車室内ランプへの電源回路内に配設された電流検知手段とを備え、前記制御手段は、前記運転席ドア開閉検出手段からの信号及びまたは前記電流検知手段からの信号の入力時であって前記イグニッションキースイッチオフ後の経過時間が設定カット待ち時間を過ぎると前記第2電源カット手段を駆動させることを特徴とする請求項1記載の車両のバッテリ上がり防止装置。  A driver door opening / closing detecting means for detecting opening / closing of the driver's seat door; and a current detecting means arranged in a power circuit from the battery to the vehicle interior lamp, wherein the control means detects the driver's seat door opening / closing. When the signal from the means and / or the signal from the current detection means is input, and the elapsed time after the ignition key switch is turned off exceeds a set cut waiting time, the second power cut means is driven. The battery rising prevention device for a vehicle according to claim 1.
JP32501798A 1998-11-16 1998-11-16 Vehicle battery prevention device Expired - Fee Related JP3661452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32501798A JP3661452B2 (en) 1998-11-16 1998-11-16 Vehicle battery prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32501798A JP3661452B2 (en) 1998-11-16 1998-11-16 Vehicle battery prevention device

Publications (2)

Publication Number Publication Date
JP2000142275A JP2000142275A (en) 2000-05-23
JP3661452B2 true JP3661452B2 (en) 2005-06-15

Family

ID=18172217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32501798A Expired - Fee Related JP3661452B2 (en) 1998-11-16 1998-11-16 Vehicle battery prevention device

Country Status (1)

Country Link
JP (1) JP3661452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169847A (en) * 2010-02-22 2011-09-01 Clarion Co Ltd Navigation device and map data update system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007347A (en) * 2001-06-20 2003-01-10 Yazaki Corp Run-out battery preventing system
JP4776109B2 (en) * 2001-07-06 2011-09-21 矢崎総業株式会社 Battery rise prevention device
JP4693291B2 (en) * 2001-07-06 2011-06-01 矢崎総業株式会社 Battery rise prevention device
JP4693290B2 (en) * 2001-07-06 2011-06-01 矢崎総業株式会社 Battery rise prevention device
JP2003040050A (en) * 2001-07-27 2003-02-13 Yazaki Corp Control device for vehicle power source
JP4813161B2 (en) * 2005-11-28 2011-11-09 株式会社オートネットワーク技術研究所 Power management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169847A (en) * 2010-02-22 2011-09-01 Clarion Co Ltd Navigation device and map data update system

Also Published As

Publication number Publication date
JP2000142275A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
US7689335B2 (en) Highly reliable vehicle system start controller
JP3549806B2 (en) Automotive power supply controller
KR101428262B1 (en) Power control system for vehicle battery
JP4114666B2 (en) Automatic stop control device for hybrid vehicle
US7683503B2 (en) Dead battery preventing device for preventing engine start failure of vehicle having economy running function and dead battery prevention method
WO2015015743A1 (en) Vehicular power source system
JP3685326B2 (en) Power supply system for vehicles
JP2004328988A (en) Power supply system for vehicle
JP2007076460A (en) Electric power-off compensating system of vehicle
JP4643074B2 (en) Vehicle power supply control device
JP4416802B2 (en) Power management device
JP3661452B2 (en) Vehicle battery prevention device
JP2003226209A (en) Vehicular power supply system
US7482704B2 (en) Automatic generator starting protection
JP2003019933A (en) Battery exhaustion preventive device
JP2003226208A (en) Vehicular power supply system
CN115603438A (en) Vehicle power supply system
JPH10224904A (en) Hybrid car
JPH115500A (en) Vehicular power supply control device equipped with battery exhaustion preventive function
JP2003019934A (en) Battery exhaustion preventive device
JP4490167B2 (en) Drive control device for electric vehicle
JP2005264860A (en) Electric power unit for vehicle
JPS6341241Y2 (en)
JP4106205B2 (en) Vehicle power supply device
JP2007176210A (en) Controlling device for vehicle power source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees