JP3660938B2 - Component analysis method using laser - Google Patents

Component analysis method using laser Download PDF

Info

Publication number
JP3660938B2
JP3660938B2 JP2000175665A JP2000175665A JP3660938B2 JP 3660938 B2 JP3660938 B2 JP 3660938B2 JP 2000175665 A JP2000175665 A JP 2000175665A JP 2000175665 A JP2000175665 A JP 2000175665A JP 3660938 B2 JP3660938 B2 JP 3660938B2
Authority
JP
Japan
Prior art keywords
measurement
component
emission
chemical species
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000175665A
Other languages
Japanese (ja)
Other versions
JP2001349832A (en
Inventor
祥啓 出口
孝三 吉川
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2000175665A priority Critical patent/JP3660938B2/en
Publication of JP2001349832A publication Critical patent/JP2001349832A/en
Application granted granted Critical
Publication of JP3660938B2 publication Critical patent/JP3660938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス中に含まれる極微量成分の濃度を計測するためのレーザを用いた成分分析方法に関する。
【0002】
【従来の技術】
従来の成分分析方法は、図7に示すように、測定場10に存在する物質をサンプラー2により採取し、これを濃縮してサンプル試料とし、試料を成分分析器3に輸送して分析し、その分析結果に基づき各成分濃度(組成値)を算出する。しかし、従来の成分分析方法では、測定場から試料を採取してから分析結果が得られるまでに数時間から数十時間を要する。また、成分分析工程を自動化する場合に、サンプル試料の輸送装置などが必要となり、装置コストが上昇するという短所がある。
【0003】
近時、サンプルの濃縮が不要で、かつ測定場からのサンプル試料の輸送も不要となる極微量成分の分析方法としてレーザ誘起ブレークダウン法(Laser Introduced Breakdown Spectroscopy;以下、LIBSという)が注目されている。LIBS法は、測定場に存在する物質にレーザを照射し、プラズマ化した成分原子から発せられる光を分光分析する。
【0004】
図10は従来のLIBS法における発光信号強度の経時変化を示す特性線図である。測定対象物に対して計測時間Mの間にレーザを照射すると、先ず成分Aが発光し、次いで成分Bが発光する。このとき成分Aの発光信号は成分Aに固有の上位準位エネルギに応じて遅れ時間Dにピーク強度を有する。一方、成分Bの発光信号は成分Bに固有の上位準位エネルギに応じて更に遅い遅れ時間Dにピーク強度を有する。なお、各信号特性線の下側の漸近線はノイズ光信号を示しており、このノイズ光信号は時間の経過とともに減衰してゆく。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のLIBS法においては、測定場の温度(レーザ強度やガス温度)および組成(微粉粒子の存在の有無など)が変化すると、その影響を受けて発光強度が種々に変わるので、数ppbオーダーの極微量成分を高感度に計測することができない。また、プラズマ状態が変化した場合に、発光信号強度が変動するので、従来の分析方法では計測値の安定性に問題がある。
【0006】
本発明は上記の課題を解決するためになされたものであって、ガス中に含まれる成分の濃度を高感度かつ安定に計測することができるレーザを用いた成分分析方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、先に特開平10−038806号公報においてLIBS法を利用する成分分析装置を開示した。この装置は、図6に示すように、測定場10の固体粒子に発振器11から光学系12,13を介してレーザを導いて照射し、プラズマ化した固体粒子からの発光を光学系14,15を介して分光器16に導き、分光器16のそれぞれの回折格子により分光されたそれぞれのスペクトル光を高速ゲートを備えたCCDカメラ17により撮影し、撮影した映像に基づいてコンピュータ18が固体粒子の成分を求めるものである。本発明者は、このような先のLIBS法を利用した装置を土台として、これを更に改良・改善するべく長期間にわたり鋭意研究努力した結果、本発明を完成させるに至った。
【0008】
本発明に係るレーザを用いた成分分析方法は、レーザ光を測定対象物に照射し、測定対象物に含まれる成分をプラズマ化させ、各成分元素からの発光ラインに関し、発光に起因する上位準位エネルギに対応した遅れ時間および計測時間をそれぞれ設定し、設定した遅れ時間および計測時間と測定対象物に含まれる複数の成分原子の比とを用いて、測定対象物中の各成分の濃度をそれぞれ計測するレーザを用いた成分分析方法において、
測定対象物に含まれる化学種Aの発光に起因する上位準位エネルギをXa、測定対象物に含まれる化学種Bの発光に起因する上位準位エネルギをXb、但しXa>Xbの関係にあり、レーザ照射から化学種Aの発光を検出するまでの遅れ時間Da、化学種Aの発光を計測する計測時間Ma、レーザ照射から化学種Bの発光を検出するまでの遅れ時間Db、化学種Bの発光を計測する計測時間Mbとした場合に、
Db/Da=k・(Xa/Xb)が成り立つ関係において、係数kが1〜5の範囲となるように前記遅れ時間Da,Dbをそれぞれ個別に設定し、かつ、Ma>DaおよびMb>Dbの範囲となるように計測時間Ma,Mbをそれぞれ個別に設定することを特徴とする。
【0009】
ここで、「測定対象物に含まれる複数の成分原子の比」とは、プラズマ化した成分原子の発光に起因する上位準位エネルギに応じた発光信号の積分値を各成分原子ごとにそれぞれ計測し演算し、得られた積分値につき複数の成分原子間に関して求めた比率をいう。
【0011】
この場合に、上記化学種Aを測定対象物中の主要成分とし、上記化学種Bを測定対象物中の計測目的成分とした場合に、主要成分Aの発光信号積分値Ia(ノイズ信号を除去した信号積分値)に対する計測目的成分Bの発光信号積分値Ib(ノイズ信号を除去した信号積分値)の比率Ib/Iaを計測することが更に好ましい。
【0012】
【作用】
本発明の測定原理について説明する。
【0013】
図8は、横軸に時間をとり、縦軸に発光信号強度をとって、レーザ照射による測定対象物からの発光信号強度の経時変化を示す特性線図である。本発明では遅れ時間1から遅れ時間2までの間に計測目的成分に対応する検出器のゲートシャッタを開けるので、発光信号強度のピークを中心とする計測目的成分に固有の発光信号の積分値を得ることができる。すなわち、計測目的成分の発光信号は、フィルタでノイズ光を除去すると、各遅れ時間1,2,3では図9の(a),(b),(c)にそれぞれ示す波形となる。図9の(b)に示す遅れ時間2における信号波形は、計測目的成分に固有の上位準位エネルギに応じて出現するピークである。この時間2に現れるピークを含む時間1から時間3までの間を計測時間Mとし、この計測時間Mにおけるノイズ信号を除去した信号強度を時間積分する。この積分値はレーザ発振強度のばらつきや測定場の温度変化により種々変動するので、これのみでは計測目的成分の濃度を特定することはできない。しかし、本発明では単一の計測目的成分を検出するのではなく、図2及び図4に示すように複数の成分の発光信号をそれぞれ検出し、基準となる発光信号積分値に対する計測目的成分の発光信号積分値の比率を求めるので、レーザ発振強度のばらつきや測定場の温度変化に影響を受けることなく、高感度かつ安定に計測目的成分の濃度が得られる。
【0014】
【発明の実施の形態】
以下、添付の図面を参照しながら本発明の種々の好ましい実施の形態について説明する。
【0015】
図1および図2に示すように、測定対象物に含まれる化学種Aの発光に起因する上位準位エネルギをXa、測定対象物に含まれる化学種Bの発光に起因する上位準位エネルギをXb、但しXa>Xbの関係にあり、レーザ照射から化学種Aの発光を検出するまでの遅れ時間Da、化学種Aの発光を計測する計測時間Ma、レーザ照射から化学種Bの発光を検出するまでの遅れ時間Db、化学種Bの発光を計測する計測時間Mbとした場合に、Db/Da=k・(Xa/Xb)が成り立つ関係において、係数kが1〜5の範囲となるように前記遅れ時間Da,Dbをそれぞれ個別に設定し、かつ、Ma>DaおよびMb>Dbの範囲となるように計測時間Ma,Mbをそれぞれ個別に設定する。
【0016】
この場合に、上記化学種Aを測定対象物中の主要成分とし、上記化学種Bを測定対象物中の計測目的成分とした場合に、主要成分Aの発光信号積分値Ia(ノイズ信号を除去した信号積分値)に対する計測目的成分Bの発光信号積分値Ib(ノイズ信号を除去した信号積分値)の比率Ib/Iaを計測することができる。例えば、主要成分Aには排ガス中に多量に含まれ実質的に濃度変化を生じない窒素(N)を選択することができる。
【0017】
次に、図6に示した成分分析装置を用いて本発明による成分分析結果の一例について説明する。
【0018】
図3の(a)に示すように、主要成分としての化学種Aに窒素(N)を選択し、計測目的成分としての化学種Bにナトリウム(Na)を選択した場合に、本発明方法により計測した結果は強い再現性があることが実証された。また、図3の(b)に示すように、主要成分としての化学種Aに窒素(N)を選択し、計測目的成分としての化学種Bにカリウム(K)を選択した場合に、本発明方法により計測した結果は強い再現性があることが実証された。
【0019】
表1にナトリウム(Na),カリウム(K),窒素(N)の各成分の発光波長(nm)、発光時の上位準位エネルギ(cm-1)、遅れ時間(μs)、計測時間(μs)をそれぞれ示す。このうち化学種Aとして基準となる窒素(N)は濃度変化がほとんど無いので、これを基準として上記B/A比率を用いて化学種Bとしてのナトリウム(Na)およびカリウム(K)の濃度を演算によりそれぞれ求める。その結果、Naは、発光波長が589.0nm、発光時の上位準位エネルギXbが16973cm-1遅れ時間Dbが100μs、計測時間Mbが300μsであった。また、Kは、発光波長が766.5nm、発光時の上位準位エネルギXbが13043cm-1遅れ時間Dbが120μs、計測時間Mbが400μsであった。ちなみに、Nの遅れ時間Daは4μs、計測時間Maは20μsである。
【0020】
図4に示すように、3つの成分A,B,Cにつき測定することもできる。
【0021】
【表1】

Figure 0003660938
【0022】
【発明の効果】
本発明によれば、ガス中に含まれる成分の濃度を高感度かつ安定に計測することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るレーザ光を用いた成分分析方法を用いて測定対象物の成分を分析したときの信号特性線図。
【図2】本発明の実施形態に係るレーザ光を用いた成分分析方法を用いて測定対象物の成分を分析したときの信号特性線図。
【図3】(a)はNa信号/N信号比率とNa濃度との相関を示す特性線図、(b)はK信号/N信号比率とK濃度との相関を示す特性線図。
【図4】本発明の装置を用いて測定対象物の成分を分析したときの信号特性線図。
【図5】ノイズ除去した信号強度を示す信号特性線図。
【図6】LIBS法を利用する成分分析装置を模式的に示す構成ブロック図。
【図7】従来の分析方法の概要を示す模式図。
【図8】LIBS法の測定原理を説明するための信号特性線図。
【図9】(a)はLIBS法において遅れ時間1で計測したときの信号強度を示す信号特性線図、(b)は遅れ時間2で計測したときの信号強度を示す信号特性線図、(c)は遅れ時間3で計測したときの信号強度を示す信号特性線図、。
【図10】LIBS法の測定原理を説明するための信号特性線図。
【符号の説明】
10…測定場、
11…レーザ発振器、
12…レンズ、
13…計測窓、
14…ミラー、
15…レンズ、
16…分光器、
17…CCDカメラ、
18…コンピュータ、
19…同期ライン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component analysis method using a laser for measuring the concentration of a trace component contained in a gas.
[0002]
[Prior art]
In the conventional component analysis method, as shown in FIG. 7, a substance present in the measurement field 10 is collected by the sampler 2, concentrated to obtain a sample sample, and the sample is transported to the component analyzer 3 for analysis. Based on the analysis result, the concentration of each component (composition value) is calculated. However, in the conventional component analysis method, it takes several hours to several tens of hours from taking a sample from a measurement field to obtaining an analysis result. Further, when automating the component analysis process, a sample specimen transport device or the like is required, and there is a disadvantage that the device cost increases.
[0003]
Recently, laser-induced breakdown spectroscopy (hereinafter referred to as LIBS) has attracted attention as a method for analyzing trace components that does not require sample concentration and does not require transport of sample samples from the measurement site. Yes. In the LIBS method, a substance existing in a measurement field is irradiated with a laser, and light emitted from component atoms converted into plasma is spectrally analyzed.
[0004]
FIG. 10 is a characteristic diagram showing the change over time of the emission signal intensity in the conventional LIBS method. When the measurement object is irradiated with the laser during the measurement time M, the component A first emits light, and then the component B emits light. At this time, the light emission signal of the component A has a peak intensity at the delay time D according to the upper level energy specific to the component A. On the other hand, the emission signal of component B has a peak intensity at a later delay time D according to the upper level energy inherent to component B. Note that the asymptotic line below each signal characteristic line indicates a noise light signal, and this noise light signal attenuates as time passes.
[0005]
[Problems to be solved by the invention]
However, in the conventional LIBS method, when the temperature of the measurement field (laser intensity or gas temperature) and the composition (such as the presence or absence of fine particles) change, the emission intensity changes variously due to the influence, and therefore, several ppb It is not possible to measure the trace components of the order with high sensitivity. In addition, since the emission signal intensity fluctuates when the plasma state changes, the conventional analysis method has a problem in the stability of the measurement value.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a component analysis method using a laser capable of measuring the concentration of a component contained in a gas with high sensitivity and stability. And
[0007]
[Means for Solving the Problems]
The present inventors have previously disclosed a component analyzer utilizing the LIBS method in Japanese Patent Application Laid-Open No. 10-038806. In this apparatus, as shown in FIG. 6, the solid particles in the measurement field 10 are irradiated from the oscillator 11 through the optical systems 12 and 13 by directing a laser, and light emitted from the solid particles converted into plasma is emitted from the optical systems 14 and 15. Each of the spectral lights separated by the respective diffraction gratings of the spectroscope 16 is photographed by a CCD camera 17 having a high-speed gate, and the computer 18 detects solid particles based on the photographed image. The component is obtained. The present inventor has completed the present invention as a result of diligent research efforts over a long period of time in order to further improve and improve the above apparatus using the LIBS method.
[0008]
Component analysis method using the laser according to the present invention, a laser beam is irradiated to the measurement object, a component contained in the measurement object is plasma, relates to a light emitting line from the component elements, upper energy due to emission The delay time and measurement time corresponding to the potential energy are set, and the concentration of each component in the measurement object is determined using the set delay time and measurement time and the ratio of the plurality of component atoms contained in the measurement object. In the component analysis method using the laser to measure each ,
The upper level energy resulting from the emission of the chemical species A contained in the measurement object is Xa, the upper level energy resulting from the emission of the chemical species B contained in the measurement object is Xb, where Xa> Xb. , Delay time Da from laser irradiation to detection of emission of chemical species A, measurement time Ma for measuring emission of chemical species A, delay time Db from detection of laser emission to detection of emission of chemical species B, chemical species B When the measurement time Mb for measuring the light emission of
In the relationship where Db / Da = k · (Xa / Xb) holds, the delay times Da and Db are individually set so that the coefficient k is in the range of 1 to 5, and Ma> Da and Mb> Db The measurement times Ma and Mb are individually set so as to be in the range of .
[0009]
Here, “ratio of multiple component atoms contained in the object to be measured” means that the integral value of the emission signal corresponding to the upper level energy resulting from the emission of the component atomized into plasma is measured for each component atom. This is the ratio obtained by calculating and calculating the integration value between a plurality of component atoms.
[0011]
In this case, when the chemical species A is the main component in the measurement object and the chemical species B is the measurement target component in the measurement object, the emission signal integrated value Ia (removes the noise signal) of the main component A It is more preferable to measure the ratio Ib / Ia of the emission signal integrated value Ib (signal integrated value from which the noise signal has been removed) of the measurement target component B to the measured signal integrated value).
[0012]
[Action]
The measurement principle of the present invention will be described.
[0013]
FIG. 8 is a characteristic diagram showing the change over time of the emission signal intensity from the measurement object due to laser irradiation, with time on the horizontal axis and emission signal intensity on the vertical axis. In the present invention, since the gate shutter of the detector corresponding to the measurement target component is opened between the delay time 1 and the delay time 2, the integral value of the emission signal specific to the measurement target component centering on the peak of the emission signal intensity is obtained. Can be obtained. That is, the emission signal of the measurement target component has waveforms shown in FIGS. 9A, 9B, and 9C in the delay times 1, 2, and 3, respectively, when noise light is removed by a filter. The signal waveform at the delay time 2 shown in (b) of FIG. 9 is a peak that appears according to the upper level energy specific to the measurement target component. The time period from time 1 to time 3 including the peak appearing at time 2 is set as the measurement time M, and the signal intensity obtained by removing the noise signal at the measurement time M is integrated over time. Since this integral value varies variously due to variations in laser oscillation intensity and temperature changes in the measurement field, it is not possible to specify the concentration of the measurement target component by itself. However, in the present invention, instead of detecting a single measurement target component, the light emission signals of a plurality of components are respectively detected as shown in FIGS. 2 and 4, and the measurement target component relative to the reference light emission signal integrated value is detected. Since the ratio of the integrated value of the emission signal is obtained, the concentration of the measurement target component can be obtained with high sensitivity and stability without being affected by variations in laser oscillation intensity and temperature changes in the measurement field.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0015]
As shown in FIGS. 1 and 2, the upper level energy resulting from the emission of the chemical species A contained in the measurement target is Xa, and the upper level energy resulting from the emission of the chemical species B contained in the measurement target is obtained. Xb, where Xa> Xb , delay time Da from detection of laser emission to detection of chemical species A, measurement time Ma for measuring the emission of chemical species A, detection of emission of chemical species B from laser irradiation When the delay time Db until the measurement and the measurement time Mb for measuring the light emission of the chemical species B are set, the coefficient k is in the range of 1 to 5 in the relation that Db / Da = k · (Xa / Xb) holds. The delay times Da and Db are set individually, and the measurement times Ma and Mb are set individually so that Ma> Da and Mb> Db.
[0016]
In this case, when the chemical species A is the main component in the measurement object and the chemical species B is the measurement target component in the measurement object, the emission signal integrated value Ia (removes the noise signal) of the main component A The ratio Ib / Ia of the emission signal integrated value Ib (signal integrated value from which the noise signal is removed) of the measurement target component B to the measured signal integrated value) can be measured. For example, the main component A can be selected from nitrogen (N) which is contained in a large amount in exhaust gas and does not substantially change in concentration.
[0017]
Next, an example of a component analysis result according to the present invention will be described using the component analyzer shown in FIG.
[0018]
As shown in FIG. 3 (a), when nitrogen (N) is selected as the chemical species A as the main component and sodium (Na) is selected as the chemical species B as the measurement target component , The measurement results proved to be highly reproducible. Further, as shown in FIG. 3B, when nitrogen (N) is selected as the chemical species A as the main component and potassium (K) is selected as the chemical species B as the measurement target component, the present invention The results measured by the method proved to be highly reproducible.
[0019]
Table 1 shows the emission wavelength (nm) of each component of sodium (Na), potassium (K), and nitrogen (N), the upper level energy (cm -1 ), the delay time (μs), and the measurement time (μs). ) Respectively. Among these, since the concentration of nitrogen (N) serving as the reference for the chemical species A hardly changes, the concentration of sodium (Na) and potassium (K) as the chemical species B is determined using the B / A ratio based on this. Each is calculated. As a result, Na had an emission wavelength of 589.0 nm, an upper level energy Xb at the time of emission of 16973 cm −1 , a delay time Db of 100 μs, and a measurement time Mb of 300 μs. K had an emission wavelength of 766.5 nm, an upper level energy Xb at the time of emission of 13043 cm −1 , a delay time Db of 120 μs, and a measurement time Mb of 400 μs. Incidentally, the delay time Da of N is 4 μs, and the measurement time Ma is 20 μs.
[0020]
As shown in FIG. 4, it is possible to measure three components A, B, and C.
[0021]
[Table 1]
Figure 0003660938
[0022]
【The invention's effect】
According to the present invention, the concentration of a component contained in a gas can be measured with high sensitivity and stability.
[Brief description of the drawings]
FIG. 1 is a signal characteristic diagram when a component of a measurement object is analyzed using a component analysis method using laser light according to an embodiment of the present invention.
FIG. 2 is a signal characteristic diagram when a component of a measurement object is analyzed using a component analysis method using laser light according to an embodiment of the present invention.
FIG. 3A is a characteristic diagram showing the correlation between the Na signal / N signal ratio and the Na concentration, and FIG. 3B is a characteristic diagram showing the correlation between the K signal / N signal ratio and the K concentration.
FIG. 4 is a signal characteristic diagram when a component of a measurement object is analyzed using the apparatus of the present invention.
FIG. 5 is a signal characteristic diagram showing the signal intensity from which noise has been removed.
FIG. 6 is a configuration block diagram schematically showing a component analysis apparatus using the LIBS method.
FIG. 7 is a schematic diagram showing an outline of a conventional analysis method.
FIG. 8 is a signal characteristic diagram for explaining the measurement principle of the LIBS method.
9A is a signal characteristic diagram showing the signal intensity when measured with a delay time of 1 in the LIBS method, and FIG. 9B is a signal characteristic diagram showing the signal intensity when measured with a delay time of 2, FIG. c) A signal characteristic diagram showing the signal intensity when measured with a delay time of 3.
FIG. 10 is a signal characteristic diagram for explaining the measurement principle of the LIBS method.
[Explanation of symbols]
10 ... Measurement field,
11 ... Laser oscillator,
12 ... Lens,
13 ... Measurement window,
14 ... Mirror,
15 ... Lens,
16 ... Spectroscope,
17 ... CCD camera,
18 ... Computer,
19: Synchronous line.

Claims (2)

レーザ光を測定対象物に照射し、測定対象物に含まれる成分をプラズマ化させ、各成分元素からの発光ラインに関し、発光に起因する上位準位エネルギに対応した遅れ時間および計測時間をそれぞれ設定し、設定した遅れ時間および計測時間と測定対象物に含まれる複数の成分原子の比とを用いて、測定対象物中の各成分の濃度をそれぞれ計測するレーザを用いた成分分析方法において、
測定対象物に含まれる化学種Aの発光に起因する上位準位エネルギをXa、測定対象物に含まれる化学種Bの発光に起因する上位準位エネルギをXb、但しXa>Xbの関係にあり、レーザ照射から化学種Aの発光を検出するまでの遅れ時間Da、化学種Aの発光を計測する計測時間Ma、レーザ照射から化学種Bの発光を検出するまでの遅れ時間Db、化学種Bの発光を計測する計測時間Mbとした場合に、
Db/Da=k・(Xa/Xb)が成り立つ関係において、係数kが1〜5の範囲となるように前記遅れ時間Da,Dbをそれぞれ個別に設定し、かつ、Ma>DaおよびMb>Dbの範囲となるように計測時間Ma,Mbをそれぞれ個別に設定することを特徴とするレーザを用いた成分分析方法。
Laser light is irradiated to the measurement object, the components contained in the measurement object are turned into plasma, and the delay time and measurement time corresponding to the upper level energy caused by light emission are set for each emission line from each component element In the component analysis method using a laser that measures the concentration of each component in the measurement object using the set delay time and measurement time and the ratio of the plurality of component atoms contained in the measurement object ,
The upper level energy resulting from the emission of the chemical species A contained in the measurement object is Xa, the upper level energy resulting from the emission of the chemical species B contained in the measurement object is Xb, where Xa> Xb. , Delay time Da from laser irradiation to detection of emission of chemical species A, measurement time Ma for measuring emission of chemical species A, delay time Db from detection of laser emission to detection of emission of chemical species B, chemical species B When the measurement time Mb for measuring the light emission of
In the relationship where Db / Da = k · (Xa / Xb) holds, the delay times Da and Db are individually set so that the coefficient k is in the range of 1 to 5, and Ma> Da and Mb> Db The component analysis method using a laser , wherein the measurement times Ma and Mb are individually set so as to be in the range of
上記化学種Aを測定対象物中の主要成分とし、上記化学種Bを測定対象物中の計測目的成分とした場合に、When the chemical species A is the main component in the measurement object and the chemical species B is the measurement target component in the measurement object,
主要成分Aの発光信号積分値Ia(ノイズ信号を除去した信号積分値)に対する計測目的成分Bの発光信号積分値Ib(ノイズ信号を除去した信号積分値)の比率Ib/Iaを計測することを特徴とする請求項1記載の方法。  Measuring the ratio Ib / Ia of the light emission signal integrated value Ib (signal integrated value with noise signal removed) of the measurement target component B to the light emission signal integrated value Ia (signal integrated value with noise signal removed) of the main component A The method of claim 1, characterized in that:
JP2000175665A 2000-06-12 2000-06-12 Component analysis method using laser Expired - Lifetime JP3660938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175665A JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175665A JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Publications (2)

Publication Number Publication Date
JP2001349832A JP2001349832A (en) 2001-12-21
JP3660938B2 true JP3660938B2 (en) 2005-06-15

Family

ID=18677512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175665A Expired - Lifetime JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Country Status (1)

Country Link
JP (1) JP3660938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038831B2 (en) * 2007-09-12 2012-10-03 一般財団法人電力中央研究所 Method and apparatus for measuring concrete-containing substances
JP5483408B2 (en) * 2009-06-26 2014-05-07 四国電力株式会社 Continuous concentration measuring apparatus and method
JP5906500B2 (en) * 2010-09-15 2016-04-20 イマジニアリング株式会社 Analysis equipment
EP2618132A4 (en) * 2010-09-15 2016-04-06 Imagineering Inc Analysis device and analysis method

Also Published As

Publication number Publication date
JP2001349832A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US6771368B1 (en) Laser-induced ionisation spectroscopy, particularly for coal
Lithgow et al. Ambient measurements of metal-containing PM2. 5 in an urban environment using laser-induced breakdown spectroscopy
US6794670B1 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
US20060243911A1 (en) Measuring Technique
Lazzari et al. Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique
JPH0915156A (en) Spectroscopic measuring method and measuring device
Ciucci et al. CF-LIPS: a new approach to LIPS spectra analysis
JP2009288068A (en) Analyzing method and analyzer
JP3660938B2 (en) Component analysis method using laser
JP3377699B2 (en) Trace component measurement method and device using laser
JP2003523510A (en) Method and apparatus for spectroscopic analysis
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP3651755B2 (en) Gas component concentration measuring apparatus and gas component concentration measuring method
JP2020204594A (en) Photothermal conversion spectroscope and minute amount of specimen detection method
JP2009288067A (en) Analyzing method and analyzer
JP3349353B2 (en) Solid particle component analyzer using laser
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
JPS62278436A (en) Fluorescence light measuring method and apparatus
CN113984734B (en) Background subtraction detection method and system for Raman spectrum and Raman spectrometer
JPH03221837A (en) Method and device for measuring body to be tested
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JPH09251004A (en) Method and device for optical-acoustic analyzing
JP2005134273A (en) Apparatus for measuring concentration of constituents in particles contained in the atmosphere, or the like
JPH0452551A (en) Component analyzing method and apparatus
JP4483492B2 (en) Laser emission spectroscopy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3660938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term