JP3653885B2 - Magnetizer for encoder for rotational speed detector - Google Patents

Magnetizer for encoder for rotational speed detector Download PDF

Info

Publication number
JP3653885B2
JP3653885B2 JP26978896A JP26978896A JP3653885B2 JP 3653885 B2 JP3653885 B2 JP 3653885B2 JP 26978896 A JP26978896 A JP 26978896A JP 26978896 A JP26978896 A JP 26978896A JP 3653885 B2 JP3653885 B2 JP 3653885B2
Authority
JP
Japan
Prior art keywords
inner peripheral
peripheral surface
permanent magnet
encoder
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26978896A
Other languages
Japanese (ja)
Other versions
JPH10115628A (en
Inventor
英男 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP26978896A priority Critical patent/JP3653885B2/en
Priority to US08/948,238 priority patent/US5967669A/en
Priority to EP97308110A priority patent/EP0836020B1/en
Priority to EP99201715A priority patent/EP0942186B1/en
Priority to DE69733796T priority patent/DE69733796T2/en
Priority to DE69739714T priority patent/DE69739714D1/en
Publication of JPH10115628A publication Critical patent/JPH10115628A/en
Application granted granted Critical
Publication of JP3653885B2 publication Critical patent/JP3653885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の車輪を懸架装置に回転自在に支持すると共にこの車輪の回転速度を検出する為の回転速度検出装置付転がり軸受ユニットに組み込むエンコーダを造る為に利用する着磁装置の改良に関する。
【0002】
【従来の技術】
自動車の車輪を懸架装置に対して回転自在に支持すると共に、アンチロックブレーキシステム(ABS)、或はトラクションコントロールシステム(TCS)を制御すべく、この車輪の回転速度を検出する為の回転速度検出装置付転がり軸受ユニットとして、従来から種々の構造のものが知られている。この様な回転速度検出装置付転がり軸受ユニットに組み込まれる回転速度検出装置は何れも、車輪と共に回転するトーンホイールと、このトーンホイールの回転速度に比例した周波数で変化する出力信号を出すセンサとを備える。例えば発明協会公開技報94−16051には、図4に示す様な回転速度検出装置付転がり軸受ユニットが記載されている。
【0003】
内側部材を構成するハブ1の外端部(外とは車両への組み付け状態で車両の幅方向外となる側を言い、図3、4の左)外周面には、車輪を固定する為のフランジ部2を形成し、中間部外周面には、内輪軌道3aと段部4とを形成している。又、このハブ1の外周面には、その外周面に内輪軌道3bを形成し、上記ハブ1と共に内側部材を構成する内輪5を、その外端面を上記段部4に突き当てた状態で外嵌支持している。尚、上記内輪軌道3aは、ハブ1の外周面に直接形成する代りに、ハブ1とは別体の内輪(図示せず)に形成し、この内輪と上記内輪5とを、ハブ1に外嵌固定する場合もある。
【0004】
又、ハブ1の内端寄り部分には雄ねじ部6を形成している。そして、この雄ねじ部6に螺合し更に緊締したナット7により、上記内輪5をハブ1の外周面の所定部分に固定して、内側部材を構成している。又、上記ハブ1の周囲に配置された外側部材8の中間部外周面には、この外側部材8を懸架装置に固定する為の取付部9を設けている。又、この外側部材8の内周面には、それぞれが上記各内輪軌道3a、3bに対向する、外輪軌道10a、10bを形成している。そして、これら各内輪軌道3a、3bと外輪軌道10a、10bとの間に、それぞれ複数個ずつの転動体11、11を設けて、上記外側部材8の内側での内側部材の回転を自在としている。尚、図示の例では、転動体11、11として玉を使用しているが、重量の嵩む自動車用の転がり軸受ユニットの場合には、転動体としてテーパころを使用する場合もある。又、上記外側部材8の外端部内周面と、ハブ1の外周面との間には、シールリング12を装着して、外側部材8の内周面と上記ハブ1の外周面との間に存在し、上記複数の転動体11、11を設けた空間の外端開口部を塞いでいる。
【0005】
上記内輪5の内端部(内とは、車両への組み付け状態で車両の幅方向中央寄りとなる側を言い、図3、4の右)で上記内輪軌道3bから外れた部分には、エンコーダ13の基端部(図4の左端部)を外嵌固定している。このエンコーダ13は、鋼板等の強磁性金属板により全体を円環状(短円筒状)に形成している。このエンコーダ13は、互いに同心に形成した小径部14と大径部15とを、段部16により連続させて成る。この様なエンコーダ13は、上記大径部15を内輪5の端部外周面に外嵌し、上記段部16をこの内輪5の端縁部に当接させた状態で、この内輪5に支持固定している。従って上記小径部14は、上記内輪5と同心に支持される。そして、この小径部14に、回転側除肉部である複数の透孔17を、円周方向に亙り等間隔に形成して、円周方向に亙る磁気特性を交互に且つ等間隔に変化させている。各透孔17は同形状で、軸方向(図4の左右方向)に長い矩形としている。
【0006】
又、前記外側部材8の内端開口部は、ステンレス鋼板、アルミニウム合金板等の金属板を絞り加工する等により有底円筒状に造った、カバー18により塞いでいる。このカバー18を構成する円筒部19の内周側に、円環状のセンサ20を包埋した、やはり円環状の合成樹脂21を保持固定している。このセンサ20は、永久磁石22と、鋼板等の強磁性体により造られたステータ23と、コイル24とを備え、これら各部材22、23、24を上記合成樹脂21中に包埋する事により、全体を円環状に構成している。
【0007】
上記センサ20の構成各部材のうちの永久磁石22は、全体を円環状(円輪状)に形成し、直径方向に亙り着磁している。そして、この永久磁石22の内周面を、上記エンコーダ13を構成する小径部14の基端部で、上記透孔17を形成していない部分の外周面に、微小隙間25を介して対向させている。又、上記ステータ23は、断面が略J字形で全体を円環状に造っている。そして、このステータ23を構成する外径側円筒部26の端部内周面と上記永久磁石22の外周面とを、近接若しくは当接させている。又、上記ステータ23を構成する内径側円筒部27の内周面を、上記エンコーダ13を構成する小径部14の一部で、上記複数の透孔17を形成した部分に、やはり微小隙間25を介して対向させている。更に、上記内径側円筒部27には、固定側除肉部である複数の切り欠き28を、この内径側円筒部27の円周方向に亙って、前記透孔17と等ピッチ(中心角ピッチ)で形成している。従って、上記内径側円筒部27部分は、櫛歯状に形成されている。
【0008】
更に、上記コイル24は、非磁性材製のボビン29に導線を巻回する事により円環状に形成し、上記ステータ23を構成する外径側円筒部26の内周側部分に配置している。このコイル24に惹起される起電力は、カバー18の外面に突設したコネクタ30から取り出す。
【0009】
上述の様に構成される回転速度検出装置付転がり軸受ユニットの使用時、内側部材を構成する内輪5と共にエンコーダ13が回転すると、このエンコーダ13と対向するステータ23内の磁束密度が変化し、上記コイル24に惹起される電圧が、前記ハブ1の回転速度に比例した周波数で変化する。ステータ23を流れる磁束の密度変化に対応して上記コイル24に惹起される電圧が変化する原理は、従来から広く知られた回転速度検出用センサの場合と同じである。又、エンコーダ13の回転に応じてステータ23に流れる磁束の密度が変化する理由は、次の通りである。
【0010】
上記エンコーダ13に設けた複数の透孔17と、ステータ23に設けた切り欠き28とは、互いのピッチが等しい為、エンコーダ13の回転に伴って全周に亙り同時に対向する瞬間がある。そして、これら各透孔17と各切り欠き28とが互いに対向した瞬間には、隣り合う透孔17同士の間に存在する強磁性体である柱部と、やはり隣り合う切り欠き28同士の間に存在する強磁性体である舌片とが、前記微小隙間25を介して互いに対向する。この様にそれぞれが強磁性体である柱部と舌片とが互いに対向した状態では、上記エンコーダ13とステータ23との間に、高密度の磁束が流れる。
【0011】
これに対して、上記透孔17と切り欠き28との位相が半分だけずれると、上記エンコーダ13とステータ23との間で流れる磁束の密度が低くなる。即ち、この状態では、エンコーダ13に設けた透孔17が上記舌片に対向すると同時に、ステータ23に設けた切り欠き28が上記柱部に対向する。この様に柱部が切り欠き28に、舌片が透孔17に、それぞれ対向した状態では、上記エンコーダ13とステータ23との間に比較的大きな空隙が、全周に亙って存在する。そして、この状態では、これら両部材13、23の間に流れる磁束の密度が低くなる。この結果、前記コイル24に惹起される電圧が、前記ハブの回転速度に比例して変化する。前記センサ20は上述の様に作用する事により、コイル24に惹起される出力電圧を、内側部材の回転速度に比例した周波数で変化させる。
【0012】
上述の様に構成され作用する回転速度検出装置付転がり軸受ユニットの場合には、センサ20を構成する永久磁石22の端面から出た磁束は、やはりこのセンサ20を構成するステータ23内を常に同じ方向に流れる。エンコーダ13の回転に伴って変化するのは磁束密度の大きさのみであり、上記コイル24には、この磁束密度の変化に対応して電圧が惹起される。この為、電圧の変化量(最大値と最小値との差)を大きくする事は難しく、特に低速走行時に上記磁束密度が変化する速度が遅い場合には、惹起される電圧の絶対値並びに変化量が小さくなる。
【0013】
この様な事情に鑑みて従来から、エンコーダ側に永久磁石を設け、この永久磁石の一部でセンサと対向する面にS極とN極とを、円周方向に亙って交互に、且つ等間隔で配置する構造が提案されている。この様な永久磁石を組み込んだエンコーダを使用すれば、センサを構成するステータ内に、交互に逆方向の磁束(交番磁束)を流せる。従って、上記ステータに添設したコイルに、エンコーダの回転に伴って交互に逆方向の電圧を惹起させる事が可能になり、上記センサの出力を大きくできる。
【0014】
又、センサの出力を大きくする為には、このセンサと対向するエンコーダの被検出面の直径を大きくする事が効果的である。この為には、図4に示した構造とは逆に、エンコーダをセンサの直径方向外側に配置し、被検出面である上記エンコーダの内周面の直径を大きくする事が考えられる。又、エンコーダの直径を大きくする事は、このエンコーダに配置した極数を多くし、検出精度を高める面からも効果がある。
【0015】
図5は、この様な要件を満たすエンコーダ31と、このエンコーダ31を構成する永久磁石32を着磁する為の着磁装置33とを示している。このうちのエンコーダ31は、金属板製で円環状の支持環34と、この支持環34の全周に亙って支持固定された永久磁石32とから成る。このうちの支持環34は、内輪5(図4)等の回転輪に嵌合固定する為の小径部35と、この小径部35と同心の大径部36と、この大径部36の端縁と上記小径部35の端縁とを連続させる円輪状の段部37とを備える。上記永久磁石32は全体を円筒状に形成して、上記大径部36の内周面に全周に亙って添着している。そして、この永久磁石32の内周面には、S極及びN極を、円周方向に亙って交互に且つ等間隔で配置している。
【0016】
一方、上記エンコーダ31を構成すべく、上記永久磁石32を着磁する着磁装置33は、強磁性体のヨーク38の先端部(図5の左端部)に複数の着磁端子39、39を、上記永久磁石32の隣り合うS極とN極とのピッチと同じピッチで円周方向に等間隔で、円筒状に配置している。上記各着磁端子39、39は、上記永久磁石32の内周面に配置されたS極の数とN極の数との合計と等しい数だけ、上記ヨーク38の先端部外周面から直径方向外方に突出する状態で設けられ、それぞれの外周端面が上記永久磁石32の軸方向(図5の左右方向)に長い。これら各着磁端子39、39の周囲には、それぞれコイル40、40を巻回している。これら各コイル40、40は、通電に伴って上記各着磁端子39、39の外周端面が対向する、上記永久磁石32となるべき磁性体(永久磁石材料、高保持力材料)を、直径方向に亙って着磁する。
【0017】
尚、上記ヨーク38の先端部で上記各着磁端子39、39を囲む部分は合成樹脂41により覆い、上記各コイル40、40は、この合成樹脂41中に包埋している。又、この合成樹脂41の先端面には、金属板等により造られた位置決めプレート42を固定している。上記永久磁石32を着磁し、この永久磁石32の内周面にS極とN極とを交互に配置する際には、上記位置決めプレート42を前記支持環34の段部37に突き当てる。この状態で上記各着磁端子39、39が、上記永久磁石32を構成する磁性体(永久磁石材料、高保持力材料)の内周面に、この磁性体の全長に亙って対向する。そこで、この状態のまま上記各コイル40、40に通電して上記磁性体に着磁し、内周面にS極とN極とを交互に且つ等間隔に形成した永久磁石32とする。
【0018】
【発明が解決しようとする課題】
図5に示す様な従来の着磁装置33により、図5に示す様な構造を有するエンコーダ31の永久磁石32に着磁する場合には、この永久磁石32の端縁と支持環34を構成する段部37の側面との距離L32を十分に小さくできない。即ち、上記着磁装置33を構成する各着磁端子39、39の外周端面と永久磁石32を構成する磁性体の内周面とを対向させた状態で、ヨーク38の先端面と上記段部37との間には、コイル40の一部を包埋した合成樹脂41と位置決めプレート42とが存在する。そして、この分だけ、上記距離L32が大きくなる事が避けられない。
この距離L32が大きくなると、その分だけエンコーダ31の軸方向寸法が大きくなり、このエンコーダ31を組み込んだ回転速度検出装置付転がり軸受ユニットの小型・軽量化が難しくなる。
本発明の回転速度検出装置用エンコーダの着磁装置と、エンコーダを組み込んだ回転速度検出装置付転がり軸受ユニットは、この様な事情に鑑みて発明したものである。
【0019】
【課題を解決するための手段】
本発明の回転速度検出装置用エンコーダの着磁装置は、前述の図5に示した従来構造と同様に、金属板製で円環状の支持環と、この支持環の全周に亙って支持固定された永久磁石とから成るエンコーダで、このうちの支持環は、回転輪に嵌合固定する為の小径部と、この小径部と同心の大径部と、この大径部の端縁と上記小径部の端縁とを連続させる円輪状の段部とを備え、上記永久磁石は、上記大径部の内周面に全周に亙って添着され、その内周面に円周方向に亙ってS極及びN極を、交互に且つ等間隔で配置した円筒状である回転速度検出装置用エンコーダの上記永久磁石に着磁すべく、この永久磁石の隣り合うS極とN極とのピッチと同じピッチで円周方向に等間隔で円筒状に配置され、それぞれの外周端面が上記永久磁石の軸方向に長く、上記永久磁石の内周面に配置されたS極の数とN極の数との合計と等しい数の強磁性体製の着磁端子と、これら各着磁端子の周囲に巻回され、通電に伴って上記各着磁端子の外周端面が対向する、上記永久磁石となるべき磁性体(永久磁石材料、高保持力材料)を着磁するコイルとを備える。
特に、本発明の回転速度検出装置用エンコーダの着磁装置に於いては、上記各着磁端子は、上記永久磁石となるべき磁性体の内周面と対向する外周側端部に比べて内周側部分の幅が狭く、上記コイルはこの内周側部分に巻回されている。
【0021】
【作用】
上述の様に構成される本発明の回転速度検出装置用エンコーダの着磁装置によれば、エンコーダの軸方向寸法を小さくして、回転速度検出装置付転がり軸受ユニットの小型・軽量化を実現できる。
【0022】
【発明の実施の形態】
図1〜3は、本発明の実施の形態の1例を示している。尚、本例の回転速度検出装置用エンコーダの着磁装置の特徴は、永久磁石32を組み込んだエンコーダ31a、31bの軸方向寸法を短くする事により、回転速度検出装置付転がり軸受ユニットの小型・軽量化を図る点にある。転がり軸受ユニット部分の構造及び作用に就いては、前述の図4に示した従来構造と同様である為、従来構造と同等部分に関する図示及び説明は、省略若しくは簡略にする。以下、本例の特徴部分であるエンコーダ31a、31b及びこのエンコーダ31a、31bを構成する永久磁石32に着磁する為の着磁装置33a、並びに上記エンコーダ31a、31bとの組み合わせにより回転速度検出装置を構成するセンサ20aを中心に説明する。
【0023】
上記エンコーダ31a、31bは、金属板製で円環状の支持環34、34aと、この支持環34、34aの全周に亙って支持固定された永久磁石32とから成る。このうちの支持環34、34aは、内輪5(図3)等の回転輪に嵌合固定する為の小径部35、35aと、この小径部35、35aと同心の大径部36と、この大径部36の端縁と上記小径部35、35aの端縁とを連続させる円輪状の段部37とを備える。上記永久磁石32は、フェライト等の永久磁石材料粉末(高保持力材料粉末)をゴム中に含有させた、所謂ゴム磁石であり、全体を円筒状に形成している。この様な永久磁石32は上記大径部36の内周面に全周に亙って、焼き付け、接着等により添着している。そして、この永久磁石32の内周面には、S極及びN極を、円周方向に亙って交互に且つ等間隔に配置している。尚、図3に示したエンコーダ31bを構成する小径部35aの内周面中間部には、上記金属板を折り曲げる事により内向フランジ状の鍔部43を形成している。この鍔部43は、上記小径部35aを上記内輪5の内端部外周面に外嵌固定した状態でこの内輪5の内端面に当接する。そして、上記エンコーダ31bの軸方向に亙る位置決めを図ると共に、上記大径部36と上記内輪5とを同心にする。
【0024】
一方、上記エンコーダ31a、31bを構成すべく、上記永久磁石32を着磁する着磁装置33aは、強磁性体製のヨーク38aの先端部(図1の左端部)に図1〜2に示す様な複数の着磁端子39a、39aを、上記永久磁石32の隣り合うS極とN極とのピッチと同じピッチで円周方向に等間隔で、円筒状に配置している。上記各着磁端子39a、39aは、上記永久磁石32の内周面に配置されたS極の数とN極の数との合計と等しい数だけ、上記ヨーク38aの先端部外周面から直径方向外方に突出する状態で設けられ、それぞれの外周端面が上記永久磁石32の軸方向(図1〜3の左右方向)に長い。
【0025】
これら各着磁端子39a、39aの周囲には、それぞれコイル40、40を巻回している。これら各コイル40、40は、通電に伴って、上記各着磁端子39a、39aの外周端面が対向する上記永久磁石32となるべき磁性体(永久磁石材料、高保持力材料)を、直径方向に亙って着磁する。特に、本例の着磁装置33aを構成する着磁端子39a、39aは、上記永久磁石32を構成する磁性体の内周面と対向する外周側端部に比べて内周側部分の幅を狭くしている。そして、上記各コイル40、40は、この幅が狭くなった内周側部分に巻回している。従って、これら各コイル40、40の端部は、上記着磁端子39a、39aの先端面(図1の左端面)から先端側(図1の左側)に突出する事はない。
【0026】
又、上記ヨーク38aの先端部で上記各着磁端子39a、39aを囲む部分、並びに中間部から基端部に亙る部分は合成樹脂41aにより覆い、上記各コイル40、40をこの合成樹脂41a中に包埋して、これら各コイル40、40同士の絶縁を図っている。又、この合成樹脂41aの先端面中央部には、金属板等により造られた位置決めプレート42aを固定している。即ち、上記合成樹脂41aの一部で上記着磁装置33aの先端面に対応する部分に円形の凹部44を形成している。そして、この凹部44に上記位置決めプレート42aを内嵌すると共に、この位置決めプレート42aを上記ヨーク38aに、ねじ45、45により固定している。これら合成樹脂41aと位置決めプレート42aとの内端面は、互いに同一平面上に位置させている。又、上記位置決めプレート42aの外径は、前記支持環34、34aの段部37の内径よりも大きくしている。
【0027】
上述の様に構成される着磁装置33aを用いて前記永久磁石32を直径方向に亙って着磁し、この永久磁石32の内周面にS極とN極とを円周方向に亙って交互に配置する際には、図1に示す様に、上記位置決めプレート42aの内端面外周寄り部分を、上記支持環34、34aの段部37に突き当てる。この状態で上記各着磁端子39a、39aが、図1に示す様に、上記永久磁石32を構成する磁性体(永久磁石材料、高保持力材料)の内周面に、この磁性体の軸方向全長に亙って対向する。そこで、この状態のまま上記各コイル40a、40aに通電して上記磁性体に着磁し、内周面にS極とN極とを円周方向に亙って交互に且つ等間隔に配置した永久磁石32とする。
【0028】
本例の着磁装置33aの場合には、上記各着磁端子39a、39aの形状を工夫した事に伴い、これら各着磁端子39a、39aの先端面を上記着磁装置33aの先端面近傍部分に位置させる事ができる。従って、本例の着磁装置33aにより、図1、3に示す様な構造を有するエンコーダ31a、31bの永久磁石32に着磁する場合には、この永久磁石32の端縁と支持環34、34aを構成する段部37の側面との距離L32´を十分に小さくできる。即ち、上記着磁装置33aを構成する各着磁端子39a、39aの外周端面と永久磁石32を構成する磁性体の内周面とを対向させた状態で、上記各着磁端子39a、39aの外周側端部先端面と上記段部37との間には、コイル40の一部を包埋した合成樹脂41の外周縁部で厚さが小さい部分のみが存在する。従って、上記距離L32´を、前述した従来構造の着磁装置33(図5)では不可能であった、7mm以下の寸法にし、その分だけエンコーダ31a、31bの軸方向寸法を小さくし、これら各エンコーダ31a、31bを組み込んだ回転速度検出装置付転がり軸受ユニットの小型・軽量化を図れる。
【0029】
次に、本発明の要旨とは直接は関係しないが、上述の様なエンコーダ31a、31bと組み合わせて回転速度検出装置を構成するセンサ20aの構造及び作用に就いて、図3を参照しつつ、簡単に説明する。このセンサ20aは全体を円環状に形成して、外周面に設けた検出部を、上記エンコーダ31bを構成する永久磁石32の内周面に、微小隙間25aを介して対向させている。この様なセンサ20aは、それぞれが円環状に形成された第一、第二のステータ46、47とコイル24aとを備える。
【0030】
このうち、第一、第二のステータ46、47の外周縁部にはそれぞれ、切り欠きと突片とを交互に且つ等間隔で形成する事により、それぞれ第一、第二の櫛歯状端縁部48、49を形成している。これら各櫛歯状端縁部48、49を構成する切り欠き50、50及び突片51、51のピッチ(中心角ピッチ)は、上記永久磁石32の内周面に配設したS極及びN極のピッチ(S極とN極とを合わせて1ピッチとする。)と等しくしている。又、上記第一のステータ46の外周縁部に形成した第一の櫛歯状端縁部48の位相と、上記第二のステータ47の外周縁部に形成した第二の櫛歯状端縁部49の位相とは、上記切り欠き50及び突片51のピッチの半分だけずらせている。従って、上記第一の櫛歯状端縁部48を構成する総ての突片51が上記永久磁石32の内周面に配設したS極に対向する瞬間には、第二の櫛歯状端縁部49を構成する総ての突片51がN極に対向する。更に、この瞬間から上記エンコーダ31bが上記切り欠き50及び突片51のピッチの半分だけ回転した瞬間には、上記第一の櫛歯状端縁部48を構成する総ての突片51が上記永久磁石32の内周面に配設したN極に対向し、第二の櫛歯状端縁部49を構成する総ての突片51がS極に対向する。
【0031】
又、上記第一、第二のステータ46、47の内周縁部同士は、第一のステータ46の内周縁部に形成した第一の円筒部52に第二のステータ47の内周縁部に形成した第二の円筒部53の先端部を締まり嵌めで外嵌する事により、磁気的に導通させている。従ってこれら第一、第二のステータ46、47内には、上記エンコーダ31bの回転に伴って交番磁束が流れる。又、前記コイル24aは、外周側が開口したボビン29aに導線を巻回する事により構成している。尚、このボビン29aと上記第一、第二のステータ46、47との間には凹凸係合部を設け、このボビン29aを介して、これら第一、第二のステータ46、47同士の位相を、上述した状態に規制している。この様なボビン29aに導線を巻回して成るコイル24aには、上記交番磁束に対応して交流電圧が惹起される。
【0032】
上述の様な第一、第二のステータ46、47とコイル24aとから成るセンサ20aは、外側部材8の内端開口部を塞ぐ蓋体54を構成する合成樹脂中に包埋している。この蓋体54の一部には、金属板により断面L字形で全体を円環状に形成したスリーブ55を支持している。上記外側部材8の内端開口部を塞ぐ場合には、このスリーブ55を上記外側部材8の内端開口部に内嵌固定する。この状態で上記センサ20aは、前記エンコーダ31bを構成する永久磁石32の内周面に、前記微小隙間25aを介して、全周に亙って対向する。尚、上記蓋体54の一部内側面にはコネクタ30aを、この蓋体54と一体に形成して、上記コイル24aに惹起される交流電圧を取り出し自在としている。この交流電圧は、ハブ1の回転速度を表す信号として制御器に送り、ABSやTCSの制御に利用する。
【0033】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、回転速度検出装置付転がり軸受ユニットの全長を短縮できて、回転速度検出装置付転がり軸受ユニットのコンパクト化及び軽量化を実現できる。この結果、限られた空間への設置が可能となり、自動車設計の自由度を高める事ができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す、トーンホイールと着磁装置との断面図。
【図2】着磁端子の配列状態を示す、着磁装置先端部の部分斜視図。
【図3】上記着磁装置により着磁されたトーンホイールを組み込んだ回転速度検出装置付転がり軸受ユニットの部分拡大断面図。
【図4】従来構造の1例を示す断面図。
【図5】従来のエンコーダ及び着磁装置を示す断面図。
【符号の説明】
1 ハブ
2 フランジ部
3 内輪軌道
4 段部
5 内輪
6 雄ねじ部
7 ナット
8 外側部材
9 取付部
10 外輪軌道
11 転動体
12 シールリング
13 エンコーダ
14 小径部
15 大径部
16 段部
17 透孔
18 カバー
19 円筒部
20、20a センサ
21 合成樹脂
22 永久磁石
23 ステータ
24、24a コイル
25、25a 微小隙間
26 外径側円筒部
27 内径側円筒部
28 切り欠き
29、29a ボビン
30、30a コネクタ
31、31a、31b エンコーダ
32 永久磁石
33、33a 着磁装置
34、34a 支持環
35 小径部
36 大径部
37 段部
38、38a ヨーク
39、39a 着磁端子
40 コイル
41、41a 合成樹脂
42、42a 位置決めプレート
43 鍔部
44 凹部
45 ねじ
46 第一のステータ
47 第二のステータ
48 第一の櫛歯状端縁部
49 第二の櫛歯状端縁部
50 切り欠き
51 突片
52 第一の円筒部
53 第二の円筒部
54 蓋体
55 スリーブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a magnetizing device used for making an encoder incorporated in a rolling bearing unit with a rotational speed detecting device for rotatably supporting a vehicle wheel on a suspension device and detecting the rotational speed of the wheel. .
[0002]
[Prior art]
Rotational speed detection for detecting the rotational speed of an automobile wheel to support the suspension system and to control an anti-lock brake system (ABS) or traction control system (TCS). Various types of rolling bearing units with devices have been known in the past. Each of the rotational speed detection devices incorporated in such a rolling bearing unit with a rotational speed detection device includes a tone wheel that rotates together with the wheel, and a sensor that outputs an output signal that changes at a frequency proportional to the rotational speed of the tone wheel. Prepare. For example, JIII Journal of Technical Disclosure No. 94-16051 describes a rolling bearing unit with a rotational speed detection device as shown in FIG.
[0003]
The outer end of the hub 1 constituting the inner member (outside means the side outside the width direction of the vehicle when assembled to the vehicle, left in FIGS. 3 and 4) A flange portion 2 is formed, and an inner ring raceway 3a and a step portion 4 are formed on the outer peripheral surface of the intermediate portion. Further, an inner ring raceway 3b is formed on the outer circumferential surface of the hub 1, and the inner ring 5 that constitutes an inner member together with the hub 1 is outside with the outer end surface abutted against the stepped portion 4. Fits and supports. The inner ring raceway 3a is not formed directly on the outer peripheral surface of the hub 1, but is formed on an inner ring (not shown) separate from the hub 1, and the inner ring and the inner ring 5 are connected to the hub 1. In some cases, it is fixed.
[0004]
Further, a male screw portion 6 is formed at a portion near the inner end of the hub 1. The inner ring 5 is fixed to a predetermined portion of the outer peripheral surface of the hub 1 by a nut 7 screwed into the male screw portion 6 and further tightened to constitute an inner member. A mounting portion 9 for fixing the outer member 8 to the suspension device is provided on the outer peripheral surface of the intermediate portion of the outer member 8 disposed around the hub 1. Further, outer ring raceways 10a and 10b are formed on the inner peripheral surface of the outer member 8 so as to face the inner ring raceways 3a and 3b, respectively. A plurality of rolling elements 11, 11 are provided between the inner ring raceways 3a, 3b and the outer ring raceways 10a, 10b, respectively, so that the inner member can freely rotate inside the outer member 8. . In the illustrated example, balls are used as the rolling elements 11, 11, but in the case of a rolling bearing unit for automobiles that is heavy in weight, tapered rollers may be used as the rolling elements. Further, a seal ring 12 is attached between the outer peripheral surface of the outer end portion of the outer member 8 and the outer peripheral surface of the hub 1 so that the inner peripheral surface of the outer member 8 and the outer peripheral surface of the hub 1 are interposed. And the outer end opening of the space provided with the plurality of rolling elements 11, 11 is closed.
[0005]
An inner end portion of the inner ring 5 (inside means a side closer to the center in the width direction of the vehicle when assembled to the vehicle, and on the right side in FIGS. 3 and 4) The base end portion 13 (the left end portion in FIG. 4) is fitted and fixed. The encoder 13 is formed in an annular shape (short cylindrical shape) as a whole by a ferromagnetic metal plate such as a steel plate. The encoder 13 is formed by connecting a small-diameter portion 14 and a large-diameter portion 15 formed concentrically with each other through a step portion 16. Such an encoder 13 is supported by the inner ring 5 in a state where the large-diameter portion 15 is fitted on the outer peripheral surface of the end portion of the inner ring 5 and the stepped portion 16 is in contact with the end edge portion of the inner ring 5. It is fixed. Therefore, the small diameter portion 14 is supported concentrically with the inner ring 5. The small-diameter portion 14 is formed with a plurality of through-holes 17 which are rotation side thinning portions at equal intervals in the circumferential direction, and the magnetic characteristics in the circumferential direction are changed alternately and at equal intervals. ing. Each through-hole 17 has the same shape and is a rectangle that is long in the axial direction (left-right direction in FIG. 4).
[0006]
The inner end opening of the outer member 8 is closed by a cover 18 made of a bottomed cylinder by drawing a metal plate such as a stainless steel plate or an aluminum alloy plate. An annular synthetic resin 21 in which an annular sensor 20 is embedded is held and fixed on the inner peripheral side of the cylindrical portion 19 constituting the cover 18. This sensor 20 includes a permanent magnet 22, a stator 23 made of a ferromagnetic material such as a steel plate, and a coil 24. By embedding these members 22, 23, 24 in the synthetic resin 21, The whole is configured in an annular shape.
[0007]
The permanent magnet 22 among the constituent members of the sensor 20 is formed in an annular shape (annular shape) as a whole, and is magnetized in the diametrical direction. Then, the inner peripheral surface of the permanent magnet 22 is opposed to the outer peripheral surface of the portion where the through hole 17 is not formed at the proximal end portion of the small diameter portion 14 constituting the encoder 13 through a minute gap 25. ing. Further, the stator 23 has a substantially J-shaped cross section and is formed in an annular shape as a whole. The end inner peripheral surface of the outer diameter side cylindrical portion 26 constituting the stator 23 and the outer peripheral surface of the permanent magnet 22 are brought close to or in contact with each other. Further, a minute gap 25 is also formed on the inner peripheral surface of the cylindrical portion 27 on the inner diameter side constituting the stator 23 in a portion of the small diameter portion 14 constituting the encoder 13 and the plurality of through holes 17 are formed. Through. Further, the inner diameter side cylindrical portion 27 is provided with a plurality of cutouts 28 that are fixed side thinning portions at the same pitch (center angle) as the through holes 17 along the circumferential direction of the inner diameter side cylindrical portion 27. Pitch). Therefore, the inner diameter side cylindrical portion 27 is formed in a comb shape.
[0008]
Further, the coil 24 is formed in an annular shape by winding a conducting wire around a bobbin 29 made of a non-magnetic material, and is arranged on the inner peripheral side portion of the outer diameter side cylindrical portion 26 constituting the stator 23. . The electromotive force induced in the coil 24 is taken out from the connector 30 protruding from the outer surface of the cover 18.
[0009]
When the encoder 13 rotates together with the inner ring 5 constituting the inner member at the time of use of the rolling bearing unit with the rotational speed detector configured as described above, the magnetic flux density in the stator 23 facing the encoder 13 changes, and the above The voltage induced in the coil 24 changes at a frequency proportional to the rotational speed of the hub 1. The principle that the voltage induced in the coil 24 changes in response to the change in the density of the magnetic flux flowing through the stator 23 is the same as that of a conventionally known rotation speed detection sensor. The reason why the density of the magnetic flux flowing through the stator 23 changes according to the rotation of the encoder 13 is as follows.
[0010]
Since the plurality of through holes 17 provided in the encoder 13 and the notches 28 provided in the stator 23 have the same pitch, there is a moment when the encoder 13 faces the entire circumference simultaneously with the rotation of the encoder 13. Then, at the moment when each through hole 17 and each notch 28 face each other, the column portion, which is a ferromagnetic material existing between the adjacent through holes 17, and between the adjacent notches 28 also. Tongue pieces, which are ferromagnetic bodies, are opposed to each other through the minute gap 25. In this way, in a state where the column portions and the tongue pieces, each of which is a ferromagnetic material, face each other, a high-density magnetic flux flows between the encoder 13 and the stator 23.
[0011]
On the other hand, if the phase of the through hole 17 and the notch 28 is shifted by half, the density of the magnetic flux flowing between the encoder 13 and the stator 23 becomes low. That is, in this state, the through hole 17 provided in the encoder 13 faces the tongue piece, and at the same time, the notch 28 provided in the stator 23 faces the column portion. Thus, in a state where the column portion is opposed to the notch 28 and the tongue piece is opposed to the through-hole 17, a relatively large gap exists between the encoder 13 and the stator 23 over the entire circumference. And in this state, the density of the magnetic flux which flows between these both members 13 and 23 becomes low. As a result, the voltage induced in the coil 24 changes in proportion to the rotational speed of the hub. By acting as described above, the sensor 20 changes the output voltage induced in the coil 24 at a frequency proportional to the rotational speed of the inner member.
[0012]
In the case of a rolling bearing unit with a rotational speed detection device configured and acting as described above, the magnetic flux emitted from the end face of the permanent magnet 22 constituting the sensor 20 is always the same in the stator 23 constituting the sensor 20. Flow in the direction. Only the magnitude of the magnetic flux density changes with the rotation of the encoder 13, and a voltage is induced in the coil 24 in response to the change in the magnetic flux density. For this reason, it is difficult to increase the amount of voltage change (difference between the maximum value and the minimum value). In particular, when the speed at which the magnetic flux density changes during low-speed running is slow, the absolute value and change of the induced voltage are changed. The amount becomes smaller.
[0013]
In view of such circumstances, conventionally, a permanent magnet is provided on the encoder side, and a part of the permanent magnet is provided with S and N poles alternately on the surface facing the sensor, over the circumferential direction, and Structures that are arranged at equal intervals have been proposed. If an encoder incorporating such a permanent magnet is used, a reverse magnetic flux (alternating magnetic flux) can flow alternately in the stator constituting the sensor. Therefore, it is possible to cause a reverse voltage to be alternately induced in the coil attached to the stator as the encoder rotates, and the output of the sensor can be increased.
[0014]
In order to increase the output of the sensor, it is effective to increase the diameter of the detection surface of the encoder facing the sensor. For this purpose, it is conceivable that, contrary to the structure shown in FIG. 4, the encoder is arranged on the outside in the diameter direction of the sensor and the diameter of the inner peripheral surface of the encoder, which is the detection surface, is increased. Increasing the diameter of the encoder is also effective in increasing the number of poles arranged in the encoder and improving detection accuracy.
[0015]
FIG. 5 shows an encoder 31 that satisfies such a requirement and a magnetizing device 33 for magnetizing the permanent magnet 32 that constitutes the encoder 31. The encoder 31 includes an annular support ring 34 made of a metal plate and a permanent magnet 32 supported and fixed over the entire circumference of the support ring 34. The support ring 34 includes a small-diameter portion 35 for fitting and fixing to a rotating wheel such as the inner ring 5 (FIG. 4), a large-diameter portion 36 concentric with the small-diameter portion 35, and an end of the large-diameter portion 36. An annular step 37 is provided to connect the edge and the edge of the small-diameter portion 35. The permanent magnet 32 is formed in a cylindrical shape as a whole and is attached to the inner peripheral surface of the large-diameter portion 36 over the entire circumference. Then, on the inner peripheral surface of the permanent magnet 32, S poles and N poles are alternately arranged at equal intervals over the circumferential direction.
[0016]
On the other hand, a magnetizing device 33 for magnetizing the permanent magnet 32 to constitute the encoder 31 includes a plurality of magnetized terminals 39, 39 at the tip of the ferromagnetic yoke 38 (left end in FIG. 5). The permanent magnets 32 are arranged in a cylindrical shape at equal intervals in the circumferential direction at the same pitch as the pitch of the adjacent S pole and N pole. The magnetized terminals 39, 39 are diametrically extended from the outer peripheral surface of the tip of the yoke 38 by a number equal to the sum of the number of S poles and the number of N poles arranged on the inner peripheral surface of the permanent magnet 32. It is provided in a state of projecting outward, and each outer peripheral end face is long in the axial direction of the permanent magnet 32 (left and right direction in FIG. 5). Coils 40 and 40 are wound around these magnetized terminals 39 and 39, respectively. Each of the coils 40, 40 has a diametrical direction of a magnetic body (permanent magnet material, high holding force material) to be the permanent magnet 32 with the outer peripheral end faces of the magnetized terminals 39, 39 facing each other when energized. Magnetize by hitting.
[0017]
The portion surrounding the magnetized terminals 39, 39 at the tip of the yoke 38 is covered with a synthetic resin 41, and the coils 40, 40 are embedded in the synthetic resin 41. A positioning plate 42 made of a metal plate or the like is fixed to the front end surface of the synthetic resin 41. When the permanent magnet 32 is magnetized and S poles and N poles are alternately arranged on the inner peripheral surface of the permanent magnet 32, the positioning plate 42 is abutted against the step portion 37 of the support ring 34. In this state, the respective magnetized terminals 39, 39 are opposed to the inner peripheral surface of the magnetic body (permanent magnet material, high coercive force material) constituting the permanent magnet 32 over the entire length of the magnetic body. Therefore, in this state, the coils 40, 40 are energized to magnetize the magnetic body, and the permanent magnet 32 is formed with S poles and N poles alternately and equally spaced on the inner peripheral surface.
[0018]
[Problems to be solved by the invention]
When the permanent magnet 32 of the encoder 31 having the structure shown in FIG. 5 is magnetized by the conventional magnetizing device 33 as shown in FIG. 5, the edge of the permanent magnet 32 and the support ring 34 are formed. The distance L 32 from the side surface of the stepped portion 37 cannot be made sufficiently small. That is, the front end surface of the yoke 38 and the stepped portion are arranged with the outer peripheral end surfaces of the magnetized terminals 39 and 39 constituting the magnetizing device 33 and the inner peripheral surface of the magnetic material constituting the permanent magnet 32 facing each other. Between them, there is a synthetic resin 41 and a positioning plate 42 in which a part of the coil 40 is embedded. The distance L 32 is inevitably increased by this amount.
As the distance L 32 increases, the axial dimension of the encoder 31 increases correspondingly, and it becomes difficult to reduce the size and weight of the rolling bearing unit with a rotation speed detection device incorporating the encoder 31.
The magnetizing device for the encoder for the rotational speed detecting device of the present invention and the rolling bearing unit with the rotational speed detecting device incorporating the encoder have been invented in view of such circumstances.
[0019]
[Means for Solving the Problems]
As in the conventional structure shown in FIG. 5, the magnetizing device for the encoder for the rotational speed detecting device of the present invention is made of a metal plate and supported on an annular support ring and the entire circumference of the support ring. The encoder is composed of a fixed permanent magnet. The support ring includes a small-diameter portion for fitting and fixing to the rotating wheel, a large-diameter portion concentric with the small-diameter portion, and an edge of the large-diameter portion. A ring-shaped stepped portion that is continuous with the edge of the small diameter portion, and the permanent magnet is attached to the inner peripheral surface of the large diameter portion over the entire circumference, and is circumferentially connected to the inner peripheral surface. Therefore, in order to magnetize the permanent magnet of the encoder for a rotational speed detection device having a cylindrical shape in which the S pole and the N pole are alternately arranged at equal intervals, the adjacent S pole and N pole of this permanent magnet Are arranged in a cylindrical shape at equal intervals in the circumferential direction at the same pitch as the pitch of each of the outer peripheral end surfaces in the axial direction of the permanent magnet. In addition, a number of ferromagnetic magnetized terminals equal to the sum of the number of S poles and the number of N poles arranged on the inner peripheral surface of the permanent magnet are wound around these magnetized terminals. And a coil that magnetizes a magnetic body (permanent magnet material, high coercive force material) that should become the permanent magnet, with the outer peripheral end faces of each of the magnetized terminals facing each other when energized.
In particular, in the magnetizing device for the encoder for the rotational speed detecting device according to the present invention, each of the magnetized terminals is more inward than the outer peripheral end facing the inner peripheral surface of the magnetic body to be the permanent magnet. The width of the peripheral portion is narrow, and the coil is wound around the inner peripheral portion.
[0021]
[Action]
According to the magnetizing device for an encoder for a rotational speed detecting device of the present invention configured as described above, the axial dimension of the encoder can be reduced, and the rolling bearing unit with the rotational speed detecting device can be reduced in size and weight. .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an example of an embodiment of the present invention. The magnetizing device of the encoder for the rotational speed detection device of this example is characterized in that the size of the rolling bearing unit with the rotational speed detection device is reduced by shortening the axial dimension of the encoders 31a and 31b incorporating the permanent magnet 32. It is to reduce weight. Since the structure and operation of the rolling bearing unit portion are the same as those of the conventional structure shown in FIG. 4 described above, the illustration and description relating to the same parts as those of the conventional structure are omitted or simplified. Hereinafter, encoders 31a and 31b, which are characteristic parts of the present example , a magnetizing device 33a for magnetizing the permanent magnets 32 constituting the encoders 31a and 31b, and a combination of the encoders 31a and 31b, a rotational speed detecting device. A description will be given centering on the sensor 20a constituting the.
[0023]
The encoders 31a and 31b are made of a metal plate and annular support rings 34 and 34a, and a permanent magnet 32 supported and fixed over the entire circumference of the support rings 34 and 34a. Of these, the support rings 34 and 34a include a small-diameter portion 35 and 35a for fitting and fixing to a rotating wheel such as the inner ring 5 (FIG. 3), a large-diameter portion 36 concentric with the small-diameter portions 35 and 35a, An annular stepped portion 37 is provided to allow the end of the large-diameter portion 36 and the end of the small-diameter portions 35, 35a to continue. The permanent magnet 32 is a so-called rubber magnet in which a permanent magnet material powder (high holding power material powder) such as ferrite is contained in rubber, and the whole is formed in a cylindrical shape. Such a permanent magnet 32 is attached to the inner peripheral surface of the large-diameter portion 36 over the entire circumference by baking, bonding or the like. Then, on the inner peripheral surface of the permanent magnet 32, S poles and N poles are alternately arranged at equal intervals along the circumferential direction. In addition, an inward flange-shaped flange portion 43 is formed by bending the metal plate at the intermediate portion of the inner peripheral surface of the small diameter portion 35a constituting the encoder 31b shown in FIG. The flange 43 abuts against the inner end surface of the inner ring 5 in a state where the small diameter portion 35 a is fitted and fixed to the outer peripheral surface of the inner end portion of the inner ring 5. The encoder 31b is positioned in the axial direction, and the large diameter portion 36 and the inner ring 5 are concentric.
[0024]
On the other hand, a magnetizing device 33a for magnetizing the permanent magnet 32 to constitute the encoders 31a and 31b is shown in FIGS. 1 and 2 at the tip (left end in FIG. 1) of a yoke 38a made of a ferromagnetic material. A plurality of such magnetized terminals 39a, 39a are arranged in a cylindrical shape at equal intervals in the circumferential direction at the same pitch as the pitch between the adjacent S pole and N pole of the permanent magnet 32. Each of the magnetized terminals 39a, 39a is diametrically extended from the outer peripheral surface of the tip of the yoke 38a by a number equal to the sum of the number of S poles and the number of N poles arranged on the inner peripheral surface of the permanent magnet 32. It is provided in a state of projecting outward, and each outer peripheral end face is long in the axial direction of the permanent magnet 32 (left-right direction in FIGS. 1 to 3).
[0025]
Coils 40 and 40 are wound around these magnetized terminals 39a and 39a, respectively. Each of the coils 40, 40 has a diametrical direction in which a magnetic body (permanent magnet material, high coercive force material) to be the permanent magnet 32 facing the outer peripheral end face of each of the magnetized terminals 39 a, 39 a is energized. Magnetize by hitting. In particular, the magnetized terminals 39a and 39a constituting the magnetizing device 33a of this example have a width of the inner peripheral side portion as compared with the outer peripheral side end facing the inner peripheral surface of the magnetic body constituting the permanent magnet 32. It is narrow. The coils 40 and 40 are wound around an inner peripheral side portion having a narrow width. Therefore, the end portions of the coils 40 and 40 do not protrude from the front end surface (left end surface in FIG. 1) of the magnetized terminals 39a and 39a to the front end side (left side in FIG. 1).
[0026]
The portion surrounding the magnetized terminals 39a, 39a at the tip of the yoke 38a and the portion extending from the intermediate portion to the base end are covered with a synthetic resin 41a, and the coils 40, 40 are covered in the synthetic resin 41a. The coils 40 and 40 are insulated from each other. A positioning plate 42a made of a metal plate or the like is fixed at the center of the front end surface of the synthetic resin 41a. That is, a circular recess 44 is formed in a part of the synthetic resin 41a corresponding to the tip surface of the magnetizing device 33a. The positioning plate 42a is fitted in the recess 44, and the positioning plate 42a is fixed to the yoke 38a with screws 45 and 45. The inner end surfaces of the synthetic resin 41a and the positioning plate 42a are located on the same plane. The outer diameter of the positioning plate 42a is larger than the inner diameter of the stepped portion 37 of the support rings 34, 34a.
[0027]
The permanent magnet 32 is magnetized in the diameter direction by using the magnetizing device 33a configured as described above, and the S pole and the N pole are circumferentially arranged on the inner peripheral surface of the permanent magnet 32. When alternately arranged, as shown in FIG. 1, the portion near the outer periphery of the inner end face of the positioning plate 42a abuts against the stepped portion 37 of the support rings 34, 34a. In this state, as shown in FIG. 1, the magnetized terminals 39a, 39a are arranged on the inner peripheral surface of the magnetic body (permanent magnet material, high holding force material) constituting the permanent magnet 32. Opposite across the entire length. Therefore, in this state, the coils 40a and 40a are energized to magnetize the magnetic body, and S poles and N poles are arranged alternately and at equal intervals in the circumferential direction on the inner peripheral surface. The permanent magnet 32 is used.
[0028]
In the case of the magnetizing device 33a of this example , as the shape of each of the magnetized terminals 39a and 39a is devised, the tip surface of each of the magnetized terminals 39a and 39a is made near the tip surface of the magnetized device 33a. Can be located in the part. Therefore, when magnetizing the permanent magnet 32 of the encoder 31a, 31b having the structure shown in FIGS. 1 and 3 by the magnetizing device 33a of this example , the edge of the permanent magnet 32 and the support ring 34, The distance L 32 ′ from the side surface of the stepped portion 37 constituting 34a can be made sufficiently small. That is, in the state where the outer peripheral end faces of the respective magnetized terminals 39a, 39a constituting the magnetizing device 33a and the inner peripheral face of the magnetic body constituting the permanent magnet 32 are opposed to each other, the respective magnetized terminals 39a, 39a are arranged. Between the outer peripheral side end tip surface and the stepped portion 37, there is only a portion having a small thickness at the outer peripheral edge portion of the synthetic resin 41 in which a part of the coil 40 is embedded. Therefore, the distance L 32 ′ is set to a dimension of 7 mm or less, which is impossible with the above-described conventional magnetizing apparatus 33 (FIG. 5), and the axial dimensions of the encoders 31a and 31b are reduced accordingly. It is possible to reduce the size and weight of the rolling bearing unit with a rotational speed detection device incorporating these encoders 31a and 31b.
[0029]
Next, although not directly related to the gist of the present invention, the structure and operation of the sensor 20a constituting the rotational speed detection device in combination with the encoders 31a and 31b as described above will be described with reference to FIG. Briefly described. This sensor 20a is formed in an annular shape as a whole, and a detection portion provided on the outer peripheral surface is opposed to the inner peripheral surface of the permanent magnet 32 constituting the encoder 31b via a minute gap 25a. Such a sensor 20a includes first and second stators 46 and 47 and a coil 24a each formed in an annular shape.
[0030]
Among these, the first and second comb-like ends are formed on the outer peripheral edge portions of the first and second stators 46 and 47 by forming notches and protruding pieces alternately and at equal intervals, respectively. Edges 48 and 49 are formed. The pitches (center angle pitches) of the notches 50 and 50 and the projecting pieces 51 and 51 constituting the comb-shaped end edges 48 and 49 are the S pole and the N pole disposed on the inner peripheral surface of the permanent magnet 32. It is made equal to the pitch of the poles (the S pole and the N pole are combined into one pitch). Further, the phase of the first comb-like edge 48 formed on the outer peripheral edge of the first stator 46 and the second comb-like edge formed on the outer peripheral edge of the second stator 47 The phase of the portion 49 is shifted by half the pitch of the notch 50 and the protruding piece 51. Therefore, at the moment when all the projecting pieces 51 constituting the first comb-shaped end edge 48 face the south pole disposed on the inner peripheral surface of the permanent magnet 32, the second comb-shaped All the projecting pieces 51 constituting the end edge portion 49 face the N pole. Further, from this moment, at the moment when the encoder 31b is rotated by half the pitch of the notches 50 and the protruding pieces 51, all the protruding pieces 51 constituting the first comb-toothed edge 48 are All the projecting pieces 51 constituting the second comb-like end edge portion 49 face the south pole, facing the north pole disposed on the inner peripheral surface of the permanent magnet 32.
[0031]
The inner peripheral edges of the first and second stators 46 and 47 are formed at the inner peripheral edge of the second stator 47 in the first cylindrical part 52 formed at the inner peripheral edge of the first stator 46. The outer end of the second cylindrical portion 53 is externally fitted with an interference fit, thereby providing magnetic conduction. Accordingly, an alternating magnetic flux flows in the first and second stators 46 and 47 as the encoder 31b rotates. The coil 24a is configured by winding a conducting wire around a bobbin 29a whose outer peripheral side is open. An uneven engagement portion is provided between the bobbin 29a and the first and second stators 46 and 47, and the phase between the first and second stators 46 and 47 is provided via the bobbin 29a. Are regulated in the state described above. An AC voltage is induced in the coil 24a formed by winding a conducting wire around the bobbin 29a in correspondence with the alternating magnetic flux.
[0032]
The sensor 20a including the first and second stators 46 and 47 and the coil 24a as described above is embedded in a synthetic resin that forms a lid 54 that closes the inner end opening of the outer member 8. A part of the lid 54 supports a sleeve 55 that is formed of a metal plate and has an L-shaped cross section and is formed in an annular shape as a whole. When the inner end opening of the outer member 8 is closed, the sleeve 55 is fitted and fixed to the inner end opening of the outer member 8. In this state, the sensor 20a is opposed to the inner peripheral surface of the permanent magnet 32 constituting the encoder 31b over the entire circumference via the minute gap 25a. A connector 30a is formed integrally with the lid body 54 on a part of the inner surface of the lid body 54 so that an AC voltage induced in the coil 24a can be taken out. This AC voltage is sent to the controller as a signal representing the rotational speed of the hub 1 and used for controlling the ABS and TCS.
[0033]
【The invention's effect】
Since the present invention is configured and operates as described above, the overall length of the rolling bearing unit with a rotational speed detecting device can be shortened, and the rolling bearing unit with the rotational speed detecting device can be made compact and lightweight. As a result, installation in a limited space is possible, and the degree of freedom in automobile design can be increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tone wheel and a magnetizing device, showing an example of an embodiment of the present invention.
FIG. 2 is a partial perspective view of a front end portion of a magnetizing device, showing an arrangement state of magnetized terminals.
FIG. 3 is a partially enlarged cross-sectional view of a rolling bearing unit with a rotational speed detecting device incorporating a tone wheel magnetized by the magnetizing device.
FIG. 4 is a cross-sectional view showing an example of a conventional structure.
FIG. 5 is a cross-sectional view showing a conventional encoder and magnetizing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hub 2 Flange part 3 Inner ring track 4 Step part 5 Inner ring 6 Male thread part 7 Nut 8 Outer member 9 Mounting part 10 Outer ring raceway 11 Rolling element 12 Seal ring 13 Encoder 14 Small diameter part 15 Large diameter part 16 Step part 17 Through hole 18 Cover DESCRIPTION OF SYMBOLS 19 Cylindrical part 20, 20a Sensor 21 Synthetic resin 22 Permanent magnet 23 Stator 24, 24a Coil 25, 25a Minute clearance 26 Outer diameter side cylindrical part 27 Inner diameter side cylindrical part 28 Notch 29, 29a Bobbin 30, 30a Connectors 31, 31a, 31b Encoder 32 Permanent magnet 33, 33a Magnetizing device 34, 34a Support ring 35 Small diameter portion 36 Large diameter portion 37 Step portion 38, 38a Yoke 39, 39a Magnetized terminal 40 Coil 41, 41a Synthetic resin 42, 42a Positioning plate 43 位置 決 めPart 44 recess 45 screw 46 first stator 47 second stator 48 first comb Jotan'en portion 49 second comb-shaped end edge portions 50 notched 51 projecting piece 52 first cylindrical portion 53 second cylindrical portion 54 the lid 55 Sleeve

Claims (1)

金属板製で円環状の支持環と、この支持環の全周に亙って支持固定された永久磁石とから成るエンコーダで、このうちの支持環は、回転輪に嵌合固定する為の小径部と、この小径部と同心の大径部と、この大径部の端縁と上記小径部の端縁とを連続させる円輪状の段部とを備え、上記永久磁石は、上記大径部の内周面に全周に亙って添着され、その内周面に円周方向に亙ってS極及びN極を、交互に且つ等間隔で配置した円筒状である回転速度検出装置用エンコーダの上記永久磁石に着磁すべく、この永久磁石の隣り合うS極とN極とのピッチと同じピッチで円周方向に等間隔で円筒状に配置され、それぞれの外周端面が上記永久磁石の軸方向に長く、上記永久磁石の内周面に配置されたS極の数とN極の数との合計と等しい数の強磁性体製の着磁端子と、これら各着磁端子の周囲に巻回され、通電に伴って上記各着磁端子の外周端面が対向する、上記永久磁石となるべき永久磁石材料を着磁するコイルとを備えた回転速度検出装置用エンコーダの着磁装置に於いて、上記各着磁端子は、上記永久磁石材料の内周面と対向する外周側端部に比べて内周側部分の幅が狭く、上記コイルはこの内周側部分に巻回されている事を特徴とする回転速度検出装置用エンコーダの着磁装置。  An encoder made of a metal plate and made up of an annular support ring and a permanent magnet supported and fixed over the entire circumference of the support ring. The support ring has a small diameter for fitting and fixing to the rotating wheel. A large-diameter portion concentric with the small-diameter portion, and an annular stepped portion that continues the end of the large-diameter portion and the end of the small-diameter portion, and the permanent magnet includes the large-diameter portion For a rotational speed detection device having a cylindrical shape, which is attached to the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface of the inner peripheral surface. In order to magnetize the permanent magnet of the encoder, the permanent magnets are arranged in a cylindrical shape at equal intervals in the circumferential direction at the same pitch as the pitch of the adjacent S poles and N poles of the permanent magnets, and the respective outer peripheral end faces are the permanent magnets. Made of a ferromagnetic material having a number equal to the sum of the number of S poles and the number of N poles that are long in the axial direction of the permanent magnet and arranged on the inner peripheral surface of the permanent magnet. A magnetized terminal, and a coil that is wound around each of the magnetized terminals and is opposed to the outer peripheral end face of each of the magnetized terminals when energized to magnetize the permanent magnet material to be the permanent magnet. In each of the magnetizing devices of the encoder for the rotational speed detecting device, each of the magnetized terminals has a narrow inner peripheral side portion compared to an outer peripheral end facing the inner peripheral surface of the permanent magnet material. A magnetizing device for an encoder for a rotational speed detecting device, wherein the coil is wound around the inner peripheral side portion.
JP26978896A 1996-10-11 1996-10-11 Magnetizer for encoder for rotational speed detector Expired - Fee Related JP3653885B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP26978896A JP3653885B2 (en) 1996-10-11 1996-10-11 Magnetizer for encoder for rotational speed detector
US08/948,238 US5967669A (en) 1996-10-11 1997-10-09 Rolling bearing unit with rotational speed sensor
EP97308110A EP0836020B1 (en) 1996-10-11 1997-10-13 Magnetizing apparatus for the encoder of a rotational speed sensor for a rolling element bearing
EP99201715A EP0942186B1 (en) 1996-10-11 1997-10-13 Rolling bearing unit with rotating speed sensor
DE69733796T DE69733796T2 (en) 1996-10-11 1997-10-13 Magnetizing device for the encoder of a rotational speed sensor of a rolling bearing
DE69739714T DE69739714D1 (en) 1996-10-11 1997-10-13 Rolling bearing unit with rotational speed sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26978896A JP3653885B2 (en) 1996-10-11 1996-10-11 Magnetizer for encoder for rotational speed detector

Publications (2)

Publication Number Publication Date
JPH10115628A JPH10115628A (en) 1998-05-06
JP3653885B2 true JP3653885B2 (en) 2005-06-02

Family

ID=17477174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26978896A Expired - Fee Related JP3653885B2 (en) 1996-10-11 1996-10-11 Magnetizer for encoder for rotational speed detector

Country Status (1)

Country Link
JP (1) JP3653885B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4018313B2 (en) * 2000-03-01 2007-12-05 Ntn株式会社 Manufacturing method of magnetic encoder
JP4821055B2 (en) 2001-06-01 2011-11-24 株式会社ジェイテクト Magnetization method of magnetized pulsar ring
JP2003139787A (en) * 2001-10-30 2003-05-14 Mitsuba Corp Rotating speed sensor and magnetizing method of permanent magnet used in rotating speed sensor
ITTO20030868A1 (en) * 2003-11-04 2005-05-05 Skf Ab SOUND WHEEL.
JP4675063B2 (en) * 2004-06-11 2011-04-20 Ntn株式会社 Wheel bearing device with rotation sensor

Also Published As

Publication number Publication date
JPH10115628A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
EP0942186B1 (en) Rolling bearing unit with rotating speed sensor
JP3189624B2 (en) Rolling bearing unit with rotation speed detector
JP3862302B2 (en) Rolling bearing unit with rotational speed detector
JP3312531B2 (en) Hub unit with rotation speed detector
JPH08136558A (en) Rotational speed detector
JP3635707B2 (en) Rolling bearing unit with rotational speed detector
US5760576A (en) Rolling bearing unit with rotational speed sensor having a pair of annular magnets
US5744720A (en) Rolling bearing unit with rotating speed detector
JP3653885B2 (en) Magnetizer for encoder for rotational speed detector
JPH08184602A (en) Rolling bearing unit with rotating speed detector
JP3687160B2 (en) Rolling bearing unit with rotational speed detector
JPH08200355A (en) Rolling bearing unit with revolving speed detecting device
US5851074A (en) Rolling bearing unit with rotating speed detector
JPH08303452A (en) Rolling bearing unit with rotating speed detecting device
JP3948053B2 (en) Rolling bearing unit with rotational speed detector
JP3632338B2 (en) Rolling bearing unit with rotational speed detector
JPH10123158A (en) Rolling bearing unit with rotary speed detection device
JP3635700B2 (en) Rolling bearing unit with rotational speed detector
JPH1062440A (en) Rolling bearing unit with rotational speed detector
JPH1090292A (en) Rolling bearing unit with rotation speed detecting device
JPH08226438A (en) Antifriction bearing unit with rotational speed detector
JPH08194008A (en) Rolling bearing unit with rotational speed detecting device
JPH08178939A (en) Rolling bearing unit with rotating speed detecting device
JPH0840227A (en) Rolling bearing unit equipped with revolution speed detecting device
JPH0815290A (en) Revolution speed detecting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees