JP3646223B2 - Method for producing aromatic compound by electrophilic reaction and aromatic compound - Google Patents

Method for producing aromatic compound by electrophilic reaction and aromatic compound Download PDF

Info

Publication number
JP3646223B2
JP3646223B2 JP16872093A JP16872093A JP3646223B2 JP 3646223 B2 JP3646223 B2 JP 3646223B2 JP 16872093 A JP16872093 A JP 16872093A JP 16872093 A JP16872093 A JP 16872093A JP 3646223 B2 JP3646223 B2 JP 3646223B2
Authority
JP
Japan
Prior art keywords
reaction
same
aromatic compound
different
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16872093A
Other languages
Japanese (ja)
Other versions
JPH06166657A (en
Inventor
隆 大谷
日出男 高石
健治 津幡
洋 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Nohyaku Co Ltd
Original Assignee
Nihon Nohyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Nohyaku Co Ltd filed Critical Nihon Nohyaku Co Ltd
Priority to JP16872093A priority Critical patent/JP3646223B2/en
Publication of JPH06166657A publication Critical patent/JPH06166657A/en
Application granted granted Critical
Publication of JP3646223B2 publication Critical patent/JP3646223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は一般式(II)
【化13】

Figure 0003646223
〔式中、X1 又はX2 は同一又は異なっても良く、ハロゲン原子を示し、Rは
【化14】
Figure 0003646223
(式中、R1 及びR2 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、Zはシアノ基、 -CO-OR3(式中、R3 は水素原子又は低級アルキル基を示す。)又は -CO-N(R4)R5(式中、R4 及びR5 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、R4 及びR5 は一緒になってアルキレン基を示すこともできる。)を示す。)を示す。〕
で表される化合物と求電子試薬を反応させることを特徴とする一般式(I)
【化15】
Figure 0003646223
〔式中、X1 、X2 及びRは前記に同じくし、Yはニトロ基、ハロゲン原子、ハロアルキル基又は
【化16】
Figure 0003646223
(式中、R6 、R7 及びR8 は同一又は異なっても良く、水素原子、ハロゲン原子又はシアノ基を示す。)を示す。〕
で表される芳香族化合物の製造方法及び芳香族化合物に関するものである。
【0002】
【従来の技術】
ベンゼン環への求電子置換反応は古くから知られているが、本発明の一般式(II)で表される化合物から一般式(I) で表される1,2,4,5−置換のベンゼン誘導体を選択的に得られる方法は見られず、Rec.Trav.Chim.75、190(1956)には下記の方法が開示されている。
【化17】
Figure 0003646223
上記の方法では目的とする置換位置に置換基が導入されず、同時にメトキシ基も水酸基に変化し、本発明の一般式(I) に相当する置換位置に選択的に導入された化合物は得られていない。
【0003】
【発明が解決しようとする課題】
本発明者等は芳香族環上に選択的に置換基を導入する方法に関して鋭意研究を重ねた結果、本発明を完成させたものであり、本発明の製造方法による一般式(I) で表される芳香族化合物は文献未記載の新規化合物であり、医薬、農薬、化学品等の中間体として有用な化合物である。
【0004】
【課題を解決するための手段】
本発明の一般式(I) で表される芳香族化合物の製造方法を以下に詳細に説明する。
▲1▼. ニトロ化反応
【化18】
Figure 0003646223
〔式中、X1 、X2 及びRは前記に同じ。〕
本反応は一般式(II)で表される化合物を不活性溶媒の存在下にニトロ化剤により選択的にニトロ化することにより、一般式(I-1) で表される芳香族化合物を製造することができる。
【0005】
本反応で使用できる不活性溶媒としては本反応の進行を著しく阻害しないものであれば良く、例えば硝酸、硫酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸等を例示することができ、これらの不活性溶媒は単独で若しくは混合して使用することもできる。
ニトロ化剤としては、例えば硝酸、硝酸−硫酸、発煙硝酸、発煙硝酸−硫酸、硝酸−酢酸、硝酸−無水酢酸、硝酸−トリフルオロ酢酸、硝酸−トリフルオロメタンスルホン酸等を使用することができる。
ニトロ化剤の使用量は一般式(II)で表される化合物に対して等モル乃至過剰モルの範囲から適宜選択して使用すれば良い。
【0006】
反応温度は−20℃乃至150℃の範囲から選択すれば良く、好ましくは0℃〜50℃の範囲である。
反応時間は、反応温度、反応規模等により一定しないが、数分乃至100時間の範囲から選択すれば良い。
反応終了後、目的物を含む反応系から常法、例えば溶媒抽出等により単離し、必要に応じて再結晶等により精製することにより、目的物を製造することができる。
【0007】
▲2▼. ハロゲン化反応
【化19】
Figure 0003646223
〔式中、X1 、X2 及びRは前記に同じくし、Y1 はハロゲン原子を示す。〕
本反応は一般式(II)で表される化合物を不活性溶媒の存在下にハロゲン化剤により選択的にハロゲン化することにより、一般式(I-2) で表される芳香族化合物を製造することができる。
【0008】
本反応で使用できる不活性溶媒としては本反応の進行を著しく阻害しないものであれば良く、例えばジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素類、硫酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、スルホラン等を例示することができ、これらの不活性溶媒は単独で若しくは混合して使用することもできる。
ハロゲン化剤としては、例えば塩素、臭素、塩素−臭素、臭素−塩化アルミニウム、臭素−鉄、臭素−硫酸銀等を使用することができる。
【0009】
ハロゲン化剤の使用量は一般式(II)で表される化合物に対して等モル乃至過剰モルの範囲から適宜選択して使用すれば良い。
反応温度は0℃乃至150℃の範囲から選択すれば良く、好ましくは20℃〜100℃の範囲である。
反応時間は、反応温度、反応規模等により一定しないが、数分乃至100時間の範囲から選択すれば良い。
反応終了後、目的物を含む反応系から常法、例えば溶媒抽出等により単離し、必要に応じて再結晶等により精製することにより、目的物を製造することができる。
【0010】
▲3▼.フリ−デルクラフツ反応
【化20】
Figure 0003646223
〔式中、X1 、X2 及びRは前記に同じくし、Y1 はハロアルキル基又は
【化21】
Figure 0003646223
(式中、R6 、R7 及びR8 は同一又は異なっても良く、水素原子、ハロゲン原子又はシアノ基を示す。)を示し、X3 はハロゲン原子を示し、X4 は同一又は異なっても良く、ハロゲン原子を示す。〕
本反応は一般式(II)で表される化合物を不活性溶媒の存在下又は不存在下及び塩類の存在下又は不存在下にルイス酸及び一般式(III) 、一般式(IV)又は一般式(V) で表される化合物と反応させることにより、一般式(I-3) で表される芳香族化合物を製造することができる。
【0011】
本反応では不活性溶媒の存在下又は不存在下に反応は進行し、不活性溶媒を使用する場合は、例えばニトロメタン等のニトロアルカン類、ジクロロメタン、四塩化炭素、テトラクロロエタン、ジクロロエタン等のハロゲン化炭化水素類、ニトロベンゼン等の芳香族炭化水素類、N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類、N,N,N' ,N' −テトラメチルウレア、N,N−ジメチルイミダゾリノン等のウレア類、ピリジン、トリエチルアミン等の有機塩基、二硫化炭素、ジメチルスルホキシド、スルホラン等の有機硫黄化合物、エタノ−ル、エチレングリコ−ル等のアルコ−ル類、アセトニトリル、ベンゾニトリル等のニトリル類、オキシ塩化リン、ヘキサメチルホスホロアミド等の有機リン化合物等の不活性溶媒を使用することができ、これらの不活性溶媒は単独で若しくは混合して使用することもできる。
【0012】
不活性溶媒の使用量は特に限定されるものではないが、好ましくは一般式(II)で表される化合物に対して0.5〜10倍モルの範囲で使用するのが良い。
本発明で使用できる塩類としては、例えば塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、テトラメチルアンモニウムクロリド等のアンモニウム塩、トリフルオロメタンスルホン酸ナトリウム等のスルホン酸塩等を例示することができ、これらの塩類は単独で又は混合して使用することができる。
塩類の使用量は一般式(II)で表される化合物に対して0.5倍モル乃至10倍モルの範囲から適宜選択して使用すれば良い。
ルイス酸としては、例えばAlCl3 、AlBr3 、AlI3 、FeCl3 、FeBr3 、TiCl4 、SnCl4 、ZnCl2 、GaCl3 等のルイス酸を使用することができる。
ルイス酸の使用量は一般式(II)で表される化合物に対して等モル乃至過剰モルの範囲から適宜選択して使用すれば良く、好ましくは3〜8倍モルの範囲である。
一般式(III) 、一般式(IV)又は一般式(V) で表される化合物の使用量は一般式(II)で表される化合物に対して0.5モル乃至2倍モルの範囲から適宜選択して使用すれば良い。
【0013】
又、一般式(V) で表される化合物は反応剤及び不活性溶媒として使用することもでき、この場合には大過剰に使用することもできる。
反応温度は0℃乃至180℃の範囲から選択すれば良く、好ましくは60℃〜100℃の範囲である。
反応時間は、反応温度、反応規模等により一定しないが、数分乃至100時間の範囲から選択すれば良い。
反応終了後、目的物を含む反応系から常法、例えば溶媒抽出等により単離し、必要に応じて再結晶等により精製することにより、目的物を製造することができる。
【0014】
【実施例】
以下に本発明の代表的な実施例を挙げるが、本発明はこれらに限定されるものではない。
【0015】
実施例1 (2−クロロ−4−フルオロ−5−ニトロフェノキシ)アセトアミドの製造(No1)
【化22】
Figure 0003646223
(2−クロロ−4−フルオロフェノキシ)アセトニトリル3.7g(0.02モル)を97%硫酸8mlに溶解し、この溶液に60−62%硝酸2.5ml及び97%硫酸5.8mlを混合した混酸を、攪拌下に10℃以下で加えた後、室温で1.5時間反応を行った。
反応終了後、反応液を氷水中に注ぎ、析出する結晶を濾集して水洗・乾燥することにより目的物を黄色粗結晶として3.4g得た(収率 68%)。
得られた粗結晶を酢酸エチルから再結晶することにより目的物を淡黄色結晶として2.5g得た。
物性 m.p.182−182.5℃ 収率 50.5%
NMR〔DMSO/TMS, δ値(ppm) 〕
4.75(s,2H), 7.50(bd 2H,J=0.6Hz), 7.75(d,2H,J=7Hz),
7.97(d,2H, J=11Hz).
【0016】
実施例2 (2−クロロ−4−フルオロ−5−ニトロフェノキシ)アセトアミドの製造(No1)
【化23】
Figure 0003646223
実施例1で使用した(2−クロロ−4−フルオロフェノキシ)アセトニトリルにかえて、(2−クロロ−4−フルオロフェノキシ)アセトアミド4.1g(0.02モル)を使用して、実施例1と同様にして5時間反応を行い、目的物3.6gを得た。
収率 72.4%
【0017】
実施例3 (2−クロロ−4−フルオロ−5−ニトロフェノキシ)酢酸の製造(No2)
【化24】
Figure 0003646223
(2−クロロ−4−フルオロフェノキシ)酢酸エチル4.6g(0.02モル)を実施例1と同様にして1時間反応させた後、室温下に一昼夜放置した。
反応終了後、目的物を含む反応液を氷水中に注いで目的物を酢酸エチルで抽出した。
抽出液を水洗して硫酸マグネシウムで乾燥後、溶媒を減圧下に留去し、得られた残渣をシリカゲルカラムクロマトグラフィ−(CH2Cl2-CH3OH) で精製することにより黄土色結晶として1.3gの目的物を得た。
収率 30.2%
NMR〔DMSO/TMS, δ値(ppm) 〕
4.57(s,2H), 7.50(bd,2H,J=0.6Hz), 7.75(d,2H,J=7Hz), 7.97(d,2H,J=11Hz) , 13.90(bs,1H),
【0018】
実施例4 (5−ブロモ−2−クロロ−4−フルオロフェノキシ)アセトニトリルの製造(No3)
【化25】
Figure 0003646223
無水塩化アルミニウム1.0g(7.5ミリモル)を塩化メチレン10mlに懸濁させ、該懸濁液に(2−クロロ−4−フルオロフェノキシ)アセトニトリル1.0g(5.4ミリモル)を加えて還流下に臭素0.95g(5.9ミリモル)を滴下し、滴下終了後に還流下で2時間反応を行った。
反応終了後、反応系を放冷して反応液を氷水中に注ぎ、目的物をエ−テルで抽出した。
抽出液を水、10%チオ硫酸ナトリウム水溶液、飽和食塩水の順に洗浄し、硫酸マグネシウムで乾燥後に溶媒を減圧下に留去し、得られた残渣をn−ヘキサンから再結晶することにより目的物1.1gを得た。
物性 m.p. 72.3℃ 収率 77%
【0019】
実施例5 (2−クロロ−5−クロロアセチル−4−フルオロフェノキシ)アセトアミドの製造(No6)
【化26】
Figure 0003646223
無水塩化アルミニウム2.0g(15.0ミリモル)及び塩化クロロアセチル0.85g(7.5ミリモル)を混合して80℃に加熱し、(2−クロロ−4−フルオロフェノキシ)アセトアミド1.0g(4.9ミリモル)を加えて90℃で9時間反応を行った。
反応終了後、反応液を80℃に冷却して酢酸5mlを加えて内容物を氷水中に注ぎ、析出する結晶を濾集してエタノ−ルから再結晶することにより目的物を1.0g得た。
物性 m.p. 166.3℃ 収率 73%
【0020】
実施例6 (2−クロロ−5−ジクロロアセチル−4−フルオロフェノキシ)アセトアミドの製造(No7)
【化27】
Figure 0003646223
無水塩化アルミニウム2.0g(15.0ミリモル)及び塩化ジクロロアセチル0.93g(6.3ミリモル)を混合して50℃に加熱し、(2−クロロ−4−フルオロフェノキシ)アセトアミド1.0g(4.9ミリモル)を加えて70−80℃で8時間反応を行った。
反応終了後,反応液を放冷して氷水を加えて2時間攪拌し、目的物を酢酸エチルで抽出し、抽出液を水洗、硫酸マグネシウムで乾燥後、酢酸エチルを減圧下に留去して得られた残渣をシリカゲルカラムクロマトグラフィ−で精製することにより目的物を0.5g得た。
物性 m.p. 132.3℃ 収率 33%
【0021】
実施例7 (2−クロロ−5−クロロアセチル−4−フルオロフェノキシ)アセトニトリルの製造(No11)
【化28】
Figure 0003646223
無水塩化アルミニウム2.0g(15.0ミリモル)及び塩化クロロアセチル0.85g(7.5ミリモル)を混合して60℃に加熱し、(2−クロロ−4−フルオロフェノキシ)アセトニトリル0.9g(4.0ミリモル)を加えて70℃で3時間反応を行った。
反応終了後、反応液を氷水中に注いで1時間攪拌をし、析出した結晶を濾集してエタノ−ルから再結晶することにより目的物を0.93g得た。
物性 m.p. 122.1℃ 収率 73%
【0022】
実施例8 (2−クロロ−5−ジクロロアセチル−4−フルオロフェノキシ)アセトニトリルの製造(No13)
【化29】
Figure 0003646223
無水塩化アルミニウム2.0g(15.0ミリモル)、塩化ジクロロアセチル0.93g(6.3ミリモル)及び(2−クロロ−4−フルオロフェノキシ)アセトニトリル0.9g(4.9ミリモル)を混合し60℃で2時間反応を行った。
反応終了後,反応液を放冷してニトロメタン5mlを加えて氷水中に注ぎ、目的物を酢酸エチルで抽出し、抽出液を水洗、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去して得られた残渣をシリカゲルカラムクロマトグラフィ−で精製することにより目的物を0.97g得た。
物性 m.p. 98.7℃ 収率 67%
【0023】
実施例9 (2−クロロ−4−フルオロ−5−トリクロロメチルフェノキシ)アセトニトリルの製造(No14)
【化30】
Figure 0003646223
無水塩化アルミニウム1.5g(11.2ミリモル)を四塩化炭素10mlに懸濁させ、60℃で(2−クロロ−4−フルオロフェノキシ)アセトニトリル1.0g(5.4ミリモル)を滴下し、滴下終了後60℃で1時間反応を行った。
反応終了後,反応液を放冷して氷水を加えて1時間攪拌し、目的物を酢酸エチルで抽出し、抽出液を水洗、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去して得られた残渣をシリカゲルカラムクロマトグラフィ−で精製することにより目的物を油状物として1.2g得た。
物性 油状物 収率 72%
NMR〔CDCl3/TMS,δ値(ppm) 〕
4.88(s,2H), 7.09(d,1H,J=10.4Hz), 7.79(d,1H,J=7.1Hz).
【0024】
実施例10 (2−クロロ−5−シアノアセチル−4−フルオロフェノキシ)アセトニトリルの製造(No17)
【化31】
Figure 0003646223
無水塩化アルミニウム4.5g(33.6ミリモル)にジメチルホルムアミド(DMF)0.57g(7.8ミリモル)を加え、該反応液に(2−クロロ−4−フルオロフェノキシ)アセトニトリル1.0g(5.6ミリモル)を室温下に加え、次いでシアノアセチルクロリド2.9g(28.0ミリモル)を徐々に滴下し、滴下終了後、55℃で3時間反応を行った。
反応終了後、反応液を薄層クロマトグラフィ−及びガスクロマトグラフィ−(面積百分率7.0%)により分析し、標品と一致することにより目的物の精製を確認した。
【0025】
以下、一般式(I) で表される芳香族化合物を第1表に示す。
【表1】
Figure 0003646223
【0026】
【表2】
Figure 0003646223
[0001]
[Industrial application fields]
The present invention is a compound of the general formula (II)
Embedded image
Figure 0003646223
[Wherein X 1 or X 2 may be the same or different and each represents a halogen atom, and R represents
Figure 0003646223
(Wherein R 1 and R 2 may be the same or different and each represents a hydrogen atom or a lower alkyl group, Z represents a cyano group, —CO—OR 3 (wherein R 3 represents a hydrogen atom or a lower alkyl group) Or —CO—N (R 4 ) R 5 (wherein R 4 and R 5 may be the same or different and each represents a hydrogen atom or a lower alkyl group, and R 4 and R 5 are taken together) An alkylene group can also be represented.) ]
A compound represented by the general formula (I):
Embedded image
Figure 0003646223
[Wherein X 1 , X 2 and R are the same as defined above, and Y represents a nitro group, a halogen atom, a haloalkyl group, or
Figure 0003646223
(Wherein R 6 , R 7 and R 8 may be the same or different and each represents a hydrogen atom, a halogen atom or a cyano group). ]
The present invention relates to a method for producing an aromatic compound represented by formula (1) and an aromatic compound.
[0002]
[Prior art]
Although the electrophilic substitution reaction on the benzene ring has been known for a long time, the 1,2,4,5-substituted compound represented by the general formula (I) is represented by the compound represented by the general formula (II) of the present invention. There is no method for selectively obtaining a benzene derivative. Trav. Chim. 75 , 190 (1956) discloses the following method.
Embedded image
Figure 0003646223
In the above method, a substituent is not introduced at the target substitution position, and at the same time, the methoxy group is changed to a hydroxyl group, and a compound selectively introduced at the substitution position corresponding to the general formula (I) of the present invention is obtained. Not.
[0003]
[Problems to be solved by the invention]
The inventors of the present invention have completed the present invention as a result of intensive studies on a method for selectively introducing a substituent onto an aromatic ring, and are represented by the general formula (I) according to the production method of the present invention. The aromatic compound to be used is a novel compound not described in any literature, and is useful as an intermediate for pharmaceuticals, agricultural chemicals, chemicals and the like.
[0004]
[Means for Solving the Problems]
The method for producing the aromatic compound represented by the general formula (I) of the present invention will be described in detail below.
▲ 1 ▼. Nitration Reaction
Figure 0003646223
[Wherein, X 1 , X 2 and R are the same as above. ]
This reaction produces an aromatic compound represented by the general formula (I-1) by selectively nitrating the compound represented by the general formula (II) with a nitrating agent in the presence of an inert solvent. can do.
[0005]
The inert solvent that can be used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction. Examples thereof include nitric acid, sulfuric acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and the like. The active solvents can be used alone or in combination.
As the nitrating agent, for example, nitric acid, nitric acid-sulfuric acid, fuming nitric acid, fuming nitric acid-sulfuric acid, nitric acid-acetic acid, nitric acid-acetic anhydride, nitric acid-trifluoroacetic acid, nitric acid-trifluoromethanesulfonic acid and the like can be used.
The amount of the nitrating agent used may be appropriately selected from the range of equimolar to excess molar relative to the compound represented by the general formula (II).
[0006]
What is necessary is just to select reaction temperature from the range of -20 degreeC thru | or 150 degreeC, Preferably it is the range of 0 degreeC-50 degreeC.
The reaction time is not constant depending on the reaction temperature, reaction scale, etc., but may be selected from the range of several minutes to 100 hours.
After completion of the reaction, the target product can be produced by isolating it from the reaction system containing the target product by a conventional method such as solvent extraction, and purifying it by recrystallization as necessary.
[0007]
(2) Halogenation reaction
Figure 0003646223
[Wherein, X 1 , X 2 and R are the same as defined above, and Y 1 represents a halogen atom. ]
This reaction produces an aromatic compound represented by general formula (I-2) by selectively halogenating a compound represented by general formula (II) with a halogenating agent in the presence of an inert solvent. can do.
[0008]
The inert solvent that can be used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction. For example, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, sulfuric acid, acetic acid, trifluoroacetic acid, Examples thereof include trifluoromethanesulfonic acid, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, sulfolane and the like, and these inert solvents can be used alone or in combination.
As the halogenating agent, for example, chlorine, bromine, chlorine-bromine, bromine-aluminum chloride, bromine-iron, bromine-silver sulfate and the like can be used.
[0009]
The amount of the halogenating agent used may be appropriately selected from an equimolar to excess molar range relative to the compound represented by the general formula (II).
What is necessary is just to select reaction temperature from the range of 0 to 150 degreeC, Preferably it is the range of 20 to 100 degreeC.
The reaction time is not constant depending on the reaction temperature, reaction scale, etc., but may be selected from the range of several minutes to 100 hours.
After completion of the reaction, the target product can be produced by isolating it from the reaction system containing the target product by a conventional method such as solvent extraction, and purifying it by recrystallization as necessary.
[0010]
(3). Friedel-Crafts reaction
Figure 0003646223
[Wherein X 1 , X 2 and R are the same as defined above, and Y 1 represents a haloalkyl group or
Figure 0003646223
(Wherein R 6 , R 7 and R 8 may be the same or different and each represents a hydrogen atom, a halogen atom or a cyano group), X 3 represents a halogen atom, and X 4 is the same or different. Well, it represents a halogen atom. ]
This reaction involves reacting a compound represented by general formula (II) with a Lewis acid and general formula (III), general formula (IV) or general formula in the presence or absence of an inert solvent and in the presence or absence of salts. By reacting with the compound represented by the formula (V), an aromatic compound represented by the general formula (I-3) can be produced.
[0011]
In this reaction, the reaction proceeds in the presence or absence of an inert solvent. When an inert solvent is used, for example, nitroalkanes such as nitromethane, halogenated compounds such as dichloromethane, carbon tetrachloride, tetrachloroethane, and dichloroethane. Hydrocarbons, aromatic hydrocarbons such as nitrobenzene, amides such as N-methylpyrrolidone and N, N-dimethylformamide, N, N, N ′, N′-tetramethylurea, N, N-dimethylimidazolinone Ureas such as pyridine, organic bases such as pyridine and triethylamine, organic sulfur compounds such as carbon disulfide, dimethyl sulfoxide and sulfolane, alcohols such as ethanol and ethylene glycol, and nitriles such as acetonitrile and benzonitrile , Inert solvents such as organic phosphorus compounds such as phosphorus oxychloride and hexamethylphosphoramide These inert solvents can be used alone or in combination.
[0012]
The amount of the inert solvent used is not particularly limited, but it is preferably used in a range of 0.5 to 10 moles relative to the compound represented by the general formula (II).
Examples of salts that can be used in the present invention include ammonium salts such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, tetramethylammonium chloride, trifluoromethanesulfonic acid, and the like. Examples thereof include sulfonates such as sodium, and these salts can be used alone or in combination.
The amount of salts used may be appropriately selected from the range of 0.5 to 10 moles relative to the compound represented by the general formula (II).
As the Lewis acid, for example, a Lewis acid such as AlCl 3 , AlBr 3 , AlI 3 , FeCl 3 , FeBr 3 , TiCl 4 , SnCl 4 , ZnCl 2 , and GaCl 3 can be used.
The amount of Lewis acid used may be appropriately selected from the range of equimolar to excess molar with respect to the compound represented by the general formula (II), and is preferably in the range of 3 to 8 times mol.
The amount of the compound represented by the general formula (III), the general formula (IV) or the general formula (V) is used in a range of 0.5 mol to 2 times the amount of the compound represented by the general formula (II). What is necessary is just to select and use suitably.
[0013]
The compound represented by the general formula (V) can also be used as a reactant and an inert solvent, and in this case, it can be used in a large excess.
What is necessary is just to select reaction temperature from the range of 0 to 180 degreeC, Preferably it is the range of 60 to 100 degreeC.
The reaction time is not constant depending on the reaction temperature, reaction scale, etc., but may be selected from the range of several minutes to 100 hours.
After completion of the reaction, the target product can be produced by isolating it from the reaction system containing the target product by a conventional method such as solvent extraction, and purifying it by recrystallization as necessary.
[0014]
【Example】
Although the typical example of this invention is given to the following, this invention is not limited to these.
[0015]
Example 1 Production of (2-chloro-4-fluoro-5-nitrophenoxy) acetamide (No 1)
Embedded image
Figure 0003646223
3.7 g (0.02 mol) of (2-chloro-4-fluorophenoxy) acetonitrile was dissolved in 8 ml of 97% sulfuric acid, and this solution was mixed with 2.5 ml of 60-62% nitric acid and 5.8 ml of 97% sulfuric acid. The mixed acid was added at 10 ° C. or lower with stirring, and then reacted at room temperature for 1.5 hours.
After completion of the reaction, the reaction solution was poured into ice water, and the precipitated crystals were collected by filtration, washed with water and dried to obtain 3.4 g of the desired product as yellow crude crystals (yield 68%).
The obtained crude crystals were recrystallized from ethyl acetate to obtain 2.5 g of the intended product as pale yellow crystals.
Physical properties mp182-182.5 ° C Yield 50.5%
NMR (DMSO / TMS, δ value (ppm))
4.75 (s, 2H), 7.50 (bd 2H, J = 0.6Hz), 7.75 (d, 2H, J = 7Hz),
7.97 (d, 2H, J = 11 Hz).
[0016]
Example 2 Production of (2-chloro-4-fluoro-5-nitrophenoxy) acetamide (No 1)
Embedded image
Figure 0003646223
In place of (2-chloro-4-fluorophenoxy) acetonitrile used in Example 1, 4.1 g (0.02 mol) of (2-chloro-4-fluorophenoxy) acetamide was used. Similarly, the reaction was performed for 5 hours to obtain 3.6 g of the desired product.
Yield 72.4%
[0017]
Example 3 Production of (2-chloro-4-fluoro-5-nitrophenoxy) acetic acid (No 2)
Embedded image
Figure 0003646223
After reacting 4.6 g (0.02 mol) of ethyl (2-chloro-4-fluorophenoxy) acetate for 1 hour in the same manner as in Example 1, the mixture was allowed to stand at room temperature for a whole day and night.
After completion of the reaction, the reaction solution containing the target product was poured into ice water, and the target product was extracted with ethyl acetate.
The extract was washed with water and dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (CH 2 Cl 2 -CH 3 OH) to give 1 as ocher crystals. .3 g of the target product was obtained.
Yield 30.2%
NMR (DMSO / TMS, δ value (ppm))
4.57 (s, 2H), 7.50 (bd, 2H, J = 0.6Hz), 7.75 (d, 2H, J = 7Hz), 7.97 (d, 2H, J = 11Hz), 13.90 (bs, 1H),
[0018]
Example 4 Production of (5-bromo-2-chloro-4-fluorophenoxy) acetonitrile (No 3)
Embedded image
Figure 0003646223
1.0 g (7.5 mmol) of anhydrous aluminum chloride is suspended in 10 ml of methylene chloride, and 1.0 g (5.4 mmol) of (2-chloro-4-fluorophenoxy) acetonitrile is added to the suspension and refluxed. Below, 0.95 g (5.9 mmol) of bromine was added dropwise, and after completion of the addition, the reaction was carried out under reflux for 2 hours.
After completion of the reaction, the reaction system was allowed to cool, the reaction solution was poured into ice water, and the target product was extracted with ether.
The extract is washed with water, 10% aqueous sodium thiosulfate and saturated brine in that order, dried over magnesium sulfate, the solvent is distilled off under reduced pressure, and the resulting residue is recrystallized from n-hexane. 1.1 g was obtained.
Physical properties mp 72.3 ° C Yield 77%
[0019]
Example 5 Production of (2-chloro-5-chloroacetyl-4-fluorophenoxy) acetamide (No 6)
Embedded image
Figure 0003646223
Anhydrous aluminum chloride 2.0 g (15.0 mmol) and chloroacetyl chloride 0.85 g (7.5 mmol) were mixed and heated to 80 ° C., and (2-chloro-4-fluorophenoxy) acetamide 1.0 g ( (4.9 mmol) was added and the reaction was carried out at 90 ° C. for 9 hours.
After completion of the reaction, the reaction solution is cooled to 80 ° C., 5 ml of acetic acid is added, the contents are poured into ice water, and the precipitated crystals are collected by filtration and recrystallized from ethanol to obtain 1.0 g of the desired product. It was.
Physical properties mp 166.3 ° C Yield 73%
[0020]
Example 6 Production of (2-chloro-5-dichloroacetyl-4-fluorophenoxy) acetamide (No 7)
Embedded image
Figure 0003646223
2.0 g (15.0 mmol) of anhydrous aluminum chloride and 0.93 g (6.3 mmol) of dichloroacetyl chloride were mixed and heated to 50 ° C., and 1.0 g of (2-chloro-4-fluorophenoxy) acetamide ( (4.9 mmol) was added and the reaction was carried out at 70-80 ° C. for 8 hours.
After completion of the reaction, the reaction solution is allowed to cool, ice water is added and stirred for 2 hours, the target product is extracted with ethyl acetate, the extract is washed with water and dried over magnesium sulfate, and the ethyl acetate is distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.5 g of the desired product.
Physical properties mp 132.3 ° C Yield 33%
[0021]
Example 7 Production of (2-chloro-5-chloroacetyl-4-fluorophenoxy) acetonitrile (No 11)
Embedded image
Figure 0003646223
2.0 g (15.0 mmol) of anhydrous aluminum chloride and 0.85 g (7.5 mmol) of chloroacetyl chloride were mixed and heated to 60 ° C., and 0.9 g of (2-chloro-4-fluorophenoxy) acetonitrile ( 4.0 mmol) was added and the reaction was carried out at 70 ° C. for 3 hours.
After completion of the reaction, the reaction solution was poured into ice water and stirred for 1 hour. The precipitated crystals were collected by filtration and recrystallized from ethanol to obtain 0.93 g of the desired product.
Physical properties mp 122.1 ° C Yield 73%
[0022]
Example 8 Production of (2-chloro-5-dichloroacetyl-4-fluorophenoxy) acetonitrile (No 13)
Embedded image
Figure 0003646223
A mixture of 2.0 g (15.0 mmol) of anhydrous aluminum chloride, 0.93 g (6.3 mmol) of dichloroacetyl chloride and 0.9 g (4.9 mmol) of (2-chloro-4-fluorophenoxy) acetonitrile was mixed. The reaction was carried out at 2 ° C. for 2 hours.
After completion of the reaction, the reaction solution is allowed to cool, 5 ml of nitromethane is added and poured into ice water, the target product is extracted with ethyl acetate, the extract is washed with water and dried over magnesium sulfate, and the solvent is distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.97 g of the desired product.
Physical properties mp 98.7 ° C Yield 67%
[0023]
Example 9 Production of (2-chloro-4-fluoro-5-trichloromethylphenoxy) acetonitrile (No 14)
Embedded image
Figure 0003646223
Anhydrous aluminum chloride (1.5 g, 11.2 mmol) is suspended in carbon tetrachloride (10 ml), and (2-chloro-4-fluorophenoxy) acetonitrile (1.0 g, 5.4 mmol) is added dropwise at 60 ° C. Reaction was performed at 60 degreeC after completion | finish for 1 hour.
After completion of the reaction, the reaction solution is allowed to cool, ice water is added and stirred for 1 hour, the target product is extracted with ethyl acetate, the extract is washed with water and dried over magnesium sulfate, and the solvent is distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 1.2 g of the desired product as an oil.
Physical properties Oily substance Yield 72%
NMR (CDCl 3 / TMS, δ value (ppm))
4.88 (s, 2H), 7.09 (d, 1H, J = 10.4Hz), 7.79 (d, 1H, J = 7.1Hz).
[0024]
Example 10 Production of (2-chloro-5-cyanoacetyl-4-fluorophenoxy) acetonitrile (No 17)
Embedded image
Figure 0003646223
0.57 g (7.8 mmol) of dimethylformamide (DMF) was added to 4.5 g (33.6 mmol) of anhydrous aluminum chloride, and 1.0 g of (2-chloro-4-fluorophenoxy) acetonitrile (5 .6 mmol) was added at room temperature, and then 2.9 g (28.0 mmol) of cyanoacetyl chloride was gradually added dropwise. After completion of the addition, the reaction was carried out at 55 ° C. for 3 hours.
After completion of the reaction, the reaction solution was analyzed by thin layer chromatography and gas chromatography (area percentage: 7.0%), and the purity of the target product was confirmed by matching with the standard product.
[0025]
The aromatic compounds represented by the general formula (I) are shown in Table 1 below.
[Table 1]
Figure 0003646223
[0026]
[Table 2]
Figure 0003646223

Claims (5)

一般式(II)
Figure 0003646223
〔式中、X1 又はX2 は同一又は異なっても良く、ハロゲン原子を示し、Rは
Figure 0003646223
(式中、R1 及びR2 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、Zはシアノ基、 -CO-OR3(式中、R3 は水素原子又は低級アルキル基を示す。)又は -CO-N(R4)R5(式中、R4 及びR5 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、R4 及びR5 は一緒になってアルキレン基を示すこともできる。)を示す。)を示す。〕
で表される化合物と求電子試薬を反応させることを特徴とする一般式(I)
Figure 0003646223
〔式中、X1 、X2 及びRは前記に同じくし、Yはニトロ基、ハロゲン原子、ハロアルキル基又は
Figure 0003646223
(式中、R6 、R7 及びR8 は同一又は異なっても良く、水素原子、ハロゲン原子又はシアノ基を示す。)を示す。〕
で表される芳香族化合物の製造方法。
Formula (II)
Figure 0003646223
[Wherein X 1 or X 2 may be the same or different and each represents a halogen atom;
Figure 0003646223
(Wherein R 1 and R 2 may be the same or different and each represents a hydrogen atom or a lower alkyl group, Z represents a cyano group, —CO—OR 3 (wherein R 3 represents a hydrogen atom or a lower alkyl group) Or —CO—N (R 4 ) R 5 (wherein R 4 and R 5 may be the same or different and each represents a hydrogen atom or a lower alkyl group, and R 4 and R 5 are taken together) An alkylene group can also be represented.) ]
A compound represented by the general formula (I):
Figure 0003646223
[Wherein, X 1 , X 2 and R are the same as defined above, and Y represents a nitro group, a halogen atom, a haloalkyl group or
Figure 0003646223
(Wherein R 6 , R 7 and R 8 may be the same or different and each represents a hydrogen atom, a halogen atom or a cyano group). ]
The manufacturing method of the aromatic compound represented by these.
求電子試薬がニトロ化剤である請求項第1項記載の芳香族化合物の製造方法。  The method for producing an aromatic compound according to claim 1, wherein the electrophile is a nitrating agent. 求電子試薬がハロゲン化剤である請求項第1項記載の芳香族化合物の製造方法。  The method for producing an aromatic compound according to claim 1, wherein the electrophile is a halogenating agent. 求電子試薬がルイス酸及び一般式(III)
Figure 0003646223
一般式(IV)
Figure 0003646223
又は一般式(V)
C(X4)4 (V)
〔式中、R6 、R7 及びR8 は同一又は異なっても良く、水素原子、ハロゲン原子又はシアノ基を示し、X3 はハロゲン原子を示し、X4 は同一又は異なっても良いハロゲン原子を示す。〕
で表される化合物との組み合わせである請求項第1項記載の芳香族化合族の製造方法。
Electrophiles are Lewis acids and general formula (III)
Figure 0003646223
Formula (IV)
Figure 0003646223
Or general formula (V)
C (X 4 ) 4 (V)
[Wherein R 6 , R 7 and R 8 may be the same or different, each represents a hydrogen atom, a halogen atom or a cyano group, X 3 represents a halogen atom, and X 4 represents a halogen atom which may be the same or different. Indicates. ]
The method for producing an aromatic compound according to claim 1, which is a combination with a compound represented by formula (1).
一般式(I)
Figure 0003646223
〔式中、X1 又はX2 は同一又は異なっても良く、ハロゲン原子を示し、Rは
Figure 0003646223
(式中、R1 及びR2 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、Zはシアノ基又は -CO-N(R4)R5(式中、R4 及びR5 は同一又は異なっても良く、水素原子又は低級アルキル基を示し、R4 及びR5 は一緒になってアルキレン基を示すこともできる。)を示す。)を示し、Yはハロアルキル基又は
Figure 0003646223
(式中、R6 、R7 及びR8 は同一又は異なっても良く、水素原子、ハロゲン原子又はシアノ基を示す。)を示す。〕
で表される芳香族化合物。
Formula (I)
Figure 0003646223
[Wherein X 1 or X 2 may be the same or different and each represents a halogen atom;
Figure 0003646223
(Wherein, R 1 and R 2 may be the same or different, a hydrogen atom or a lower alkyl group, Z is in the cyano group or -CO-N (R 4) R 5 ( wherein, R 4 and R 5 may be the same or different, a hydrogen atom or a lower alkyl group, R 4 and R 5 may also be an alkylene group together.) shows a.) indicates, Y Ha Roarukiru group or
Figure 0003646223
(Wherein R 6 , R 7 and R 8 may be the same or different and each represents a hydrogen atom, a halogen atom or a cyano group) . ]
An aromatic compound represented by
JP16872093A 1992-06-16 1993-06-15 Method for producing aromatic compound by electrophilic reaction and aromatic compound Expired - Fee Related JP3646223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16872093A JP3646223B2 (en) 1992-06-16 1993-06-15 Method for producing aromatic compound by electrophilic reaction and aromatic compound

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18185792 1992-06-16
JP28959692 1992-10-03
JP4-181857 1992-10-03
JP4-289596 1992-10-03
JP16872093A JP3646223B2 (en) 1992-06-16 1993-06-15 Method for producing aromatic compound by electrophilic reaction and aromatic compound

Publications (2)

Publication Number Publication Date
JPH06166657A JPH06166657A (en) 1994-06-14
JP3646223B2 true JP3646223B2 (en) 2005-05-11

Family

ID=27323054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16872093A Expired - Fee Related JP3646223B2 (en) 1992-06-16 1993-06-15 Method for producing aromatic compound by electrophilic reaction and aromatic compound

Country Status (1)

Country Link
JP (1) JP3646223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI991517A1 (en) * 1999-07-09 2001-01-09 Nicox Sa PROCEDURE FOR OBTAINING EXTERNAL NITROXYMETHYL FENYL OF SALICYLIC ACID DERIVATIVES

Also Published As

Publication number Publication date
JPH06166657A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JP3646223B2 (en) Method for producing aromatic compound by electrophilic reaction and aromatic compound
KR0163206B1 (en) Process for producing an aromatic compound by electrophilic reaction and aromatic compound derivatives
JP3002791B2 (en) Benzyl phenyl ketone derivative
JP3101721B2 (en) Method for producing aromatic fluorine compound
JP4127867B2 (en) N-substituted cis-N-propenyl-acetamide and process for producing the same
US5874466A (en) Process for the manufacture of acetonylbenzamides
EP1371638B1 (en) Pyridazinone derivatives as intermediates of herbicides
JP3646224B2 (en) Method for producing benzoylacetonitrile derivative
KR940010282B1 (en) Method and derivative of cyano guanidine
US4701528A (en) Intermediates useful in the preparation of 3,4-dihydro-4-oxothieno[2,3-d]pyrimidine-2-carboxylates and process for preparing same
JP3646225B2 (en) Aromatic ester derivatives, intermediates thereof, and methods for producing them
EP0659735A1 (en) Process for producing aniline derivative
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JPH0812658A (en) Production of sydnones
KR100486316B1 (en) New preparation method of 5,11-dihydro-6H-dibenz[b,e]azepin-6-one
JP3961049B2 (en) 3-Amino-4- (1-hydroxyalkyl) pyrazoline compound, method for producing the same and method for producing the same
JP3128703B2 (en) Method for producing color-forming compounds, intermediates thereof, and methods for producing them
SU679128A3 (en) Method of producing diphenylamine derivatives
JPH06199756A (en) Halogen-substituted benzoylacetamide derivative, its production and intermediate and production thereof
JP2540167B2 (en) Method for producing maleimide
JPS588388B2 (en) Jibenza Middle Ino Seizouhouhou
JPH01299278A (en) Production of benzothiazolones
JPH07133271A (en) Banzaldehyde derivative and production of chromancarboxylic acid derivative using the same as intermediate
JPH01117849A (en) Production of 2,6-dihaloaniline derivative
JPH06247946A (en) Production of 4-oxo-1,3-benzoxazine compounds

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees