JP3641343B2 - Gas generator composition for low residue airbag - Google Patents

Gas generator composition for low residue airbag Download PDF

Info

Publication number
JP3641343B2
JP3641343B2 JP06768797A JP6768797A JP3641343B2 JP 3641343 B2 JP3641343 B2 JP 3641343B2 JP 06768797 A JP06768797 A JP 06768797A JP 6768797 A JP6768797 A JP 6768797A JP 3641343 B2 JP3641343 B2 JP 3641343B2
Authority
JP
Japan
Prior art keywords
potassium
composition according
oxide
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06768797A
Other languages
Japanese (ja)
Other versions
JPH10259085A (en
Inventor
興喜 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP06768797A priority Critical patent/JP3641343B2/en
Priority to KR1019997008348A priority patent/KR20000076253A/en
Priority to CN98803367A priority patent/CN1250429A/en
Priority to EP98907271A priority patent/EP1036781A1/en
Priority to PCT/JP1998/001125 priority patent/WO1998042641A1/en
Priority to TW087104180A priority patent/TW495496B/en
Publication of JPH10259085A publication Critical patent/JPH10259085A/en
Application granted granted Critical
Publication of JP3641343B2 publication Critical patent/JP3641343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エアバッグ用ガス発生剤組成物に関する。詳しくは、自動車等の交通機関に搭載された人体保護のために供せられるエアバッグシステムにおいて作動ガスとなる低残渣エアバッグ用ガス発生剤組成物に関するものである。
【0002】
【従来の技術】
現在、エアバッグシステムに一般的に用いられているガス発生基剤としては、無機アジド系化合物、特にアジドナトリウムが挙げられる。このような無機アジド系化合物を含有する組成物はその燃焼特性に関しては特に問題なく、広く実用に供されているのが現状である。しかし、アジドナトリウムは、本質的にいろいろ望ましくない特性を有している。例えば、毒性が極めて高い物質であり、更に、アジドナトリウムは銅、鉛などの重金属と容易に反応して、突然の発火若しくは爆発を起こしやすい極めて敏感な化合物を生成し、従って、そのような組成物の製造、貯蔵及び廃棄の際に特別な取扱いを必要とする。
【0003】
これらの欠点を補うため、アジドナトリウムに替わるいわゆる非アジド系ガス発生剤が提案されている。例えば、特開平3−208878号公報には、テトラゾール、トリアゾール又はこれらの金属塩とアルカリ金属硝酸塩などの酸素含有酸化剤を主成分とした組成物が開示されている。その様な組成物はアジド系の組成物と比べて、毒性面が著しく減少されたが、イクゾースト生成物の中にまだ沢山の固体及び液体の粒子が形成するから、ガス発生効率がそれ程高くない。
【0004】
更にWO95/04710 号明細書には、相安定化硝安(PSAN)とトリアミノグアニジン硝酸塩など窒素含有化合物を含むガス発生剤が開示されている。またUSP5,545,272 号明細書とWO96/27574 号明細書には7〜20重量%カリウム塩で相安定化された硝安とニトログアニジンの混合物を含むガス発生剤が開示されている。このような組成物は、燃焼の際のガス発生効率を高い水準に上げることを可能にした。但し、発熱量がかなり大きく、理論計算上の燃焼温度は 2500K以上を超過しており、高い濃度のCOとNOx ガスを発生する。
【0005】
【発明が解決しようとする課題】
窒素含有化合物は一般的に燃焼において、化学当量分、すなわち化合物分子の炭素、水素、その他の元素の燃焼に必要な量の酸素を発生させるだけの酸化剤を用いる際、アジド系化合物に比べて発熱量が大きく、燃焼温度が高いという欠点を有している。燃焼温度が高過ぎると、人体に対する許容値を遙かに超える量のCOとNOx ガスが発生する恐れがある。またガス発生剤組成物に金属化合物(例えば、金属酸化物など)を大量に使用すると、生成した固体及び液体の粒子がガス発生器から出て、直接バッグに当たりバッグを破る恐れがある。その様な粒子をガス発生器の中に遮断するためには付加の部品を必要とし、ガス発生器自体の小型化は困難である。つまり、ガス発生剤は燃焼時に燃焼温度が低く、発生ガスの量が大きく、固体及び液体の粒子の生成量が小さいという特性を持つものが優秀といえる。従って、上記のような公知のガス発生剤組成物はエアバッグシステムへの応用としてはまだ満足すべきものではない。
【0006】
【課題を解決するための手段】
本発明者等は前記した問題点を解決すべく鋭意研究を重ねた結果、本発明を完成させるに至った。
すなわち、本発明は、相安定化硝安(PSAN)を含んだ混合物からなる酸化剤とニトログアニジンとを必須成分として含有し、組成物中のニトログアニジンの含有量が35重量%以下であり、更に燃焼速度促進触媒として、粉末銅、銅の化合物、鉄の化合物、ニッケルの化合物及びクロムの化合物からなる群から選ばれる少なくとも1種を 0.5 10 重量%含有することを特徴とするガス発生剤組成物を提供するものである。
【0007】
【発明の実施の形態】
本発明のガス発生剤組成物は、硝安が燃焼した際に固形残渣を生ずること無く、全部が非腐蝕性のガスになり、塩素、塩酸のような腐食性ガスを発生しないという特徴を利用して、固形残渣の生成を極力抑え、従来のガス発生器と比べて付加部品の数及び量を大幅に減少させることを可能にした。
【0008】
本発明では、組成物中のニトログアニジンの含有量を35重量%以下、好ましくは5〜33重量%にすることにより、従来の組成より燃焼温度を 150〜300K程度下げることができ、発熱量もある程度低減させることができる。燃焼温度の低下は有毒なCOとNOx ガスの低減に有利である。また低い燃焼温度及び発熱量はガス発生器の付加部品の減少にも有利である。
【0009】
ニトログアニジンを35重量%以下配合した本発明の組成物と従来の組成物について、燃焼温度と発熱量の理論計算結果を表1に示す。
尚、表1中、PSANKP10は硝安90重量%と過塩素酸カリウム10重量%からなる相安定化硝安を示し、NQはニトログアニジンを示す。
【0010】
【表1】

Figure 0003641343
【0011】
純粋硝安は、32℃を通過すると約3%の体積変化を伴う相転移が発生する。成型体の大きな体積変化は異常燃焼の発生を引き起こす恐れがあり、ガス発生剤にとって望ましくない。従って、本発明においては相安定化硝安を用いる。
【0012】
本発明に用いられる相安定化硝安としては、硝安98〜70重量%と相安定化剤2〜30重量%との混合物が好ましい。例えば、カリウム陽イオンを硝安の結晶格子に導入させて、硝安の相を安定させることは一般に知られている。本発明では熱水溶性の有機あるいは無機カリウム塩からなる群から選ばれる少なくとも1種を、相安定化剤として用いるのが好ましい。相安定化剤を相安定化硝安中に2重量%以上配合することにより硝安の相転移を防ぐことができる。但し、相安定化剤の配合量が多すぎると固形残渣の低減という目的に不利であるので、相安定化硝安中の相安定化剤の配合量は2〜30重量%程度が望ましい。
【0013】
本発明において、相安定化剤として用いられる熱水溶性の有機あるいは無機カリウム塩としては、硝酸カリウム、過塩素酸カリウム、硫酸カリウム、塩化カリウム、塩素酸カリウム、クロム酸カリウム、重クロム酸カリウム、過マンガン酸カリウム及びシュウ酸カリウムからなる群から選ばれる少なくとも1種が挙げられる。
【0014】
本発明のガス発生剤組成物は、相安定化硝安を含んだ混合物からなる酸化剤を含有するが、本発明の酸化剤には、相安定化硝安以外に酸素含有酸化剤化合物、金属酸化物又はこれらの混合物を配合することが好ましい。
【0015】
本発明に用いられる酸素含有酸化剤化合物としては、硝酸、過塩素酸又は塩素酸のアルカリ金属塩、アルカリ土類金属塩あるいはアンモニウム塩からなる群から選ばれる少なくとも1種が挙げられ、具体的には過塩素酸カリウム、過塩素酸アンモニウム、塩素酸カリウム、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウムなどが挙げられる。
【0016】
本発明に用いられる金属酸化物としては、コバルト、マンガン、亜鉛、モリブデン又はビスマスからなる群から選択される金属の酸化物又は複酸化物が挙げられ、銅、鉄、ニッケル、クロムの酸化物又は複酸化物は含まれない
【0017】
本発明の組成物中の相安定化硝安の配合量は60〜85重量%が好ましい。また本発明の組成物中の酸素含有酸化剤化合物、金属酸化物又はこれらの混合物の配合量は0〜25重量%が好ましい。
【0018】
本発明の組成物は、燃焼速度を促進させるために燃焼速度促進触媒を配合することが好ましい。本発明に用いられる燃焼速度促進触媒としては、粉末銅、銅の化合物、鉄の化合物、ニッケルの化合物及びクロムの化合物からなる群から選ばれる少なくとも1種が挙げられる。本発明に用いられる銅の化合物としては、酸化銅、亜クロム酸銅等が挙げられ、鉄の化合物としては、酸化鉄、フェロセン及びその誘導体等が挙げられ、ニッケルの化合物としては、酸化ニッケル等が挙げられ、クロムの化合物としては、酸化クロム、重クロム酸アンモニウム、重クロム酸カリウム等が挙げられる。本発明の組成物中の燃焼速度促進触媒の配合量は10重量%以下が好ましい。
【0019】
本発明においては、上記のような酸素含有酸化剤化合物又は金属酸化物や燃焼速度促進触媒を配合することにより組成物の燃焼速度を広い範囲から適宜選択できる。またこれらの酸化剤あるいは触媒の形状、粒度などは適宜選択することができる。
【0020】
本発明のガス発生剤組成物は、成型体の形成と保持のために有機あるいは無機の結合剤を20重量%以下含有することができる。かかる有機あるいは無機の結合剤の添加によって粉末状混合物から成型体に成型することができる。結合剤の種類は、特に限定がなくガス発生剤の性能を損なわない範囲で、一般的な有機あるいは無機の結合剤が使用できる。有機あるいは無機の結合剤の具体例としては、カルボキシメチルセルロースのナトリウム塩、酢酸セルロース、デンプン、ポリビニルアルコール、ポリアクリル酸ナトリウム等の有機結合剤、ケイ酸ナトリウム、ベントナイト、ガラスファイバー、シリコンゴム等の無機結合剤が挙げられる。結合剤の使用量は、多すぎるとガス発生剤の性能を損なうため20重量%以下が好ましい。また、ガス発生剤は燃焼時の成型体の幾何構造により燃焼挙動が本質的に影響を受けることが良く知られているが、本発明のガス発生剤組成物も選ばれる組成により最適な幾何構造に成型すればよく、特に限定されるものではない。
【0021】
【実施例】
以下に実施例及び比較例をあげて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
尚、例中の%は特記しないかぎり重量基準である。
【0022】
合成例1(相安定化硝安の製造)
攪拌しながら、硝安(AN)90%と過塩素酸カリウム(KClO4) 10%の混合物を充分量の蒸留水に溶解させて得た溶液を約85℃の熱乾燥器(減圧の方がよい)に入れて、水を蒸発させた。大部分の水が蒸発したら、生成した固形分をステンレストレイに薄く分布させて、約85℃で良く乾燥させた。乾燥したものを集めて、300 μm のふるいを通るように乳鉢で粉砕した。TG−DTAで生成物の熱変化ピークと硝安の含量を検出することにより、相安定化硝安(PSAN)になったかどうか及び均一ではないかどうかを確認した。このようにして得られた相安定化硝安(以下PSANKP10と略記、AN/KClO4(重量比)=90/10)をTG−DTAで分析した結果、通常硝安含有物のDTAに特徴である約53℃のピークが無くなり、 113℃の位置に新しいピークが現れた。TG分析の結果、硝安の含量は90%であった。
【0023】
実施例1
合成例1で得られたPSANKP10(AN/KClO4 =90/10)70%とニトログアニジン30%を配合した組成物の粉末を乾式でよく混合し、油圧シリンダで粉末品を 100kg/cm2 の圧力下、高さ約12.7mm、径約10mmのストランドに圧搾成型した。ストランドは不燃性エポキシ系樹脂でコーティングした。70kg/cm2 の窒素圧下で燃焼速度測定を行ったところ、このストランドは 7.6mm/s の燃焼速度を示していた。この組成物は、理論燃焼温度が 2158Kであり、理論残渣量(100g組成物あたり生成する金属化合物の量)が 3.8gであった。
【0024】
実施例2
合成例1で得られたPSANKP10 69.5%、ニトログアニジン30%及び酸化銅 0.5%を配合した組成物を乾式でよく混合し、実施例1と同様な方法でストランドを作成した。このストランドの70kg/cm2 の窒素圧下で測定した燃焼速度は11.5mm/s であった。この組成物は、理論燃焼温度が 2151Kであり、理論残渣量が 4.1gであった。
【0025】
実施例3
PSANKP10 64%、ニトログアニジン30%、カルボキシメチルセルロースのナトリウム塩 5.0%及び酸化銅 1.0%を配合した組成物を乾式でよく混合し、実施例1と同様な方法でストランドを作成した。このストランドの70kg/cm2 の窒素圧下で測定した燃焼速度は11.3mm/s であった。この組成物は、理論燃焼温度が2435K であり、理論残渣量が 4.8gであった。
【0026】
【発明の効果】
以上の結果が示す通り、本発明のガス発生剤組成物はこれまでに開示されたガス発生剤組成物に比べて、残渣の生成量が減少しており、本発明のガス発生剤組成物を用いることにより、残渣除去のための付加部品の数及び量を大幅に減少させることができ、ガス発生器自体の小型化への道が開かれた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas generant composition for an air bag. More specifically, the present invention relates to a gas generating composition for a low-residue airbag that serves as a working gas in an airbag system provided for protecting a human body mounted in a transportation facility such as an automobile.
[0002]
[Prior art]
Currently, gas generating bases that are generally used in airbag systems include inorganic azide compounds, particularly sodium azide. The composition containing such an inorganic azide compound has no particular problem with respect to its combustion characteristics, and is currently widely used in practice. However, sodium azide has inherently undesirable properties. For example, it is a highly toxic substance, and sodium azide reacts easily with heavy metals such as copper and lead to produce highly sensitive compounds that are prone to sudden ignition or explosion, and thus such a composition. Special handling is required during the manufacture, storage and disposal of goods.
[0003]
In order to compensate for these drawbacks, a so-called non-azide gas generating agent that replaces sodium azide has been proposed. For example, Japanese Patent Application Laid-Open No. 3-208878 discloses a composition mainly composed of an oxygen-containing oxidizing agent such as tetrazole, triazole or a metal salt thereof and an alkali metal nitrate. Such compositions are significantly less toxic than azide-based compositions, but the gas generation efficiency is not so high because many solid and liquid particles are still formed in the exhaust product. .
[0004]
Further, WO 95/04710 discloses a gas generating agent containing a nitrogen-containing compound such as phase-stabilized ammonium nitrate (PSAN) and triaminoguanidine nitrate. US Pat. No. 5,545,272 and WO 96/27574 disclose gas generants containing a mixture of ammonium nitrate and nitroguanidine phase-stabilized with 7 to 20% by weight potassium salt. Such a composition made it possible to raise the gas generation efficiency during combustion to a high level. However, the calorific value is quite large, the theoretical combustion temperature exceeds 2500K, and high concentration CO and NO x gas are generated.
[0005]
[Problems to be solved by the invention]
Nitrogen-containing compounds are generally compared to azide compounds in combustion when using an oxidizer that generates a chemical equivalent, ie, the amount of oxygen necessary to burn carbon, hydrogen, and other elements of the compound molecule. The calorific value is large and the combustion temperature is high. If the combustion temperature is too high, CO and NO x gas may be generated in amounts far exceeding the permissible values for the human body. Further, when a large amount of a metal compound (for example, metal oxide) is used in the gas generant composition, the generated solid and liquid particles may come out of the gas generator and directly hit the bag and break the bag. In order to block such particles in the gas generator, additional parts are required, and it is difficult to reduce the size of the gas generator itself. That is, it can be said that the gas generating agent is excellent in that it has the characteristics that the combustion temperature is low during combustion, the amount of generated gas is large, and the generation amount of solid and liquid particles is small. Therefore, the known gas generant compositions as described above are not yet satisfactory for application to airbag systems.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention contains an oxidizing agent and nitroguanidine composed of a mixture containing a phase stabilized ammonium nitrate (PSAN) as an essential component state, and are content 35% by weight of nitroguanidine in the composition, Furthermore, as a combustion rate promoting catalyst, 0.5 to 10 % by weight of at least one selected from the group consisting of powdered copper, copper compound, iron compound, nickel compound and chromium compound is contained. A composition is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The gas generant composition of the present invention utilizes the feature that it does not generate a solid residue when ammonium nitrate burns, and becomes a non-corrosive gas and does not generate corrosive gases such as chlorine and hydrochloric acid. As a result, the generation of solid residue was suppressed as much as possible, and the number and amount of additional parts could be greatly reduced compared to conventional gas generators.
[0008]
In the present invention, by setting the content of nitroguanidine in the composition to 35 wt% or less, preferably 5 to 33 wt%, the combustion temperature can be lowered by about 150 to 300 K from the conventional composition, and the calorific value is also increased. It can be reduced to some extent. Lowering the combustion temperature is beneficial for reducing toxic CO and NO x gases. Also, the low combustion temperature and calorific value are advantageous for reducing the additional parts of the gas generator.
[0009]
Table 1 shows the theoretical calculation results of the combustion temperature and the calorific value of the composition of the present invention containing 35% by weight or less of nitroguanidine and the conventional composition.
In Table 1, PSANKP10 represents phase-stabilized ammonium nitrate consisting of 90% by weight ammonium nitrate and 10% by weight potassium perchlorate, and NQ represents nitroguanidine.
[0010]
[Table 1]
Figure 0003641343
[0011]
Pure ammonium nitrate undergoes a phase transition with a volume change of about 3% when passing through 32 ° C. A large volume change of the molded body may cause the occurrence of abnormal combustion, which is undesirable for the gas generant. Therefore, phase-stabilized ammonium nitrate is used in the present invention.
[0012]
The phase-stabilized ammonium used in the present invention is preferably a mixture of 98-70% by weight ammonium nitrate and 2-30% by weight phase stabilizer. For example, it is generally known to introduce a potassium cation into the crystal lattice of ammonium nitrate to stabilize the ammonium nitrate phase. In the present invention, at least one selected from the group consisting of hot water-soluble organic or inorganic potassium salts is preferably used as the phase stabilizer. The phase transition of ammonium nitrate can be prevented by blending 2% by weight or more of the phase stabilizer in the phase stabilized ammonium nitrate. However, if the amount of the phase stabilizer is too large, it is disadvantageous for the purpose of reducing the solid residue. Therefore, the amount of the phase stabilizer in the phase-stabilized ammonium nitrate is preferably about 2 to 30% by weight.
[0013]
In the present invention, the hot water-soluble organic or inorganic potassium salt used as a phase stabilizer includes potassium nitrate, potassium perchlorate, potassium sulfate, potassium chloride, potassium chlorate, potassium chromate, potassium dichromate, potassium perchlorate, Examples include at least one selected from the group consisting of potassium manganate and potassium oxalate.
[0014]
The gas generant composition of the present invention contains an oxidant comprising a mixture containing phase-stabilized ammonium nitrate. The oxidant of the present invention includes an oxygen-containing oxidant compound, a metal oxide in addition to the phase-stabilized ammonium nitrate. Or it is preferable to mix | blend these mixtures.
[0015]
Examples of the oxygen-containing oxidant compound used in the present invention include at least one selected from the group consisting of an alkali metal salt of nitric acid, perchloric acid or chloric acid, an alkaline earth metal salt or an ammonium salt. Includes potassium perchlorate, ammonium perchlorate, potassium chlorate, potassium nitrate, sodium nitrate, strontium nitrate and the like.
[0016]
Examples of the metal oxide used in the present invention include a metal oxide or a double oxide selected from the group consisting of cobalt, manganese, zinc, molybdenum, or bismuth, and an oxide of copper, iron, nickel, chromium, or Double oxides are not included .
[0017]
The amount of phase-stabilized ammonium nitrate in the composition of the present invention is preferably 60 to 85% by weight. The blending amount of the oxygen-containing oxidant compound, metal oxide or mixture thereof in the composition of the present invention is preferably 0 to 25% by weight.
[0018]
The composition of the present invention preferably contains a combustion rate promoting catalyst in order to accelerate the combustion rate. Examples of the combustion rate accelerating catalyst used in the present invention include at least one selected from the group consisting of powdered copper, a copper compound, an iron compound, a nickel compound, and a chromium compound. Examples of the copper compound used in the present invention include copper oxide and copper chromite. Examples of the iron compound include iron oxide, ferrocene and derivatives thereof. Examples of the nickel compound include nickel oxide and the like. Examples of the chromium compound include chromium oxide, ammonium dichromate, potassium dichromate, and the like. The blending amount of the combustion rate promoting catalyst in the composition of the present invention is preferably 10% by weight or less.
[0019]
In the present invention, the combustion rate of the composition can be appropriately selected from a wide range by blending the oxygen-containing oxidant compound or metal oxide and the combustion rate promoting catalyst as described above. Moreover, the shape, particle size, etc. of these oxidizing agents or catalysts can be selected as appropriate.
[0020]
The gas generant composition of the present invention can contain 20% by weight or less of an organic or inorganic binder for forming and maintaining a molded body. By adding such an organic or inorganic binder, the mixture can be molded from a powdery mixture. The type of the binder is not particularly limited, and a general organic or inorganic binder can be used as long as the performance of the gas generating agent is not impaired. Specific examples of organic or inorganic binders include: organic binders such as sodium salt of carboxymethyl cellulose, cellulose acetate, starch, polyvinyl alcohol, sodium polyacrylate, and inorganic such as sodium silicate, bentonite, glass fiber, and silicone rubber. A binder is mentioned. When the amount of the binder used is too large, the performance of the gas generating agent is impaired. In addition, it is well known that the gas generating agent is essentially affected by the combustion behavior due to the geometric structure of the molded body at the time of combustion, but the gas generating agent composition of the present invention also has an optimum geometric structure depending on the composition selected. There is no particular limitation as long as it is molded.
[0021]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited only to these examples.
In the examples, “%” is based on weight unless otherwise specified.
[0022]
Synthesis Example 1 (Production of phase-stabilized ammonium nitrate)
While stirring, a solution obtained by dissolving a mixture of 90% ammonium nitrate (AN) and 10% potassium perchlorate (KClO 4 ) in a sufficient amount of distilled water was heated to about 85 ° C in a heat dryer (better pressure reduction) ) To evaporate the water. When most of the water had evaporated, the resulting solid was thinly distributed on a stainless steel tray and dried well at about 85 ° C. The dried material was collected and ground in a mortar so as to pass through a 300 μm sieve. By detecting the thermal change peak of the product and the content of ammonium nitrate with TG-DTA, it was confirmed whether it became phase-stabilized ammonium nitrate (PSAN) or not homogeneous. The phase-stabilized ammonium nitrate thus obtained (hereinafter abbreviated as PSANKP10, AN / KClO 4 (weight ratio) = 90/10) was analyzed by TG-DTA. The 53 ° C peak disappeared and a new peak appeared at 113 ° C. As a result of TG analysis, the ammonium nitrate content was 90%.
[0023]
Example 1
The powder of the composition blended with 70% of PSANKP10 (AN / KClO 4 = 90/10) obtained in Synthesis Example 1 and 30% of nitroguanidine was mixed well in a dry process, and the powder product was 100 kg / cm 2 with a hydraulic cylinder. Under pressure, it was pressed into a strand having a height of about 12.7 mm and a diameter of about 10 mm. The strand was coated with a non-combustible epoxy resin. When the burning rate was measured under a nitrogen pressure of 70 kg / cm 2, the strand showed a burning rate of 7.6 mm / s. This composition had a theoretical combustion temperature of 2158 K and a theoretical residue amount (amount of metal compound produced per 100 g composition) was 3.8 g.
[0024]
Example 2
A composition containing 69.5% of PSANKP10 obtained in Synthesis Example 1, 30% of nitroguanidine and 0.5% of copper oxide was thoroughly mixed by a dry method, and a strand was prepared in the same manner as in Example 1. The burning rate of this strand measured under a nitrogen pressure of 70 kg / cm 2 was 11.5 mm / s. This composition had a theoretical combustion temperature of 2151 K and a theoretical residue amount of 4.1 g.
[0025]
Example 3
A composition containing 64% of PSANKP10, 30% of nitroguanidine, 5.0% of sodium salt of carboxymethylcellulose and 1.0% of copper oxide was mixed well by a dry method, and a strand was prepared in the same manner as in Example 1. The burning rate of this strand measured under a nitrogen pressure of 70 kg / cm 2 was 11.3 mm / s. This composition had a theoretical combustion temperature of 2435 K and a theoretical residue amount of 4.8 g.
[0026]
【The invention's effect】
As the above results show, the gas generant composition of the present invention has a reduced amount of residue compared to the gas generant compositions disclosed so far. By using it, the number and amount of additional parts for residue removal can be greatly reduced, and the path to miniaturization of the gas generator itself has been opened.

Claims (9)

相安定化硝安(PSAN)を含んだ混合物からなる酸化剤とニトログアニジンとを必須成分として含有し、組成物中のニトログアニジンの含有量が35重量%以下であり、更に燃焼速度促進触媒として、粉末銅、銅の化合物、鉄の化合物、ニッケルの化合物及びクロムの化合物からなる群から選ばれる少なくとも1種を 0.5 10 重量%含有することを特徴とするガス発生剤組成物。Containing phase stabilized ammonium nitrate oxidizer consisting of a mixture containing (PSAN) and the nitroguanidine as essential components state, and are the content of nitroguanidine 35 wt% or less in the composition, as further combustion rate accelerating catalyst A gas generating composition comprising 0.5 to 10 % by weight of at least one selected from the group consisting of powdered copper, a copper compound, an iron compound, a nickel compound and a chromium compound . 相安定化硝安(PSAN)が、硝安98〜70重量%と相安定化剤2〜30重量%との混合物である請求項1記載のガス発生剤組成物。  The gas generant composition according to claim 1, wherein the phase-stabilized ammonium nitrate (PSAN) is a mixture of 98-70 wt% ammonium nitrate and 2-30 wt% phase stabilizer. 相安定化剤が、熱水溶性の有機あるいは無機カリウム塩からなる群から選ばれる少なくとも1種である請求項2記載のガス発生剤組成物。  The gas generating composition according to claim 2, wherein the phase stabilizer is at least one selected from the group consisting of hot water-soluble organic or inorganic potassium salts. 熱水溶性の有機あるいは無機カリウム塩が、硝酸カリウム、過塩素酸カリウム、硫酸カリウム、塩化カリウム、塩素酸カリウム、クロム酸カリウム、重クロム酸カリウム、過マンガン酸カリウム及びシュウ酸カリウムからなる群から選ばれる少なくとも1種である請求項3記載のガス発生剤組成物。  Hot water-soluble organic or inorganic potassium salt selected from the group consisting of potassium nitrate, potassium perchlorate, potassium sulfate, potassium chloride, potassium chlorate, potassium chromate, potassium dichromate, potassium permanganate and potassium oxalate The gas generant composition according to claim 3, which is at least one selected from the group consisting of: 酸化剤が、相安定化硝安(PSAN)と、酸素含有酸化剤化合物、銅、鉄、ニッケル、クロムの酸化物を除く金属酸化物又はこれらの混合物とからなる請求項1〜4のいずれか一項に記載のガス発生剤組成物。The oxidant comprises phase-stabilized ammonium nitrate (PSAN), an oxygen-containing oxidant compound, a metal oxide excluding copper, iron, nickel, and chromium oxides, or a mixture thereof. The gas generating composition according to item. 酸素含有酸化剤化合物が、硝酸、過塩素酸又は塩素酸のアルカリ金属塩、アルカリ土類金属塩あるいはアンモニウム塩からなる群から選ばれる少なくとも1種である請求項5記載のガス発生剤組成物。  6. The gas generant composition according to claim 5, wherein the oxygen-containing oxidant compound is at least one selected from the group consisting of an alkali metal salt of nitric acid, perchloric acid or chloric acid, an alkaline earth metal salt or an ammonium salt. 金属酸化物が、コバルト、マンガン、亜鉛、モリブデン又はビスマスからなる群から選択される金属の酸化物又は複酸化物である請求項5又は6記載のガス発生剤組成物。The gas generating composition according to claim 5 or 6, wherein the metal oxide is an oxide or double oxide of a metal selected from the group consisting of cobalt, manganese, zinc, molybdenum or bismuth. 燃焼速度促進触媒が、粉末銅、酸化銅、亜クロム酸銅、酸化鉄、フェロセン及びその誘導体、酸化ニッケル、酸化クロム、重クロム酸アンモニウム、重クロム酸カリウムからなる群から選ばれる少なくとも1種である請求項1記載のガス発生剤組成物。The combustion rate promoting catalyst is at least one selected from the group consisting of powdered copper, copper oxide, copper chromite, iron oxide, ferrocene and derivatives thereof, nickel oxide, chromium oxide, ammonium dichromate, and potassium dichromate. The gas generant composition according to claim 1. 有機あるいは無機の結合剤を20重量%以下含有する請求項1〜のいずれか一項に記載のガス発生剤組成物。The gas generant composition according to any one of claims 1 to 8 , which contains 20% by weight or less of an organic or inorganic binder.
JP06768797A 1997-03-21 1997-03-21 Gas generator composition for low residue airbag Expired - Fee Related JP3641343B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP06768797A JP3641343B2 (en) 1997-03-21 1997-03-21 Gas generator composition for low residue airbag
KR1019997008348A KR20000076253A (en) 1997-03-21 1998-03-17 Air bag gas-generating composition with only a small amount of residue
CN98803367A CN1250429A (en) 1997-03-21 1998-03-17 Air bag gas-generating composition with only a small amount of residue
EP98907271A EP1036781A1 (en) 1997-03-21 1998-03-17 Air bag gas-generating composition with only a small amount of residue
PCT/JP1998/001125 WO1998042641A1 (en) 1997-03-21 1998-03-17 Air bag gas-generating composition with only a small amount of residue
TW087104180A TW495496B (en) 1997-03-21 1998-03-20 A composition of gases generated agent in low residual for air bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06768797A JP3641343B2 (en) 1997-03-21 1997-03-21 Gas generator composition for low residue airbag

Publications (2)

Publication Number Publication Date
JPH10259085A JPH10259085A (en) 1998-09-29
JP3641343B2 true JP3641343B2 (en) 2005-04-20

Family

ID=13352159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06768797A Expired - Fee Related JP3641343B2 (en) 1997-03-21 1997-03-21 Gas generator composition for low residue airbag

Country Status (6)

Country Link
EP (1) EP1036781A1 (en)
JP (1) JP3641343B2 (en)
KR (1) KR20000076253A (en)
CN (1) CN1250429A (en)
TW (1) TW495496B (en)
WO (1) WO1998042641A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306232B1 (en) * 1996-07-29 2001-10-23 Automotive Systems Laboratory, Inc. Thermally stable nonazide automotive airbag propellants
JP4641130B2 (en) * 2000-10-10 2011-03-02 日本化薬株式会社 Gas generating composition and gas generator using the same
US6872265B2 (en) * 2003-01-30 2005-03-29 Autoliv Asp, Inc. Phase-stabilized ammonium nitrate
JP5031255B2 (en) * 2006-03-02 2012-09-19 株式会社ダイセル Gas generant composition
JP2009137820A (en) 2007-12-11 2009-06-25 Daicel Chem Ind Ltd Gelatinous transfer charge for inflator
CN102584504A (en) * 2012-01-16 2012-07-18 南京理工大学 Smokeless type firework shell opening ammunition capable of improving ignition capacity and preparation method for opening ammunition
CN106478323A (en) * 2016-10-21 2017-03-08 重庆大学 Automatically controlled solid propellant of a kind of high-performance and preparation method thereof
CN111517899B (en) * 2020-06-28 2021-10-01 上海集瀛汽车安全技术有限公司 Gas generating agent for high-burning-rate micro gas generator and preparation method thereof
CN113087582A (en) * 2021-03-31 2021-07-09 陕西庆华汽车安全系统有限公司 Production method of nitroguanidine-containing gas production medicine for safety airbag

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE884170C (en) * 1946-11-08 1953-07-23 Ici Ltd Gas Generating Charge
CZ291570B6 (en) * 1991-06-21 2003-04-16 Dynamit Nobel Aktiengesellschaft Propellant for gas generators, process of its preparation and use
FR2692257B1 (en) * 1992-06-12 1995-05-05 Divbag Snc Pyrotechnic composition generating non-toxic hot gases and its use in a device for protecting the occupants of a motor vehicle.
RU2117649C1 (en) * 1993-10-06 1998-08-20 Нигу Хеми ГмбХ Power for gas producer
DE4411654C2 (en) * 1993-10-20 1996-04-04 Temic Bayern Chem Airbag Gmbh Gas generating mixture
FR2713632B1 (en) * 1993-12-07 1996-01-12 Poudres & Explosifs Ste Nale Pyrotechnic compositions generating clean and non-toxic gases, containing a thermoplastic elastomer binder.
GB9503066D0 (en) * 1995-02-16 1995-04-05 Royal Ordnance Plc Gas generating composition
US5545272A (en) * 1995-03-03 1996-08-13 Olin Corporation Thermally stable gas generating composition
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
US6306232B1 (en) * 1996-07-29 2001-10-23 Automotive Systems Laboratory, Inc. Thermally stable nonazide automotive airbag propellants

Also Published As

Publication number Publication date
TW495496B (en) 2002-07-21
JPH10259085A (en) 1998-09-29
EP1036781A4 (en) 2000-09-20
CN1250429A (en) 2000-04-12
WO1998042641A1 (en) 1998-10-01
EP1036781A1 (en) 2000-09-20
KR20000076253A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US5670740A (en) Heterogeneous gas generant charges
US5467715A (en) Gas generant compositions
JP2698553B2 (en) Gas generating composition using dicyanamide as fuel
KR19990082100A (en) Non-Zide Gas Generating Compositions
CN1150794A (en) Nonazide gas generating compositions with built-in catalyst
EP0767155B1 (en) Heterogeneous gas generant charges
JP4641130B2 (en) Gas generating composition and gas generator using the same
EP0964842A1 (en) Gas generant complex oxidizers with multimetal cations
US5989367A (en) Particle-free, gas-producing mixture
US5472535A (en) Gas generant compositions containing stabilizer
JPH11292678A (en) Gas generating agent composition for air bag
JPH09328387A (en) Gas producing agent composition
JP3848257B2 (en) Propellant for gas generant
JP3641343B2 (en) Gas generator composition for low residue airbag
JP2000103691A (en) Gas generator composition
WO1998029362A1 (en) Semicarbazide-metal complexes and gas generating agent for air bags
JP2002160992A (en) Gas generating agent
WO1998037040A1 (en) Gas generator propellant compositions
JP3915462B2 (en) Gas generating composition and airbag
WO1996020147A1 (en) Gas-generating agent
JP5019550B2 (en) Double salt of ammonium nitrate, process for producing the same, and gas generating agent using the same
JP3953187B2 (en) Gas generant composition
JPH07223890A (en) Gas producing agent composition
JPH1192264A (en) Gas generating agent composition for air bag
JP4799136B2 (en) Gas generant composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees