JP3630453B2 - A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient - Google Patents

A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient Download PDF

Info

Publication number
JP3630453B2
JP3630453B2 JP25965494A JP25965494A JP3630453B2 JP 3630453 B2 JP3630453 B2 JP 3630453B2 JP 25965494 A JP25965494 A JP 25965494A JP 25965494 A JP25965494 A JP 25965494A JP 3630453 B2 JP3630453 B2 JP 3630453B2
Authority
JP
Japan
Prior art keywords
antibody
myeloma cells
cells
immature
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25965494A
Other languages
Japanese (ja)
Other versions
JPH0899902A (en
Inventor
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP25965494A priority Critical patent/JP3630453B2/en
Publication of JPH0899902A publication Critical patent/JPH0899902A/en
Application granted granted Critical
Publication of JP3630453B2 publication Critical patent/JP3630453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【0001】
【産業上の利用分野】
本発明はインターロイキン6レセプター抗体を有効成分とする化学療法剤抵抗性である未熟型骨髄腫細胞治療剤に関する。
【0002】
【従来の技術】
骨髄腫は形質細胞が悪性化した腫瘍で、骨髄を増殖の場として複数の部位で発生する腫瘍である。骨髄腫細胞の主要な増殖因子として、インターロイキン6(IL−6)が有力な候補として考えられている(Kawanoら、Nature,332,83,1988:Klcinら、Blood,73,517,1989)。
【0003】
IL−6はB細胞刺激因子2あるいはインターフェロンβ2等と呼称されたサイトカインである。
IL−6はBリンパ球系細胞の活性化に関与する分化因子として発見され(Hiranoら、Nature,324,73,1986)、その後種々の細胞の機能に影響を及ぼす多機能サイトカインであることが明らかとなった(Akiraら、Adv,in Immunology,54,1,1993)。
【0004】
IL−6は、細胞上で二種のタンパク質を介してその生物学的活性を伝達する。一つは、IL−6が結合する分子量約80KDのリガンド結合性タンパク質、IL−6レセプター(IL−6R)である。IL−6Rは、細胞膜を貫通して細胞膜上に発現する膜結合型の他に、主にその細胞外領域からなる可溶性IL−6R(sIL−6R)として存在する。もう一つは非リガンド結合性のシグナル伝達に係わる分子量約130KDのgp130である。IL−6とIL−6RはIL−6/IL−6R複合体を形成し、次いでもう一つの膜タンパク質gp130と結合することにより、IL−6の生物学的活性が細胞に伝達される(Tagaら、J.Exp.Med.196:967,1987)。
【0005】
Kawanoらは、VLA(very late activation antigen)−5あるいはMPC(mature plasma cell)−1(Huangら、Blood 82,3721,1993、特開平6−86688)等の骨髄腫細胞上の表面抗原により、骨髄腫細胞がVLA−5陰性()MPC−1の未熟型骨髄腫細胞、VLA−5MPC−1陽性()の中間型骨髄腫細胞およびVLA−5MPC−1成熟型骨髄腫細胞に分けられることを報告した(Blood,82,564,1993)。
【0006】
また、このうち未熟型骨髄腫細胞が、化学療法剤に治療抵抗性を示す細胞集団の主体であることが知られている(Kawanoら、第56回日本血液学会総会要旨集、261頁、641,1994)。
これまで、IL−6R抗体を加えることにより、一般的に骨髄腫細胞の増殖が抑制されること(Gotoら、Biotherapy 7,655,1993)およびIL−6が未熟型骨髄腫細胞の増殖を刺激すること(Kawanoら、Blood,82,564,1993)が知られていた。
【0007】
しかしながら、これら知見は骨髄腫細胞の増殖を指標としており、骨髄腫の治療において重要であると考えられている化学療法剤抵抗性の主体をなす未熟型骨髄腫細胞の根絶を示唆するものではなかった。また、これまでIL−6R抗体が未熟型骨髄腫細胞の根本的な治療剤に有用であるかについてはなんらデータもなく、未熟型骨髄腫細胞の生存自体に直接関与しているか否かは依然として不明であった。
【0008】
【発明が解決しようとする課題】
化学療法剤抵抗性の主体をなす未熟型骨髄腫細胞に対し、これまでその根本的な治療に有効である薬剤は見出されておらず、未熟型骨髄腫細胞を根絶する効果を有する薬剤の登場が待たれていた。従って本発明は未熟型骨髄腫細胞に対する治療剤を提供しようするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、IL−6R抗体が化学療法剤抵抗性の主体をなす未熟型骨髄腫細胞の生存を阻害することを見出し、本発明を完成させた。
すなわち、本発明は、未熟型骨髄腫細胞を根本的に治療する新しい未熟型骨髄腫細胞治療剤を提供するものである。より詳しくは、本発明はIL−6R抗体を有効成分とする未熟型骨髄腫細胞の生存阻害作用を有する未熟型骨髄腫細胞治療剤を提供する。さらに詳しくは、本発明はIL−6R抗体を有効成分とする未熟型骨髄腫細胞の生存阻害剤を提供する。
【0010】
【具体的な説明】
本発明で使用されるIL−6レセプター抗体は、未熟型骨髄腫細胞のIL−6によるシグナル伝達を遮断し、IL−6の生物学的活性を阻害するものであれば、その由来および種類(モノクローナル、ポリクローナル)を問わないが、特に哺乳動物由来のモノクローナル抗体が好ましい。この抗体はIL−6Rと結合することにより、IL−6とIL−6Rの結合を阻害して、IL−6のシグナル伝達を遮断し、IL−6の生物学的活性を阻害する抗体である。
【0011】
モノクローナル抗体の産生細胞の動物種は哺乳類であれば特に制限されず、ヒト抗体またはヒト以外の哺乳動物由来であってよい。ヒト以外の哺乳動物由来のモノクローナル抗体としては、その作成の簡便さからウサギあるいはげっ歯類由来のモノクローナル抗体が好ましい。げっ歯類としては、特に制限されないが、マウス、ラット、ハムスターなどが好ましく例示される。
【0012】
このようなIL−6レセプター抗体としては、PM−1抗体(Hirataら、J.Immunol.143:2900−2906,1989),AUK12−20抗体、AUK64−7抗体あるいはAUK146−15抗体(国際特許出願公開番号WO92−19759)などが挙げられる。
モノクローナ抗体は、基本的には公知技術を使用し、以下のようにして作成できる。すなわち、IL−6Rを感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作成できる。
【0013】
より具体的には、モノクローナル抗体を作成するには次のようにすればよい。例えば、前記感作抗原としては、欧州特許出願公開番号EP325474号に開示されたヒトIL−6Rの遺伝子配列を用いることによって得られる。ヒトIL−6Rの遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または、培養上清中から目的のIL−6Rタンパク質を精製し、この精製IL−6Rタンパク質を感作抗原として用いればよい。
【0014】
IL−6Rは細胞膜上に発現しているものの他に細胞膜より離脱している可能性のもの(sIL−6R)が抗原として使用できる。sIL−6Rは細胞膜に結合しているIL−6Rの主に細胞外領域から構成されており、細胞膜貫通領域あるいは細胞膜貫通領域と細胞内領域が欠損している点で膜結合型IL−6Rと異なっている。
感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはマウス、ラット、ハムスター、ウサギ等が使用される。
【0015】
感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物に腹腔内または、皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate−Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量併用して、哺乳動物に4−21日毎に数回投与するのが好ましい。また、感作抗原免疫時に適当な担体を使用することができる。
【0016】
このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞が取り出され、細胞融合に付されるが、好ましい免疫細胞としては、特に脾細胞が挙げられる。
前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞は、すでに、公知の種々の細胞株、例えば、P3(P3x63Ag8.653)(J.Immnol.123:1548,1978),p3−U1(Current Topics in Micro−biology and Immunology 81:1−7,1978),NS−1(Eur.J.Immunol.6:511−519,1976),MPC−11(Cell,8:405−415,1976):SP2/0(Nature,276:269−270,1978),FO(J.Immunol.Meth.35:1−21,1980),S194(J.Exp.Med.148:313−323,1978),R210(Nature,277:131−133,1979)等が好適に使用される。
【0017】
前記免疫細胞とミエローマ細胞との細胞融合は基本的には公知の方法、たとえば、ミルステインらの方法(Milsteinら、Methods Enzymol.73:3−46,1981)等に準じて行うことができる。
より具体的には、前記細胞融合は例えば、細胞融合促進剤の存在下に通常の栄養培養中で実施される。融合促進剤としては例えば、ポリエチレングリコール(PEG)、センダイウィルス(HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。
【0018】
免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して免疫細胞を1−10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清(FCS)等の血清補液を併用することもできる。
【0019】
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め、37℃程度に加温したPEG溶液、例えば、平均分子量1000−6000程度のPEG通常、培養液に30−60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)が形成される。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去できる。
【0020】
当該ハイブリドーマは、通常の選択培養液、例えば、HAT培養液(ヒポキサンチン、アミノブテリンおよびチミジンを含む培養液)で培養することにより選択される。当該HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、通常数日〜数週間継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよび単一クローン化が行われる。
【0021】
このようにして作成されるモノクローナル抗体を産生するハイブリドーマは、通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが可能である。
当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法にしたがい培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に移植して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。
【0022】
さらに、前記の方法により得られるモノクローナル抗体は、塩析法、ゲル漉過法、アフィニテイークロマトグラフィー法等の通常の精製手段を利用して高純度に精製することができる。
このようにして、作成されるモノクローナル抗体は、放射免疫測定法(RIA)、酵素免疫測定法(EIA,ELISA)、蛍光抗体法(Immunofluorescence Analysis)等の通常の免疫学的手段により抗原を高感度かつ高精度で認識することを確認することができる。
【0023】
本発明に使用されるモノクローナル抗体は、ハイブリドーマが産生するモノクローナル抗体に限られるものではなく、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変したものであってよい。例えば、ヒト以外の哺乳動物、例えば、マウスのモノクローナル抗体の可変領域とヒト抗体の定常領域とからなるキメラ抗体を使用することができ、このようなキメラ抗体は、既知のキメラ抗体の製造方法、特に遺伝子組換技法を用いて製造することができる。
【0024】
さらに、再構成(reshaped)したヒト抗体を本発明に用いることができる。これはヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域によりヒト抗体の相補性決定領域を置換したものであり、その一般的な遺伝子組換手法も知られている。その既知方法を用いて、本発明に有用な再構成ヒト型抗体を得ることができる。
【0025】
なお、必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク(FR)領域のアミノ酸を置換してもよい(Satoら、Cancer Res.53:1−6,1993)。このような再構成ヒト抗体としてヒト型化PM−1(hPM−1)抗体が好ましく例示される(国際特許出願公開番号WO92−19759を参照)。
【0026】
さらには抗原に結合し、IL−6の活性を阻害するかぎり抗体の断片、たとえばFabあるいはFv,H鎖とL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)をコードする遺伝子を構築し、これを適当な宿主細胞で発現させ、前述の目的に使用することができる。(例えば、Birdら、TIBTECH,9:132−137,1991;Hustonら、Proc.Natl.Acad.Sci.USA,85,5879−5883,1988を参照)。
【0027】
本発明のIL−6レセプター抗体を有効成分とする未熟型骨髄腫細胞治療剤は、未熟型骨髄腫細胞のIL−6のシグナル伝達を遮断し、IL−6により生存が維持された未熟型骨髄腫細胞の生存が阻害される限り、それらの未熟型骨髄腫細胞の根絶に有効である。
本発明の未熟型骨髄腫細胞治療剤は、好ましくは非経口的に、たとえば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射等により全身あるいは局部的に投与することができる。さらに、少なくとも一種の医薬用担体または希釈剤とともに医薬組成物やキットの形態をとることができる。
【0028】
本発明の未熟型骨髄腫細胞治療剤のヒトに対する投与量は患者の病態、年齢あるいは投与方法により異なるが、適宜適当な量を選択することが必要である。例えば、およそ1−1000mg/患者の範囲で4回以下の分割容量を選択することができる。しかしながら、本発明の未熟型骨髄腫細胞治療剤はこれらの投与量に制限されるものではない。
【0029】
本発明の未熟型骨髄腫細胞治療剤は常法にしたがって製剤化することができる。たとえば、注射用製剤は、精製されたIL−6R抗体を溶剤、たとえば、生理食塩水、緩衝液などに溶解し、それに、吸着防止剤、たとえば、Tween80、ゼラチン、ヒト血清アルブミン(HSA)などを加えたものであり、または、使用前に溶解再構成するために凍結乾燥したものであってもよい。凍結乾燥のための賦形剤としては例えばマンニトール、ブドウ糖などの糖アルコールや糖類を使用することができる。
【0030】
【実施例】
以下、参考例、実験例および実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
参考例1ヒトIL−6レセプター抗体PM−1の調製
Hirataらの方法(J.Immunol.,143:2900−2906,1989)により作成した抗IL−6R抗体MT18をCNBrにより活性化させたセファロース4B(Pharmacia Fine Chemicals製、Piscataway,NJ)と添付の処方にしたがって結合させ、IL−6R(Yamasakiら、Science 241:825−828,1988)を精製した。
【0031】
すなわち、ヒトミエローマ細胞株U266を1%ジギトニン(Wako Chemicals製)、10mMトリエタノールアミン(pH7.8)および0.15M NaClを含む1mMp−パラアミノフェニルメタンスルフォニルフルオライドハイドロクロリド(Wako Chemicals製)(ジギトニン緩衝液)で可溶化し、セファロース4Bビーズと結合させたMT18抗体と混合した。その後、ビーズをジギトニン緩衝液で6回洗浄し、免疫に用いる部分精製IL−6Rとした。
【0032】
BALB/cマウスを3×10個のU266細胞から得た上記部分精製IL−6Rで10日おきに4回免疫し、その後常法によりハイブイドーマを作成した。成長陽性ウェルからのハイブリドーマ培養上清を下記の方法にてIL−6Rへの結合活性を調べた。5×10個のU266細胞を35S−メチオニン(2.5mCi)で標識し、上記ジギトニン緩衝液で可溶化した。
【0033】
可溶化したU266細胞を0.04ml容量のセファロース4Bビーズと結合させたMT18抗体と混合し、その後、ジギトニン緩衝液で6回洗浄し、0.25mlのジギトニン緩衝液(pH3.4)により35S−メチオニン標識IL−6Rを流出させ、0.025mlの1MTris(pH7.4)で中和した。0.05mlのハイブリドーマ培養上清を0.01mlのProteinGセファロース(Phramacia製)と混合した。
【0034】
洗浄した後、セファロースを上記で調製した0.005mlの35S標識IL−6R溶液とともにインキュベートした。免疫沈降物質をSDS−PAGEで分析し、IL−6Rと反応するハイブリドーマ培養上清を調べた。その結果、反応陽性ハイブリドーマクローンPM−1を樹立した。ハイブリドーマPM−1から産生されるIL−6R抗体PM−1は、IgGlκ型のサブタイプを有する。
【0035】
ハイブイドーマPM−1が産生する抗体のヒトIL−6Rに対するIL−6の結合阻害活性をヒトミエローマ細胞株U266を用いて調べた。ヒト組換型IL−6を大腸菌より調製し(Hiranoら、Immunol.Lett.,17:41,1988)、ボルトン−ハンター試薬(New England Nuclear,Boston.MA)により 125I標識した(Tagaら、J.Exp.Med.166:967,1987)。
【0036】
4×10個のU266細胞を、100倍量の過剰な非標識IL−6の存在下で室温にて、1時間、70%(v/v)のハイブリドーマPM−1の培養上清及び14000CPM の 125I標識IL−6とともに培養した。70μlのサンプルを400μlのマイクロフユージポリエチレンチューブに入れた300μlのFCS上に重層し、遠心の後、細胞上の放射活性を測定した。
その結果、ハイブリドーマPM−1が産生する抗体は、IL−6のIL−6Rに対する結合を阻害することが明らかとなった。
【0037】
参考例2. ヒト型抗体hPM−1の作成
ヒト型化抗体hPM−1を国際特許出願公開番号WO92−19759に記載の方法により得た。
参考例1で作成されたハイブリドーマPM−1から常法で全RNAを調製し、これより一本鎖cDNAの合成を行った。ポリメラーゼ連鎖反応(PCR)法によりマウスPM−1のV領域のDNAを増幅した。PCR法に使用するプライマーは、S.T.Jonesら、Bio/Technology,9,88,1991に記載されたものを用いた。
【0038】
PCR法により増幅したDNA断片を精製し、マウスカッパ型L鎖V領域をコードする遺伝子を含むDNA断片、及びマウスガンマ型H鎖可変領域をコードする遺伝子を含むDNA断片を得た。これらのDNA断片をプラスミドpUC19に連結し、大腸菌DH5αのコンビテント細胞に導入して大腸菌形質転換体を得た。この形質転換体から上記プラスミドを得、プラスミド中のcDNAコード領域の塩基配列を、常法にしたがい決定し、さらに各V領域の相補性決定領域(CDR)を決定した。
【0039】
キメラPM−1抗体を発現するベクターを作製するため、それぞれマウスPM−1κL鎖及びH鎖のV領域をコードするcDNAをHCMV発現ベクターに挿入した。
ヒト型化ヒトPM−1抗体を作成するために、CDR移植法によりマウスPM−1のV領域CDRをヒト抗体へ移植した。ヒト型化抗体のCDRが適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク(FR)領域のアミノ酸を置換した。
【0040】
このようにして作成したヒト型化PM−1抗体のL鎖およびH鎖の遺伝子を哺乳類細胞中で発現させるために、ヒトエロンゲーションファクターIα(HEF−1α)プロモーターを含有するベクターに各々導入し、ヒト型化PM−1抗体L鎖およびH鎖を発現するベクターを作成した。これら二つの発現ベクターをCHO細胞に同時に挿入することにより、ヒト型化PM−1(hPM−1)を産生する細胞株を樹立した。得られたヒト型化抗体のヒトIL−6Rへの結合能はELISAにて確認した。さらに、hPM−1はマウス抗体およびキメラ抗体と同様に、ヒトIL−6のヒトIL−6Rへの結合を阻害した。
【0041】
実験例
(1)骨髄腫細胞の分類
骨髄腫患者から得た骨髄腫細胞を、フローサイトメトリー法を用い、表面抗原に基づく骨髄腫細胞の同定および分類を行った。
骨髄液を、リンパ球分離液Separate−L(Muto Pure Chemicals Co.)により遠心分離し、単核細胞を分離した。
【0042】
これらの骨髄細胞を200μg/ml BSAおよび0.01% NaNを含むPBSに5×10個/20μlとなるように懸濁し、はじめに各々20μlの抗CD19モノクローナル抗体(mAB)(Immunotech社)、抗CD56mAB(Coulter社)、抗VLA−5mAB(Immunotech社)あるいは抗MPC−1mAB(特開平6−86688参照)を加え、4℃にて30分間反応させた後、20mM Sodium Phosphateおよび0.25M NaClを含むPBS(pH7.2)で二回洗浄した。
【0043】
次いで、100倍希釈した40μlのPE(phycoerythrin)結合ヤギ抗マウスIgG(Immunotech社製)にて染色(4℃、30分間)し、前記PBSにて二回洗浄の後、15μlのマウス血清(Chemicon社)を加え、4℃、20分間インキュベートし、さらに20μlの前記PBS中で5μlのFITC(fluorescein isothiocianate)結合抗CD38mAB(Immunotech社製)を添加して染色し(4℃、30分間)、前記PBSにて二回洗浄した。
【0044】
これら二重染色された骨髄細胞をフローサイートメーター(EPICS ELITE,Coulter社)にて蛍光を測定することにより解析した。骨髄腫細胞の特徴であるCD38強陽性の画分に出現する細胞の表面抗原を解析した結果、骨髄腫細胞は、VLA−5MPC−1の成熟型、VLA−5MPC−1の中間型およびVLA−5MPC−1の未熟型に分けられた(Kawanoら、Blood,82,564,1993)。
【0045】
(2)骨髄腫細胞のアポトーシス誘導
骨髄腫細胞の生存率および死細胞のアポトーシスの判定を、FDA(fluorescein diacetate、Aldrich Chem.Co.製)およびPI(propidium iodide、Sigma社)を用いた二種染色フローサイトメトリー法(Cancer Res.,49,3776,1989)にて解析し、図1にアポトーシス誘導した細胞の分布を機械的に示した。
【0046】
ヒト骨髄腫細胞株KMS−5(Ohtsukiら、Acto.Haematol.Jpn.,51,1052,1988)を(1×10)個/mlとなるように10% FCS添加RPMI培養液培養液中で調製し、アポトーシスを誘導するdexamethasone(Sigma製)を1×10−7Mとなるよう添加した。37℃にて培養24時間後にKMS−5細胞をFDA/PIにて二重染色し、フローサイトメーターで蛍光を測定した。その結果、図2に示すように、dexamethasone処理により生細胞画分(FDAPI)に加え、アポトーシスが誘導された細胞の画分(FDAPI)が出現した。
【0047】
FDAPI画分およびFDAPI画分の細胞をフローサイトメトリーにて分取し、Br.J.Haematol.,71,343,1988の方法にしたがい、DNAを抽出した。このように調製したDNAを1.2%アガロースゲル電気泳動にて分析した。その結果、図3に示すようにFDAPI画分の細胞由来のDNAは分解していなかったが、FDAPI画分の細胞は、アポトーシスの特徴であるDNAの明らかな分解およびladder状のバンドがみられた。
【0048】
実施例
実験例に記載のFDA/PI二重染色フローサイトメトリー法により患者骨髄腫細胞のin vitroにおける生存率の変化を検討した。
上記実施例と同様の方法にて、PE結合抗VLA−5抗体およびPE結合抗MPC−1抗体により、骨髄腫細胞を染色し、以下の細胞群を分取した。
分取したVLA−5MPC−1の成熟型、VLA−5MPC−1の中間型およびVLA−5MPC−1の未熟型の骨髄腫細胞を1×10個/mlとなるよう10% FCSおよび1×10−5Mの2−メルカプトエタノールを含むRPMI培養液中に浮遊させ、35×10mmのtissue culture
dish(Falcon社)に分注した。
【0049】
これらの細胞を、20U/mlの組換型ヒトIL−6(rIL−6;Hiranoら、Nature,324,73,1986)、50μg/mlのヒト型化抗hIL−6レセプター抗体(hPM−1)存在あるいは非存在下にて37℃で3日間培養した後、FDA/PIを用いてフローサイトメーター(EPICS ELITE,Coulter社)により蛍光を測定し、生細胞の比率を求めた。なお、コントロールは、rIL−6およびhPM−1非存在下で培養した。その結果を表1に示す。
【0050】
【表1】

Figure 0003630453
【0051】
さらに、これらの結果から、成熟型、中間形および未熟型の骨髄腫細胞の生存率にrIL−6が及ぼす影響を図4に示す。VLA−5MPC−1の表面抗原を有する未熟型骨髄腫細胞のrIL−6反応性とそれに対するhPM−1抗体の作用を図5に示した。VLA−5MPC−1の成熟型骨髄腫細胞(表1中、患者由来骨髄腫細胞1−9)は培養液のみでも比較的高い生存率を保った。これら成熟骨髄腫細胞は、rIL−6にほとんど反応せず、hPM−1抗体による生存阻害効果もみられなかった。一方、VLA−5MPC−1の未熟型骨髄腫細胞(表1中、患者由来骨髄腫細胞13−18)は培養液のみでは生存が維持できず、アポトーシスに陥り易いことが示された。
【0052】
これらの細胞はIL−6に対する反応性が高く、rIL−6により生存率が上昇した。この時、rIL−6による未熟型骨髄腫細胞の生存維持効果は、hPM−1抗体により明らかに阻害された(図5)。コントロール、rIL−6,hPM−1およびrIL−6とhPM−1各存在下における未熟型骨髄腫細胞(表1中、患者由来骨髄腫細胞17)のFDA/PI二重染色像を図6に示す。
【0053】
コントロールに比べ、rIL−6添加群では、アポトーシスを誘導した像(左下、D)の強度が低く、生細胞(右下、E)の割合が大きかった。これに対し、rIL−6およびhPM−1存在下では、アポトーシスを誘導した細胞の画分(左下、D)の強度が高かった。VLA−5MPC−1を示す中間型骨髄腫細胞も、未熟型と同程度ではなかったが、rIL−6に反応して生存率が上昇することおよびこの作用がhPM−1により阻害されることが示された。
【0054】
【発明の効果】
治療抵抗性を示すことが多い骨髄腫細胞集団の主体をなす、表面抗原VLA−5MPC−1の未熟型骨髄腫細胞の生存維持にはIL−6が深く係わっている。IL−6レセプター抗体による未熟型骨髄腫細胞の生存阻害作用が、VLA−5MPC−1未熟型骨髄腫細胞で強く認められたことから、本発明のIL−6レセプター抗体は未熟型骨髄腫細胞治療剤としての有用性が示唆された。
【図面の簡単な説明】
【図1】図1は、二重染色フローサイトメトリー法による、アポトーシスを誘導した骨髄腫細胞の分布を模式的に示す。Eは生細胞(FDAPI)、Dはアポトーシス誘導細胞(FDAPI)、Cはアポトーシスの特徴を有さない死細胞の像である。
【図2】図2は、デキサメタゾン処理によりアポトーシスが誘導された骨髄腫細胞株KMS−5のフローサイトメトリー像である。
【図3】図3は、FDAPI(E)およびFDAPI(D)画分の細胞のDNAアガロースゲル電気泳動図である。レーン1は分子量マーカー、レーン2はFDAPI(E)画分、レーン3はFDAPI(D)画分である。レーン3でDNAの分解およびアポトーシスの特徴であるladder状のバンドがみられる。
【図4】図4は、骨髄腫細胞の生存率にIL−6が及ぼす影響を示す。IL−6存在下において、感熱型骨髄腫細胞(VLA−5MPC−1)はほぼその存在に影響を受けない(約1.1倍)。一方、中間型(VLA−5MPC−1)および未熟型骨髄腫細胞(VLA−5MPC−1)は各々約2.4倍、3.5倍の生存細胞数の増加がみられる。
【図5】図5は、VLA−5MPC−1の未熱型骨髄腫細胞のIL−6に対する反応性と、それに対するhPM−1抗体の作用を示す。○は表1中の患者由来骨髄腫細胞13、□は同14、△は同15、●は同16、×は同17、▼は同18を示す。これらの未熟型骨髄腫細胞の生存はIL−6により支持され、その生存支持効果をhPM−1抗体が明らかに阻害する。
【図6】図6は、VLA−5MPC−1の未熟型骨髄腫細胞(表1中、患者由来骨髄腫細胞17)のコントロール、rIL−6,hPM−1およびrIL−6とhPM−1の各存在下におけるFDA/PI二重染色像を示す。[0001]
[Industrial application fields]
The present invention relates to a therapeutic agent for immature myeloma cells which is resistant to a chemotherapeutic agent comprising an interleukin-6 receptor antibody as an active ingredient.
[0002]
[Prior art]
Myeloma is a tumor in which plasma cells have become malignant, and is a tumor that develops at multiple sites using the bone marrow as a place for growth. As a major growth factor for myeloma cells, interleukin 6 (IL-6) is considered as a promising candidate (Kawano et al., Nature, 332, 83, 1988: Klcin et al., Blood, 73, 517, 1989). .
[0003]
IL-6 is a cytokine called B cell stimulating factor 2 or interferon β2.
IL-6 was discovered as a differentiation factor involved in the activation of B lymphoid cells (Hirano et al., Nature, 324, 73, 1986), and is subsequently a multifunctional cytokine that affects the function of various cells. (Akira et al., Adv, in Immunology, 54, 1, 1993).
[0004]
IL-6 transmits its biological activity through two proteins on the cell. One is IL-6 receptor (IL-6R), a ligand-binding protein having a molecular weight of about 80 KD to which IL-6 binds. IL-6R exists as soluble IL-6R (sIL-6R) mainly composed of its extracellular region in addition to the membrane-bound type that penetrates the cell membrane and is expressed on the cell membrane. The other is gp130 with a molecular weight of about 130 KD that is involved in non-ligand binding signaling. IL-6 and IL-6R form an IL-6 / IL-6R complex and then bind to another membrane protein gp130, thereby transmitting the biological activity of IL-6 to the cell (Taga Et al., J. Exp. Med. 196: 967, 1987).
[0005]
Kawano et al. Have surface antigens on myeloma cells such as VLA (very late activation antigen) -5 or MPC (mature plasma cell) -1 (Huang et al., Blood 82, 3721, 1993, Japanese Patent Laid-Open No. 6-86688). Myeloma cells are VLA-5 negative (MPC-1Immature myeloma cells, VLA-5MPC-1 positive (+) Intermediate myeloma cells and VLA-5+MPC-1+It has been reported that it can be divided into mature myeloma cells (Blood, 82, 564, 1993).
[0006]
Of these, immature myeloma cells are known to be the main cell population that is resistant to chemotherapeutic agents (Kawano et al., 56th Annual Meeting of the Japanese Society of Hematology, 261, 641). , 1994).
So far, the addition of IL-6R antibody generally inhibits the growth of myeloma cells (Goto et al., Biotherapy 7,655, 1993) and IL-6 stimulates the growth of immature myeloma cells (Kawano et al., Blood, 82, 564, 1993) was known.
[0007]
However, these findings are based on the proliferation of myeloma cells and do not suggest the eradication of immature myeloma cells, which are the main component of chemotherapeutic resistance, which is considered to be important in the treatment of myeloma. It was. Furthermore, there is no data as to whether IL-6R antibody is useful as a radical therapeutic agent for immature myeloma cells, and whether or not IL-6R antibody is directly involved in the survival itself of immature myeloma cells remains. It was unknown.
[0008]
[Problems to be solved by the invention]
For the immature myeloma cells, which are mainly resistant to chemotherapeutic agents, no drug has been found that is effective for the fundamental treatment of the immature myeloma cells. The appearance was awaited. Accordingly, the present invention provides a therapeutic agent for immature myeloma cells.
[0009]
[Means for Solving the Problems]
As a result of intensive research aimed at achieving the above object, the present inventors have found that IL-6R antibody inhibits the survival of immature myeloma cells, which are mainly chemotherapeutic drug resistant, and completed the present invention. It was.
That is, the present invention provides a new therapeutic agent for immature myeloma cells that fundamentally treats immature myeloma cells. More specifically, the present invention provides a therapeutic agent for immature myeloma cells having an inhibitory effect on the survival of immature myeloma cells comprising an IL-6R antibody as an active ingredient. More specifically, the present invention provides an immature myeloma cell survival inhibitor containing an IL-6R antibody as an active ingredient.
[0010]
[Specific explanation]
The IL-6 receptor antibody used in the present invention may be of any origin and type as long as it blocks IL-6 signaling of immature myeloma cells and inhibits IL-6 biological activity ( Monoclonal and polyclonal) are preferred, but mammal-derived monoclonal antibodies are particularly preferred. This antibody is an antibody that inhibits the binding of IL-6 to IL-6R by binding to IL-6R, blocks IL-6 signaling, and inhibits the biological activity of IL-6. .
[0011]
The animal species of the monoclonal antibody producing cell is not particularly limited as long as it is a mammal, and may be derived from a human antibody or a mammal other than human. As a monoclonal antibody derived from mammals other than humans, a monoclonal antibody derived from a rabbit or rodent is preferable because of its ease of preparation. The rodent is not particularly limited, and preferred examples include mouse, rat, hamster and the like.
[0012]
Examples of such IL-6 receptor antibodies include PM-1 antibody (Hirata et al., J. Immunol. 143: 2900-2906, 1989), AUK12-20 antibody, AUK64-7 antibody, or AUK146-15 antibody (international patent application). Publication number WO92-19759).
Monoclonal antibodies can be prepared basically using known techniques as follows. That is, using IL-6R as a sensitizing antigen, this is immunized according to a normal immunization method, and the resulting immune cells are fused with a known parent cell by a normal cell fusion method, and by a normal screening method, It can be produced by screening monoclonal antibody-producing cells.
[0013]
More specifically, a monoclonal antibody can be prepared as follows. For example, the sensitizing antigen can be obtained by using the gene sequence of human IL-6R disclosed in European Patent Application Publication No. EP325474. The human IL-6R gene sequence is inserted into a known expression vector system to transform an appropriate host cell, and then the target IL-6R protein is purified from the host cell or culture supernatant. Purified IL-6R protein may be used as a sensitizing antigen.
[0014]
In addition to those expressed on the cell membrane, IL-6R that can be detached from the cell membrane (sIL-6R) can be used as an antigen. sIL-6R is composed mainly of the extracellular region of IL-6R bound to the cell membrane, and the membrane-bound IL-6R is different from the membrane-bound IL-6R in that the transmembrane region or the transmembrane region and the intracellular region are deficient. Is different.
The mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. Hamsters, rabbits, etc. are used.
[0015]
In order to immunize an animal with a sensitizing antigen, a known method is performed. For example, as a general method, a sensitizing antigen is injected into a mammal intraperitoneally or subcutaneously. Specifically, the sensitizing antigen is diluted with PBS (Phosphate-Buffered Saline) or physiological saline to an appropriate amount and suspended, and if desired, a normal adjuvant such as Freund's complete adjuvant is used in combination with an appropriate amount. Preferably, animals are dosed several times every 4-21 days. In addition, an appropriate carrier can be used during immunization with the sensitizing antigen.
[0016]
After immunizing in this manner and confirming that the desired antibody level rises in the serum, immune cells are removed from the mammal and subjected to cell fusion. Preferred immune cells include spleen cells. It is done.
Mammalian myeloma cells as the other parental cells to be fused with the immune cells are already known various cell lines such as P3 (P3x63Ag8.653) (J. Immunol. 123: 1548, 1978), p3. -U1 (Current Topics in Microbiology and Immunology 81: 1-7, 1978), NS-1 (Eur. J. Immunol. 6: 511-519, 1976), MPC-11 (Cell, 8: 405-415). , 1976): SP2 / 0 (Nature, 276: 269-270, 1978), FO (J. Immunol. Meth. 35: 1-21, 1980), S194 (J. Exp. Med. 148: 313-323). 1978), R210 (Nature, 277). 131-133,1979) or the like is preferably used.
[0017]
The cell fusion between the immune cells and myeloma cells can be performed basically according to a known method, for example, the method of Milstein et al. (Milstein et al., Methods Enzymol. 73: 3-46, 1981).
More specifically, the cell fusion is performed, for example, in a normal nutrient culture in the presence of a cell fusion promoter. For example, polyethylene glycol (PEG), Sendai virus (HVJ), or the like is used as the fusion accelerator, and an auxiliary agent such as dimethyl sulfoxide can be added and used to increase the fusion efficiency as desired.
[0018]
The usage ratio of immune cells and myeloma cells is preferably 1-10 times that of immune cells relative to myeloma cells, for example. As the culture solution used for the cell fusion, for example, RPMI1640 culture solution suitable for growth of the myeloma cell line, MEM culture solution, and other normal culture solutions used for this kind of cell culture can be used. Serum replacement fluid such as fetal calf serum (FCS) can be used in combination.
[0019]
For cell fusion, a predetermined amount of the immune cells and myeloma cells are mixed well in the culture solution and pre-warmed to about 37 ° C., for example, PEG having an average molecular weight of about 1000 to 6000, usually a culture solution Is added at a concentration of 30-60% (w / v) and mixed to form the desired fused cell (hybridoma). Subsequently, cell fusion agents and the like that are undesirable for the growth of the hybridoma can be removed by adding an appropriate culture solution successively and centrifuging to remove the supernatant.
[0020]
The hybridoma is selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminobuterin and thymidine). Culturing with the HAT culture solution is continued for a time sufficient for the cells other than the target hybridoma (non-fused cells) to die, usually several days to several weeks. Subsequently, a normal limiting dilution method is performed, and a hybridoma producing the target antibody is screened and single-cloned.
[0021]
The thus produced hybridoma producing a monoclonal antibody can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen.
In order to obtain a monoclonal antibody from the hybridoma, the hybridoma is cultured according to a usual method and obtained as a culture supernatant thereof, or the hybridoma is transplanted to a mammal compatible therewith and proliferated, and the ascites The method obtained as follows is adopted. The former method is suitable for obtaining highly pure antibodies, while the latter method is suitable for mass production of antibodies.
[0022]
Furthermore, the monoclonal antibody obtained by the above-described method can be purified with high purity using ordinary purification means such as salting-out method, gel filtration method, affinity chromatography method and the like.
In this way, the prepared monoclonal antibody is highly sensitive to antigens by usual immunological means such as radioimmunoassay (RIA), enzyme immunoassay (EIA, ELISA), and fluorescent antibody method (Immunofluorescence Analysis). In addition, it can be confirmed that the recognition is performed with high accuracy.
[0023]
The monoclonal antibody used in the present invention is not limited to the monoclonal antibody produced by the hybridoma, but may be artificially modified for the purpose of reducing the heteroantigenicity to humans. For example, a chimeric antibody composed of a variable region of a non-human mammal, for example, a mouse monoclonal antibody and a constant region of a human antibody, can be used. In particular, it can be produced using genetic recombination techniques.
[0024]
In addition, reshaped human antibodies can be used in the present invention. This is obtained by replacing the complementarity determining region of a human antibody with a complementarity determining region of a mammal other than a human, for example, a mouse antibody, and a general gene recombination technique is also known. Using the known method, a reshaped human antibody useful in the present invention can be obtained.
[0025]
If necessary, amino acids in the framework region (FR) of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen binding site (Sato et al., Cancer). Res. 53: 1-6, 1993). A humanized PM-1 (hPM-1) antibody is preferably exemplified as such a reconstituted human antibody (see International Patent Application Publication No. WO92-19759).
[0026]
Furthermore, as long as it binds to an antigen and inhibits the activity of IL-6, it encodes a fragment of an antibody, for example, a single chain Fv (scFv) in which Fv of Fab or Fv, H chain and L chain are linked by an appropriate linker. Can be constructed and expressed in a suitable host cell and used for the aforementioned purposes. (See, eg, Bird et al., TIBTECH, 9: 132-137, 1991; Huston et al., Proc. Natl. Acad. Sci. USA, 85, 5879-5883, 1988).
[0027]
The therapeutic agent for immature myeloma comprising the IL-6 receptor antibody of the present invention as an active ingredient blocks immature myeloma cell IL-6 signaling and immature bone marrow whose survival is maintained by IL-6 As long as the survival of the tumor cells is inhibited, they are effective in eradicating those immature myeloma cells.
The therapeutic agent for immature myeloma cells of the present invention can be administered systemically or locally, preferably parenterally, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like. Furthermore, it can take the form of a pharmaceutical composition or kit with at least one pharmaceutical carrier or diluent.
[0028]
The dose of the therapeutic agent for immature myeloma cells of the present invention to humans varies depending on the patient's disease state, age or administration method, but it is necessary to select an appropriate amount as appropriate. For example, a divided volume of 4 or less can be selected in the range of approximately 1-1000 mg / patient. However, the premature myeloma cell therapeutic agent of the present invention is not limited to these doses.
[0029]
The therapeutic agent for immature myeloma cells of the present invention can be formulated according to a conventional method. For example, in an injectable preparation, a purified IL-6R antibody is dissolved in a solvent such as physiological saline or a buffer solution, and an adsorption inhibitor such as Tween 80, gelatin, human serum albumin (HSA) or the like is added thereto. It may be added or lyophilized for reconstitution prior to use. As an excipient for lyophilization, sugar alcohols and sugars such as mannitol and glucose can be used.
[0030]
【Example】
Hereinafter, the present invention will be specifically described with reference examples, experimental examples, and examples, but the present invention is not limited thereto.
Reference example 1.Preparation of human IL-6 receptor antibody PM-1
Sepharose 4B (manufactured by Pharmacia Fine Chemicals, Piscataway, NJ) obtained by activating the anti-IL-6R antibody MT18 prepared by the method of Hirata et al. (J. Immunol., 143: 2900-2906, 1989) with CNBr and the accompanying formulation And purified IL-6R (Yamazaki et al., Science 241: 825-828, 1988).
[0031]
That is, human myeloma cell line U266 was prepared from 1% digitonin (manufactured by Wako Chemicals), 1 mM p-paraaminophenylmethanesulfonyl fluoride hydrochloride (manufactured by Wako Chemicals) containing 10 mM triethanolamine (pH 7.8) and 0.15 M NaCl (manufactured by Wako Chemicals). Buffer) and mixed with MT18 antibody conjugated to Sepharose 4B beads. Thereafter, the beads were washed 6 times with digitonin buffer solution to obtain partially purified IL-6R used for immunization.
[0032]
3 x 10 BALB / c mice9The partially purified IL-6R obtained from a single U266 cell was immunized 4 times every 10 days, and then a hybridoma was prepared by a conventional method. The hybridoma culture supernatant from the growth positive well was examined for the binding activity to IL-6R by the following method. 5 × 107U266 cells were labeled with 35S-methionine (2.5 mCi) and solubilized with the digitonin buffer.
[0033]
Solubilized U266 cells were mixed with 0.018 ml volume of Sepharose 4B beads conjugated MT18 antibody, then washed 6 times with digitonin buffer, and 0.25 ml of digitonin buffer (pH 3.4).35S-methionine labeled IL-6R was drained and neutralized with 0.025 ml of 1 M Tris (pH 7.4). 0.05 ml of the hybridoma culture supernatant was mixed with 0.01 ml of Protein G Sepharose (manufactured by Pharmacia).
[0034]
After washing, Sepharose was prepared in 0.005 ml prepared above.35Incubated with S-labeled IL-6R solution. Immunoprecipitates were analyzed by SDS-PAGE to examine hybridoma culture supernatants that react with IL-6R. As a result, a reaction positive hybridoma clone PM-1 was established. IL-6R antibody PM-1 produced from hybridoma PM-1 has a subtype of IgGlκ type.
[0035]
The inhibitory activity of IL-6 binding to the human IL-6R of the antibody produced by hybridoma PM-1 was examined using the human myeloma cell line U266. Recombinant human IL-6 was prepared from E. coli (Hirano et al., Immunol. Lett., 17:41, 1988) and Bolton-Hunter reagent (New England Nuclear, Boston. MA).125I-labeled (Taga et al., J. Exp. Med. 166: 967, 1987).
[0036]
4x105Of U266 cells were cultured in 70% (v / v) hybridoma PM-1 culture supernatant and 14000 CPM for 1 hour at room temperature in the presence of 100-fold excess of unlabeled IL-6.125Incubated with I-labeled IL-6. 70 μl of the sample was overlaid on 300 μl FCS in a 400 μl microfuge polyethylene tube, and after centrifugation, the radioactivity on the cells was measured.
As a result, it was revealed that the antibody produced by hybridoma PM-1 inhibits the binding of IL-6 to IL-6R.
[0037]
Reference Example 2  Production of human antibody hPM-1
Humanized antibody hPM-1 was obtained by the method described in International Patent Application Publication No. WO92-19759.
Total RNA was prepared from the hybridoma PM-1 prepared in Reference Example 1 by a conventional method, and single-stranded cDNA was synthesized therefrom. The DNA of the V region of mouse PM-1 was amplified by the polymerase chain reaction (PCR) method. Primers used in the PCR method are S.A. T.A. The one described in Jones et al., Bio / Technology, 9, 88, 1991 was used.
[0038]
A DNA fragment amplified by the PCR method was purified to obtain a DNA fragment containing a gene encoding a mouse kappa type L chain V region and a DNA fragment containing a gene encoding a mouse gamma type H chain variable region. These DNA fragments were ligated to plasmid pUC19 and introduced into E. coli DH5α competent cells to obtain E. coli transformants. The plasmid was obtained from this transformant, the base sequence of the cDNA coding region in the plasmid was determined according to a conventional method, and the complementarity determining region (CDR) of each V region was determined.
[0039]
In order to prepare a vector expressing the chimeric PM-1 antibody, cDNAs encoding the mouse PM-1 κ L chain and H chain V regions were inserted into the HCMV expression vector.
In order to prepare a humanized human PM-1 antibody, the V region CDR of mouse PM-1 was transplanted to a human antibody by the CDR transplantation method. The amino acids in the framework region (FR) of the variable region of the antibody were substituted so that the CDR of the humanized antibody formed an appropriate antigen binding site.
[0040]
In order to express the L-chain and H-chain genes of the humanized PM-1 antibody thus prepared in mammalian cells, each was introduced into a vector containing a human elongation factor Iα (HEF-1α) promoter. Then, a vector expressing humanized PM-1 antibody L chain and H chain was prepared. A cell line producing humanized PM-1 (hPM-1) was established by simultaneously inserting these two expression vectors into CHO cells. The binding ability of the obtained humanized antibody to human IL-6R was confirmed by ELISA. Furthermore, hPM-1 inhibited the binding of human IL-6 to human IL-6R, as did mouse and chimeric antibodies.
[0041]
Experimental example
(1) Classification of myeloma cells
Myeloma cells obtained from myeloma patients were identified and classified based on surface antigens using flow cytometry.
The bone marrow fluid was centrifuged with a lymphocyte separation solution Separate-L (Muto Pure Chemicals Co.) to separate mononuclear cells.
[0042]
These bone marrow cells were treated with 200 μg / ml BSA and 0.01% NaN35 × 10 in PBS containing5First, 20 μl each of anti-CD19 monoclonal antibody (mAB) (Immunotech), anti-CD56 mAB (Coulter), anti-VLA-5 mAB (Immunotech) or anti-MPC-1 mAB (Japanese Patent Laid-Open No. Hei 6) -86688) was added, and the mixture was reacted at 4 ° C for 30 minutes, and then washed twice with PBS (pH 7.2) containing 20 mM sodium phosphate and 0.25 M NaCl.
[0043]
Subsequently, it was stained with 40 μl of PE (phycoerythrin) -conjugated goat anti-mouse IgG (manufactured by Immunotech) diluted 100-fold (4 ° C., 30 minutes), washed twice with PBS, and then 15 μl of mouse serum (Chemicon) Incubate at 4 ° C. for 20 minutes, add 5 μl of FITC (fluorescein isothiocyanate) -conjugated anti-CD38 mAB (manufactured by Immunotech) in 20 μl of the PBS, and stain (4 ° C., 30 minutes). Washed twice with PBS.
[0044]
These double-stained bone marrow cells were analyzed by measuring fluorescence with a flow cytometer (EPICS ELITE, Coulter). As a result of analyzing the surface antigen of the cells appearing in the strongly positive CD38 fraction, which is a characteristic of myeloma cells, myeloma cells were found to be VLA-5.+MPC-1+Mature form of VLA-5MPC-1+Intermediate type and VLA-5MPC-1(Kawano et al., Blood, 82, 564, 1993).
[0045]
(2) Induction of apoptosis in myeloma cells
The determination of myeloma cell viability and dead cell apoptosis was determined by two-staining flow cytometry (Cancer Res.) Using FDA (fluorescein diacetate, Aldrich Chem. Co.) and PI (propidium iodide, Sigma). , 49, 3776, 1989), and the distribution of cells in which apoptosis was induced is shown mechanically in FIG.
[0046]
Human myeloma cell line KMS-5 (Ohtsuki et al., Acto. Haematol. Jpn., 51, 1052, 1988) (1 × 106) 1x10 dexamethasone (manufactured by Sigma) that induces apoptosis is prepared in RPMI culture medium with 10% FCS added so that the number of cells / ml-7It added so that it might become M. After 24 hours of culture at 37 ° C., KMS-5 cells were double-stained with FDA / PI, and fluorescence was measured with a flow cytometer. As a result, as shown in FIG.+PI) And the fraction of cells in which apoptosis was induced (FDAPI) Appeared.
[0047]
FDA+PIFraction and FDAPIThe cells of the fraction were collected by flow cytometry, and Br. J. et al. Haematol. , 71, 343, 1988, DNA was extracted. The DNA thus prepared was analyzed by 1.2% agarose gel electrophoresis. As a result, as shown in FIG.+PIThe fractional cell-derived DNA was not degraded, but the FDAPIThe cells of the fraction showed obvious DNA degradation and ladder-like bands characteristic of apoptosis.
[0048]
Example
Changes in the in vitro survival rate of patient myeloma cells were examined by the FDA / PI double staining flow cytometry method described in the experimental examples.
In the same manner as in the above Examples, myeloma cells were stained with PE-conjugated anti-VLA-5 antibody and PE-conjugated anti-MPC-1 antibody, and the following cell groups were collected.
Sorted VLA-5+MPC-1+Mature form of VLA-5MPC-1+Intermediate type and VLA-5MPC-11 × 10 of immature myeloma cells610% FCS and 1x10 to be pieces / ml-5Suspend in RPMI medium containing M 2-mercaptoethanol, 35 × 10 mm tissue culture
Dispensing into dish (Falcon).
[0049]
These cells were treated with 20 U / ml recombinant human IL-6 (rIL-6; Hirano et al., Nature, 324, 73, 1986), 50 μg / ml humanized anti-hIL-6 receptor antibody (hPM-1 After culturing at 37 ° C. for 3 days in the presence or absence, fluorescence was measured with a flow cytometer (EPICS ELITE, Coulter) using FDA / PI to determine the ratio of viable cells. The control was cultured in the absence of rIL-6 and hPM-1. The results are shown in Table 1.
[0050]
[Table 1]
Figure 0003630453
[0051]
Furthermore, from these results, the effect of rIL-6 on the viability of mature, intermediate and immature myeloma cells is shown in FIG. VLA-5MPC-1FIG. 5 shows the rIL-6 reactivity of immature myeloma cells having various surface antigens and the effect of hPM-1 antibody on the reactivity. VLA-5+MPC-1+Mature myeloma cells (in Table 1, patient-derived myeloma cells 1-9) maintained a relatively high survival rate even with the culture medium alone. These mature myeloma cells hardly responded to rIL-6, and the survival inhibitory effect by hPM-1 antibody was not observed. On the other hand, VLA-5MPC-1The immature myeloma cells (patient-derived myeloma cells 13-18 in Table 1) were not able to maintain their survival only with the culture medium, and were shown to be prone to apoptosis.
[0052]
These cells were highly responsive to IL-6, and the survival rate was increased by rIL-6. At this time, the survival maintenance effect of immature myeloma cells by rIL-6 was clearly inhibited by the hPM-1 antibody (FIG. 5). FIG. 6 shows FDA / PI double-stained images of immature myeloma cells (in Table 1, patient-derived myeloma cells 17) in the presence of control, rIL-6, hPM-1, and rIL-6 and hPM-1. Show.
[0053]
Compared with the control, in the rIL-6 addition group, the intensity of the image inducing apoptosis (lower left, D) was low, and the ratio of live cells (lower right, E) was large. In contrast, in the presence of rIL-6 and hPM-1, the intensity of the fraction of cells in which apoptosis was induced (lower left, D) was high. VLA-5MPC-1+The intermediate myeloma cells exhibiting the same were not as much as the immature type, but it was shown that the survival rate was increased in response to rIL-6 and that this action was inhibited by hPM-1.
[0054]
【The invention's effect】
Surface antigen VLA-5, which is the main component of the myeloma cell population that is often resistant to treatmentMPC-1IL-6 is deeply involved in maintaining the survival of immature myeloma cells. The inhibitory effect of IL-6 receptor antibody on the survival of immature myeloma cells is VLA-5MPC-1Since it was strongly observed in immature myeloma cells, the IL-6 receptor antibody of the present invention was suggested to be useful as a therapeutic agent for immature myeloma cells.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 schematically shows the distribution of myeloma cells in which apoptosis is induced by double staining flow cytometry. E is a living cell (FDA+PI), D is apoptosis-inducing cell (FDA)PI), C is an image of dead cells without apoptotic features.
FIG. 2 is a flow cytometry image of myeloma cell line KMS-5 in which apoptosis was induced by dexamethasone treatment.
FIG. 3 shows an FDA+PI(E) and FDAPI(D) DNA agarose gel electrophoresis diagram of cells of fraction. Lane 1 is molecular weight marker, Lane 2 is FDA+PI(E) Fraction, Lane 3 is FDAPI(D) It is a fraction. In lane 3, a ladder-like band characteristic of DNA degradation and apoptosis is seen.
FIG. 4 shows the effect of IL-6 on myeloma cell viability. In the presence of IL-6, thermosensitive myeloma cells (VLA-5+MPC-1+) Is almost unaffected by its presence (approximately 1.1 times). On the other hand, intermediate type (VLA-5MPC-1+) And immature myeloma cells (VLA-5)MPC-1) Increase the number of viable cells by about 2.4 times and 3.5 times, respectively.
FIG. 5 shows VLA-5MPC-1Shows the reactivity of unheated myeloma cells to IL-6 and the effect of hPM-1 antibody on it. In Table 1, the patient-derived myeloma cells 13 in Table 1, □ indicates the same 14, Δ indicates the same 15, ● indicates the same 16, × indicates the same 17, and ▼ indicates the same 18. The survival of these immature myeloma cells is supported by IL-6, and hPM-1 antibody clearly inhibits the survival support effect.
FIG. 6 shows VLA-5MPC-1FDA / PI double-stained images in the presence of control, rIL-6, hPM-1 and rIL-6 and hPM-1 of immature myeloma cells (in Table 1, patient-derived myeloma cells 17) in FIG. .

Claims (6)

インターロイキン−6レセプター抗体を有効成分とする、VLA−5 MPC−1 の表面抗原を有する未熟型骨髄腫細胞の生存阻害剤。As an active ingredient interleukin-6 receptor antibody, VLA-5 - MPC-1 - Survival inhibitors of immature myeloma cells having a surface antigen. 前記インターロイキン−6レセプターがヒトインターロイキン−6レセプターであることを特徴とする請求項1の未熟型骨髄腫細胞の生存阻害剤。2. The immature myeloma cell survival inhibitor according to claim 1, wherein the interleukin-6 receptor is a human interleukin-6 receptor. 前記インターロイキン−6レセプター抗体がモノクローナル抗体であることを特徴とする請求項1の未熟型骨髄腫細胞の生存阻害剤。2. The immature myeloma cell survival inhibitor according to claim 1, wherein the interleukin-6 receptor antibody is a monoclonal antibody. 前記インターロイキン−6レセプター抗体がヒト型化抗体であることを特徴とする請求項1の未熟型骨髄腫細胞の生存阻害剤。2. The immature myeloma cell survival inhibitor according to claim 1, wherein the interleukin-6 receptor antibody is a humanized antibody. 前記インターロイキン−6レセプター抗体がPM−1抗体であることを特徴とする請求項1の未熟型骨髄腫細胞の生存阻害剤。2. The immature myeloma cell survival inhibitor according to claim 1, wherein the interleukin-6 receptor antibody is a PM-1 antibody. 前記インターロイキン−6レセプター抗体がヒト型化PM−1抗体であることを特徴とする請求項1の未熟型骨髄腫細胞の生存阻害剤。2. The immature myeloma cell survival inhibitor according to claim 1, wherein the interleukin-6 receptor antibody is a humanized PM-1 antibody.
JP25965494A 1994-09-30 1994-09-30 A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient Expired - Fee Related JP3630453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25965494A JP3630453B2 (en) 1994-09-30 1994-09-30 A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25965494A JP3630453B2 (en) 1994-09-30 1994-09-30 A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient

Publications (2)

Publication Number Publication Date
JPH0899902A JPH0899902A (en) 1996-04-16
JP3630453B2 true JP3630453B2 (en) 2005-03-16

Family

ID=17337059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25965494A Expired - Fee Related JP3630453B2 (en) 1994-09-30 1994-09-30 A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient

Country Status (1)

Country Link
JP (1) JP3630453B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398980B2 (en) 2004-03-24 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleuken-6 receptor
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US8580264B2 (en) 2010-11-08 2013-11-12 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody
US8709409B2 (en) 2003-04-28 2014-04-29 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis by administering an anti-IL-6 antibody and methotrexate
US8840884B2 (en) 2002-02-14 2014-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution pharmaceuticals
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1314437T3 (en) * 2000-08-11 2014-07-14 Chugai Pharmaceutical Co Ltd Stabilized antibody-containing preparations
WO2002072615A1 (en) 2001-03-09 2002-09-19 Chugai Seiyaku Kabushiki Kaisha Method of purifying protein
CA2497364C (en) 2002-09-11 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Protein purification method
SI1835022T1 (en) 2005-01-05 2015-04-30 Chugai Seiyaku Kabushiki Kaisha Cell culture method and utilization of the same
TWI406870B (en) 2005-02-21 2013-09-01 Chugai Pharmaceutical Co Ltd A method of making a protein using hamster IGF-1
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd Antibody-containing stabilizing preparation
ES2397383T3 (en) 2006-04-13 2013-03-06 Chugai Seiyaku Kabushiki Kaisha Taurine transporter gene
JP2010095445A (en) * 2006-12-27 2010-04-30 Tokyo Medical & Dental Univ Therapeutic agent for inflammatory myopathy containing il-6 antagonist as active ingredient
JP5635260B2 (en) 2007-03-15 2014-12-03 中外製薬株式会社 Method for producing polypeptide
KR101574355B1 (en) 2007-04-26 2015-12-11 추가이 세이야쿠 가부시키가이샤 Cell culture method using amino acid-enriched medium
BRPI0815036B1 (en) 2007-08-07 2022-09-20 Chugai Seiyaku Kabushiki Kaisha METHODS FOR PRODUCTION OF A POLYPEPTIDE AND FOR PREPARATION OF A PHARMACEUTICAL PRODUCT
WO2009051109A1 (en) 2007-10-15 2009-04-23 Chugai Seiyaku Kabushiki Kaisha Method of constructing cells with high productivity of foreign protein
EP2213746B1 (en) 2007-10-24 2015-07-15 Chugai Seiyaku Kabushiki Kaisha Cell for use in the production of exogenous protein, and production process using the cell
AR104050A1 (en) 2015-03-26 2017-06-21 Chugai Pharmaceutical Co Ltd PRODUCTION PROCESS WITH CONTROLLED COPPER IONS

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US8840884B2 (en) 2002-02-14 2014-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution pharmaceuticals
US9051384B2 (en) 2002-02-14 2015-06-09 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
US8709409B2 (en) 2003-04-28 2014-04-29 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis by administering an anti-IL-6 antibody and methotrexate
US10744201B2 (en) 2003-04-28 2020-08-18 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate
US8734800B2 (en) 2004-03-24 2014-05-27 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
US9902777B2 (en) 2004-03-24 2018-02-27 Chugai Seiyaku Kabushiki Kaisha Methods for producing subtypes of humanized antibody against interleukin-6 receptor
US8398980B2 (en) 2004-03-24 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleuken-6 receptor
US11767363B2 (en) 2007-12-27 2023-09-26 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11584798B2 (en) 2007-12-27 2023-02-21 Hoffmann-La Roche Inc. High concentration antibody-containing liquid formulation
US11359026B2 (en) 2007-12-27 2022-06-14 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11008394B2 (en) 2007-12-27 2021-05-18 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11021728B2 (en) 2009-10-26 2021-06-01 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11136610B2 (en) 2009-10-26 2021-10-05 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11377678B2 (en) 2009-10-26 2022-07-05 Hoffman-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US10874677B2 (en) 2010-11-08 2020-12-29 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US10231981B2 (en) 2010-11-08 2019-03-19 Chugai Seiyaku Kabushiki Kaisha Subcutaneously administered anti-IL-6 receptor antibody for treatment of juvenile idiopathic arthritis
US9750752B2 (en) 2010-11-08 2017-09-05 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US11622969B2 (en) 2010-11-08 2023-04-11 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US11667720B1 (en) 2010-11-08 2023-06-06 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US8580264B2 (en) 2010-11-08 2013-11-12 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody
US10761091B2 (en) 2013-07-04 2020-09-01 Hoffmann-La Roche, Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples

Also Published As

Publication number Publication date
JPH0899902A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3630453B2 (en) A therapeutic agent for immature myeloma cells comprising an IL-6 receptor antibody as an active ingredient
WO2018036473A1 (en) Anti-ctla4 and anti-pd-1 bifunctional antibody, pharmaceutical composition thereof and use thereof
US11046775B2 (en) CD70 binding molecules and methods of use thereof
US8562990B2 (en) Method of treating psoriatic arthritis with an IL-6 receptor antibody
CA2542691C (en) Il-6 antagonist for use as mesothelioma therapeutic agent
RU2490025C2 (en) Therapeutic agent used for graft-versus-host disease, containing interleukin-6 receptor inhibitor as active ingredient
EP2248529B1 (en) NKG2D antibodies for use in the treatment of autoimmune or inflammatory diseases
EP2578231B1 (en) Antitumor t cell response enhancer
JP5419067B2 (en) Compositions and methods for treating proliferative disorders
JP7262597B2 (en) Bispecific antibodies and methods of making and using the same
JP5249025B2 (en) ANTI-CCR7 RECEPTOR ANTIBODY FOR TREATING CANCER
AU5304999A (en) Preventives or remedies for pancreatitis containing il-6 antagonists as the active ingredient
CZ297083B6 (en) Agent for prevention and treatment of inflammatory intestinal disease containing IL-6 antagonist as active component
JP2022530301A (en) CD3 antigen-binding fragment and its use
US20090081221A1 (en) Method for suppressing cancer cell metastasis and pharmaceutical composition for use in the method
KR102312222B1 (en) Monoclonal Antibodies Targeting Unique Sialoglycosylated Cancer-Associated Epitopes of CD43
CN114075285A (en) Anti-human CD38 humanized monoclonal antibody and application thereof
JP2004500070A (en) Antibodies to plasma cells
CN117412767A (en) C-X-C motif chemokine receptor 6 (CXCR 6) binding molecules and methods of use thereof
CN116848144A (en) anti-PD-L1 antibodies and uses thereof
JPH06327491A (en) Hamster monoclonal antibody against mouse cell surface antigen
JPH10182488A (en) Septicemia-treating agent containing anti-interleukin-8 antibody as active ingredient
JPH1087511A (en) Medicine containing monoclonal antibody causing apoptosis as active principle
MXPA06005875A (en) Remedy for angitis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees