JP3626899B2 - End wall structure between turbine blades - Google Patents

End wall structure between turbine blades Download PDF

Info

Publication number
JP3626899B2
JP3626899B2 JP2000242373A JP2000242373A JP3626899B2 JP 3626899 B2 JP3626899 B2 JP 3626899B2 JP 2000242373 A JP2000242373 A JP 2000242373A JP 2000242373 A JP2000242373 A JP 2000242373A JP 3626899 B2 JP3626899 B2 JP 3626899B2
Authority
JP
Japan
Prior art keywords
blade
height
end wall
shroud
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000242373A
Other languages
Japanese (ja)
Other versions
JP2002054401A (en
Inventor
和幸 松本
澄生 内田
慎吾 松本
慶三 田中
良典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000242373A priority Critical patent/JP3626899B2/en
Publication of JP2002054401A publication Critical patent/JP2002054401A/en
Application granted granted Critical
Publication of JP3626899B2 publication Critical patent/JP3626899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はタービン翼間の端壁構造に関し、翼端壁の境界層流の流体の流れを加速し流れを一様化するような形状として効率を向上させる構造としたものである。
【0002】
【従来の技術】
図5は従来の蒸気タービンやガスタービン、等の翼形状で、静翼を示し、(a)は翼の断面形状、(b)は(a)におけるA−A断面図である。両図において、50はタービン静翼であり、51は隣接する翼間のスロート、52は翼の端壁、53は翼の負圧面、54は翼の圧力面を、それぞれ示している。タービン翼50の翼間内で流体は翼の形状に沿って流れる角度を変えながらスロート51まで加速される。この時、翼間には主流の流線60の曲率に応じて生ずる遠心力に釣り合うような圧力勾配が発生する。しかしながら端壁52上に発達する境界層内部の速度の遅い流体は、圧力面54から負圧面53へ向かう圧力勾配にバランスするだけの遠心力がないため主流60よりも流れの転向が大きくなり、いわゆる2次流れ61が発生する。この2次流れ61のため、翼列出口での翼高さ方向流れ角分布や軸流速度分布が非一様となり、静翼だけでなく下流の動翼の効率も低下する原因となっていた。
【0003】
【発明が解決しようとする課題】
前述のように、従来のタービン翼においては、翼間の端壁52には主流60と流れの転向が異なる2次流れ61が発生し、これが翼列出口での翼高さ方向の流れ角分布を乱し、速度分布を非一様にして効率を低下させてしまい、又、静翼出口での流れの乱れは、下流動翼の性能にも影響を与えており、流体のタービン翼間での流れの改善による効率の向上策が強く望まれていた。
【0004】
そこで本発明では、タービン翼端壁の形状に工夫を行い、2次流れの発生を抑えて流れの効率を向上させるような翼端壁面の形状を採用したタービン翼間の端壁構造を提供することを課題としてなされたものである。
【0005】
【課題を解決するための手段】
本発明は前述の課題を解決するために、次の(1)〜()の手段を提供する。
【0006】
(1)タービン静翼の翼間ハブ側端壁面は前縁、後縁両翼端間に頂部を有する突起形状を備え、同突起形状の頂部は曲面形状であり、かつ、その曲面の頂点の軌跡はタービン軸と直交する方向に直線を形成し、更に同直線の位置は隣接する静翼間で形成されるスロートの位置に設定され、前記突起形状の高さは翼高さの2.6%以下とすることを特徴とするタービン翼間の端壁構造。
【0007】
(2)先端にシュラウドを有し基部がハブ側のプラットフォームに固定されている動翼の翼間シュラウド内側端壁面は前縁、後縁両翼端間に頂部を有する突起形状を備え、同突起形状の頂部は曲面形状であり、かつその曲面の頂点の軌跡はタービン軸と直交する方向に直線を形成し、更に同直線の位置は隣接する動翼間で形成されるスロートの位置に設定されるとともに、前記シュラウドの突起形状に加えて、更に、前記プラットフォーム外側端壁面にも前記突起形状が形成され、前記突起形状の高さは翼高さの2.6%以下とすることを特徴とするタービン翼間の端壁構造。
【0008】
本発明の(1)においては、静翼翼間のハブ側端面の突起形状により流体の流れはこの突起形状に沿って速度を加速して流れ、これによりハブ側端壁境界層流体の速度も大きくなり、2次流れを抑制することができる。そして、突起形状の高さを翼の高さの2.6%以下とし、更に流れ方向の突起形状の頂点の位置をスロートに一致させて最適化を計っている。これにより静翼翼間のハブ側端壁面での2次流れの発生が抑えられ、静翼出口で、流れが一様化することにより効率が向上するものである。
【0009】
本発明の(2)では、突起形状を動翼先端のシュラウド内側壁面に設けたので、この突起形状により動翼シュラウド壁面の流れが加速され、シュラウド側端壁境界層流体の速度が大きくなり、シュラウド側壁面近傍に発生する2次流れを抑制することができる。
【0010】
そしてさらに、動翼先端のシュラウド内側端壁面に加えて、動翼のプラットフォーム内側端壁面にも突起形状が形成されており、シュラウド及びプラットフォーム両端壁面の流れは、この突起形状で加速され、シュラウド及びプラットフォーム両端壁面近傍に発生する2次流れを抑制することができる。又、突起形状の高さを翼の高さの2.6%以下とし、更に流れ方向の突起形状の頂点の位置をスロートに一致させ、最適化を計っている。これにより動翼先端のシュラウド及びプラットフォームの両端壁面には2次流れが抑制され、動翼出口での流れが一様化することにより効率が向上するものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の第1形態に係るタービン翼間端壁構造を示し、(a)は全体の側面図、(b)は翼端壁の斜視図であり、図1ではタービンの静翼を示し、蒸気タービン、ガスタービン、圧縮機、等の回転体を有するタービンに適用される。両図において、10は静翼であり、静翼10はハブ側端壁11とケーシング12との間に固定されている。
【0012】
本実施の第1形態の静翼は、翼高さがS、翼の軸方向コード長がCであり、ハブ側端壁11のガス流れ方向Gには、後述するように両端からX,Xの寸法となる位置に頂部14を有するとともに頂部の高さがHの突起壁13が形成されている。頂部14は翼端からそれぞれX,Xの位置で、図1(b)にも示すように軸と直交方向に頂点の軌跡が直線状に形成され、ハブの底面から高さHを保って形成されている。
【0013】
図2は上記に説明した突起壁の形状を示す図で、(a)はハブ側端壁の平面図、(b)はその断面図である。(a)に示すように頂部14はタービンの軸方向Rと直交する方向Pに形成され、翼の両端からそれぞれX,Xの位置に形成され、その頂部14はなめらかな曲面に形成されている。又、X,Xの位置は頂点14の軌跡がスロート51の位置と一致する直線となるように決定し、高さHは翼高さSの約2.6%以下としている。
【0014】
上記構成の実施の第1形態のタービン翼間の端壁構造においては、高さHの突起壁13を翼間のハブ側端壁11表面に設け、壁面に沿う流体を局所的に突起壁13のなめらかな面に沿わせることにより加速させ、ハブ側端壁11の境界層流体Vの速度が大きくなり、従来の2次流れを抑制することができる。
【0015】
突起壁13の高さHについては、流れが剥離しない程度の高さとし、突起の流れ方向位置についてもスロート位置との兼ね合いを考慮して、スロート51の位置に頂部14がくるようにX,Xを決定し、最適化を計っている。本実施の第1形態では、突起壁13の高さHは、前述のように翼高さの約2.6%を限度として設定している。
【0016】
図3は本発明に関連して検討された検討例に係るタービン翼間の端壁構造の側面図であり、動翼に適用した例である。図において20は動翼であり、先端にはチップシュラウド22が取付けられ基部はハブ側のプラットフォーム21へ固定されている。このシュラウド型動翼20は翼高さがS、翼の軸方向コード長がCであり、チップシュラウド22のガス流れ方向Gに寸法Y,Yとなる位置に高さHの頂部24を有する突起壁23が形成されている。この突起壁23の寸法Y,Y、頂部23の位置は図2で説明した位置関係と同じであり、その頂部24はなめらかな曲面で形成された頂部であり、軸方向と直交する直線上に形成され、その位置はスロート51の位置に一致させている。又、高さHは翼高さSの2.6%を上限として設定している。
【0017】
上記の検討例においては、動翼20において、高さHの突起壁23をチップシュラウド22に形成し、壁面に沿う流体を局所的に突起壁23のなめらかな面に沿わせることにより加速させ、チップシュラウド22側の端壁境界層流体の速度が大きくなり、チップシュラウド22側端壁近傍に発生する2次流れを抑制することができる。
【0018】
高さHについては、流れが剥離しない程度の高さとし、突起の流れ方向位置についても、スロート位置との兼ね合いを考慮して両者を最適化する必要がある。そこで、本検討例では、突起の高さを前述のように翼高さSの2.6%を限度として、またその流れ方向の位置については、前述のように突起壁23の頂部24の軌跡がスロート部へ一致する直線形状に設定している。
【0019】
図4は本発明の実施の第形態に係るタービン翼間の端壁構造の側面図であり、チップシュラウドを有する動翼のシュラウドとプラットフォームの両方に適用した例である。図において、30は動翼であり、先端にはチップシュラウド32が取付けられ基部はハブ側のプラットフォーム31へ固定されている。このシュラウド型動翼30は翼高さがS、翼の軸方向コード長がCであり、チップシュラウド32の端壁面のガス流れ方向Gに図3の例と同じく寸法Y,Y となる位置に、更にプラットフォーム31側の端壁面の流れ方向にZ,Zとなる位置に、それぞれ高さHの突起壁33,35を設けたものである。
【0020】
上記の突起壁33,35の寸法Y,Y及びZ,Z、頂部34,36の位置は図2で説明した位置関係と同じであり、その頂部36,34はなめらかな曲面で形成された頂部であり、その軌跡は軸方向に直交する直線上に形成され、その位置はスロート51の位置に一致させている。
【0021】
上記構成の実施の第形態においては、高さHの突起壁をチップシュラウド32及びプラットフォーム31側の端壁に設け、壁面に沿う流体を局所的に突起壁のなめらかな面に沿わせることにより加速させ、両端壁境界層流体の速度が大きくなり、シュラウド32及びプラットフォーム31側端壁付近に発生する2次流れを抑制することができる。
【0022】
突起の高さHについては、流れが剥離しない程度の高さとし、突起の流れ方向位置についても、スロート位置との兼ね合いを考慮して両者を最適化する必要がある。本実施の第形態では、突起の高さHを翼高さSの約2.6%を限度として突出させ、またその流れ方向位置については、前述のように突起の頂部34,36がスロート部に一致する形状としている。
【0023】
【発明の効果】
本発明のタービン翼間の端壁構造は、(1)タービン静翼の翼間ハブ側端壁面は前縁、後縁両翼端間に頂部を有する突起形状を備え、同突起形状の頂部は曲面形状であり、かつ、その曲面の頂点の軌跡はタービン軸と直交する方向に直線を形成し、更に同直線の位置は隣接する静翼間で形成されるスロートの位置に設定され、前記突起形状の高さは翼高さの2.6%以下とすることを特徴としている。
【0024】
上記の構成により、静翼翼間のハブ側端面の突起形状により流体の流れはこの突起形状に沿って速度を加速して流れ、これによりハブ側端壁境界層流体の速度も大きくなり、2次流れを抑制することができる。又、突起形状の高さを翼の高さの2.6%以下とし、更に流れ方向の突起形状の頂点の位置をスロートに一致させて最適化を計っている。これにより静翼翼間のハブ側端壁面には2次流れが発生することが抑えられ、静翼出口での流れが一様化することにより効率が向上するものである。
【0025】
本発明の(2)では、(1)の発明と同様の突起形状を動翼先端のシュラウド内側壁面に設けたので、この突起形状により動翼シュラウド壁面の流れは流れを加速され、シュラウド側端壁境界層流体の速度が大きくなり、シュラウド側壁面近傍に発生する2次流れを抑制することができる。
【0026】
そしてさらに、動翼先端のシュラウド内側端壁面に加えて、動翼のプラットフォーム側端壁面にも突起形状が形成されており、シュラウド及びプラットフォーム両端壁面の流れは、この突起形状で加速され、シュラウド及びプラットフォーム両端壁面近傍に発生する2次流れを抑制することができる。又、突起形状の高さを翼の高さの2.6%以下とし、更に流れ方向の突起形状の頂点の位置をスロートに一致させ、最適化を計っている。これにより動翼先端のシュラウド及びプラットフォームの両端壁面では2次流れが抑制され、動翼出口での流れが一様化することにより効率が向上するものである。
【図面の簡単な説明】
【図1】本発明の実施の第1形態に係るタービン翼間の端壁構造を示し、(a)は側面図、(b)は端壁部の斜視図である。
【図2】本発明の実施の第1形態、第2形態、及び本発明に関連して検討された検討例に係るタービン翼間の端壁構造の位置関係を示し、(a)は平面図、(b)は端壁の断面図である。
【図3】本発明に関連して検討された検討例に係るタービン翼間の端壁構造の側面図である。
【図4】本発明の実施の第形態に係るタービン翼間の端壁構造の側面図である。
【図5】従来のタービン翼間の端壁構造を示し、(a)は翼の断面図、(b)は(a)におけるA−A断面図である。
【符号の説明】
10 静翼
11 ハブ側端壁
12 ケーシング
13,23,33,35 突起壁
14,24,34,36 頂部
20,30 動翼
21,31 プラットフォーム
22,32 チップシュラウド
51 スロート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an end wall structure between turbine blades, and has a structure that improves efficiency by accelerating the fluid flow of the boundary layer flow of the blade end walls to make the flow uniform.
[0002]
[Prior art]
FIG. 5 is a blade shape of a conventional steam turbine, gas turbine, or the like, showing a stationary blade, where (a) is a sectional shape of the blade, and (b) is an AA sectional view in (a). In both figures, 50 is a turbine stationary blade, 51 is a throat between adjacent blades, 52 is an end wall of the blade, 53 is a suction surface of the blade, and 54 is a pressure surface of the blade. Fluid in between the blades of the turbine stationary blade 50 is accelerated up to the throat 51 while changing the angle at which flows along the shape of the wing. At this time, a pressure gradient is generated between the blades to balance the centrifugal force generated according to the curvature of the mainstream streamline 60. However, the slow fluid inside the boundary layer that develops on the end wall 52 has a centrifugal force sufficient to balance the pressure gradient from the pressure surface 54 toward the suction surface 53, and therefore the flow direction is larger than the main flow 60. A so-called secondary flow 61 is generated. Due to the secondary flow 61, the flow angle distribution in the blade height direction and the axial flow velocity distribution at the blade row outlet are non-uniform, causing the efficiency of not only the stationary blade but also the downstream moving blade to decrease. .
[0003]
[Problems to be solved by the invention]
As described above, in the conventional turbine blade, the secondary flow 61 having a flow direction different from that of the main flow 60 is generated in the end wall 52 between the blades, and this is the flow angle distribution in the blade height direction at the blade row outlet. And the velocity distribution is non-uniform, reducing the efficiency, and the flow turbulence at the stationary blade outlet also affects the performance of the lower fluid blade. There was a strong demand for measures to improve efficiency by improving the flow.
[0004]
Therefore, the present invention provides an end wall structure between the turbine blades adopting the shape of the blade tip wall surface that improves the efficiency of the flow by suppressing the generation of the secondary flow by devising the shape of the turbine blade end wall. It was made as an issue.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides the following means (1) to ( 2 ).
[0006]
(1) The inter-blade hub side wall surface of the turbine stationary blade has a protrusion shape having a peak between the leading edge and the trailing edge, and the peak of the protrusion is a curved surface, and the locus of the apex of the curved surface Forms a straight line in a direction perpendicular to the turbine axis, and the position of the straight line is set to the position of a throat formed between adjacent stationary blades, and the height of the protrusion is 2.6% of the blade height. end wall structure between the turbine blades, characterized by the following.
[0007]
(2) The inner wall surface of the inner surface of the blade between the blades having a shroud at the tip and the base portion fixed to the platform on the hub side has a protrusion shape having a top portion between the leading edge and the trailing edge. top of a curved shape and the trajectory of the vertex of the curved surface to form a straight line in a direction orthogonal to the turbine axis, Ru is set to further position the throat position of the straight line formed between the rotor blades adjacent In addition to the protrusion shape of the shroud, the protrusion shape is also formed on the outer wall surface of the platform outer end, and the height of the protrusion shape is 2.6% or less of the blade height. End wall structure between turbine blades.
[0008]
In (1) of the present invention, the flow of the fluid accelerates along the protrusion shape due to the protrusion shape of the hub side end surface between the stationary blades, and the speed of the hub side end wall boundary layer fluid increases accordingly. Therefore, the secondary flow can be suppressed. Then , the height of the protrusion shape is set to 2.6% or less of the height of the blade, and further, the position of the apex of the protrusion shape in the flow direction is matched with the throat for optimization. This suppresses the generation of a secondary flow on the hub side end wall surface between the stationary blades, and improves the efficiency by making the flow uniform at the stationary blade outlet.
[0009]
In (2) of the present invention, since the protrusion shape is provided on the inner wall surface of the shroud at the tip of the rotor blade, the flow of the rotor blade shroud wall surface is accelerated by this protrusion shape, and the velocity of the shroud side end wall boundary layer fluid is increased. Ru can be suppressed secondary flow generated near the shroud side wall surface.
[0010]
Further , in addition to the inner wall surface of the inner surface of the shroud at the tip of the moving blade, a protrusion shape is also formed on the inner wall surface of the inner surface of the platform of the moving blade. The secondary flow generated in the vicinity of the both end wall surfaces of the platform can be suppressed. Also, the height of the collision force shapes and 2.6% or less of the height of the blade, and further matches the position of the vertex of the flow direction of the projection shape in the throat, and measure the optimization. As a result, the secondary flow is suppressed on the shroud at the tip of the rotor blade and the wall surfaces of both ends of the platform, and the flow is uniform at the outlet of the rotor blade, thereby improving efficiency.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. 1A and 1B show a turbine blade end wall structure according to a first embodiment of the present invention, in which FIG. 1A is a side view of the whole, FIG. 1B is a perspective view of a blade end wall, and FIG. The blade is shown and applied to a turbine having a rotating body such as a steam turbine, a gas turbine, and a compressor. In both figures, 10 is a stationary blade, and the stationary blade 10 is fixed between the hub side end wall 11 and the casing 12.
[0012]
The stationary blade of the first embodiment has a blade height S and a blade axial cord length C, and the gas flow direction G of the hub side end wall 11 has X 1 , the height of both the top portion to have a top portion 14 to the dimensions and a position of X 2 are the projection wall 13 of the H are formed. The top portion 14 is located at X 1 and X 2 from the blade tip, respectively, and as shown in FIG. 1 (b), the locus of the vertex is formed in a straight line in the direction orthogonal to the axis, and the height H is maintained from the bottom surface of the hub. Is formed.
[0013]
2A and 2B are views showing the shape of the protruding wall described above. FIG. 2A is a plan view of the hub side end wall, and FIG. 2B is a sectional view thereof. The top 14 as shown in (a) is formed in a direction P perpendicular to the axial direction R of the turbine, is formed at a position away from both of the wing X 1, X 2, the top 14 is formed into a smooth curved surface ing. The positions of X 1 and X 2 are determined so that the locus of the vertex 14 is a straight line that coincides with the position of the throat 51, and the height H is set to about 2.6% or less of the blade height S.
[0014]
In the end wall structure between the turbine blades of the first embodiment of the above configuration, the protrusion wall 13 having a height H is provided on the surface of the hub side end wall 11 between the blades, and the fluid along the wall surface is locally provided on the protrusion wall 13. By accelerating along the smooth surface, the velocity of the boundary layer fluid V of the hub side end wall 11 increases, and the conventional secondary flow can be suppressed.
[0015]
The height H of the projection wall 13 is set to such a height that the flow does not separate, and the position of the projection in the flow direction X 1 , so that the top portion 14 comes to the position of the throat 51 in consideration of the balance with the throat position. to determine the X 2, which measure the optimization. In the first embodiment, the height H of the projection wall 13 is set to a limit of about 2.6% of the blade height as described above.
[0016]
FIG. 3 is a side view of an end wall structure between turbine blades according to a study example studied in connection with the present invention , and is an example applied to a moving blade. In the figure, reference numeral 20 denotes a moving blade, a tip shroud 22 is attached to the tip, and the base is fixed to the platform 21 on the hub side. The shroud type moving blade 20 has a blade height S, a blade axial code length C, and a tip 24 having a height H at a position where the dimensions Y 1 and Y 2 are in the gas flow direction G of the tip shroud 22. A protruding wall 23 is formed. The dimensions Y 1 and Y 2 of the projection wall 23 and the position of the top 23 are the same as the positional relationship described in FIG. 2, and the top 24 is a top formed by a smooth curved surface, and is a straight line perpendicular to the axial direction. It is formed on the top and its position matches the position of the throat 51. The height H is set with 2.6% of the blade height S as an upper limit.
[0017]
In the above examination example , in the rotor blade 20, the protruding wall 23 having a height H is formed on the tip shroud 22, and the fluid along the wall surface is locally accelerated along the smooth surface of the protruding wall 23. The velocity of the end wall boundary layer fluid on the tip shroud 22 side is increased, and the secondary flow generated near the end wall on the tip shroud 22 side can be suppressed.
[0018]
It is necessary to optimize the height H in consideration of the balance with the throat position in consideration of the balance with the throat position. Therefore, in the present study example , the height of the projection is limited to 2.6% of the blade height S as described above, and the position in the flow direction is the locus of the top 24 of the projection wall 23 as described above. Is set to a straight line shape that matches the throat part.
[0019]
FIG. 4 is a side view of an end wall structure between turbine blades according to a second embodiment of the present invention, which is an example applied to both a blade shroud and a platform having a tip shroud. In the figure, reference numeral 30 denotes a moving blade, a tip shroud 32 is attached to the tip, and the base is fixed to the platform 31 on the hub side. This shroud type moving blade 30 has a blade height S and a blade axial code length C, and the dimensions Y 1 and Y 2 in the gas flow direction G on the end wall surface of the tip shroud 32 are the same as in the example of FIG. At the position, projection walls 33 and 35 having a height H are provided at positions where Z 1 and Z 2 are provided in the flow direction of the end wall surface on the platform 31 side.
[0020]
The dimensions Y 1 , Y 2 and Z 1 , Z 2 of the projection walls 33, 35 and the positions of the apexes 34, 36 are the same as the positional relationship described in FIG. 2, and the apexes 36, 34 are smooth curved surfaces. It is the formed top portion, and its locus is formed on a straight line orthogonal to the axial direction, and its position is made to coincide with the position of the throat 51.
[0021]
In the second embodiment of the above configuration, by providing a protruding wall having a height H on the end wall on the side of the chip shroud 32 and the platform 31, the fluid along the wall surface is locally along the smooth surface of the protruding wall. The speed of the boundary wall boundary layer fluid is increased, and the secondary flow generated near the shroud 32 and the platform 31 side end wall can be suppressed.
[0022]
The height H of the protrusion is set to such a height that the flow does not separate, and the position of the protrusion in the flow direction needs to be optimized in consideration of the balance with the throat position. In the second embodiment, the height H of the projection is projected with a limit of about 2.6% of the blade height S, and the top portions 34 and 36 of the projection are throated in the flow direction position as described above. The shape matches the part.
[0023]
【The invention's effect】
The end wall structure between the turbine blades of the present invention is as follows: (1) The inter-blade hub side wall surface of the turbine stationary blade has a protrusion shape having a top portion between the leading edge and the trailing edge, and the top portion of the protrusion shape is a curved surface. the shape and the trajectory of the vertex of the curved surface forms a straight line in a direction orthogonal to the turbine axis, further the position of the straight line is set to a position of the throat formed between the adjacent vanes, said projection-shaped The height of the blade is 2.6% or less of the blade height .
[0024]
With the above configuration, the flow of the fluid accelerates along the protrusion shape due to the protrusion shape of the hub side end surface between the stationary blades, thereby increasing the speed of the hub side end wall boundary layer fluid. Flow can be suppressed. Also, the height of the collision force shapes and 2.6% or less of the height of the blade, and measure the optimization is further match the position of the apex in the flow direction of the projection-shaped throat. This suppresses the occurrence of secondary flow on the hub side end wall surface between the stationary blades, and improves the efficiency by making the flow uniform at the stationary blade outlet.
[0025]
In (2) of the present invention, since the protrusion shape similar to that of the invention of (1) is provided on the inner wall surface of the shroud at the tip of the moving blade, the flow on the moving blade shroud wall surface is accelerated by this protrusion shape. speed of the wall boundary layer fluid is increased, Ru can be suppressed secondary flow generated near the shroud side wall surface.
[0026]
And further, in addition to the shroud inner end wall of the blade tip, in the rotor blade platforms outside end wall is formed with projection-shaped, flow shrouds and platforms across the wall are accelerated by this projection-shaped shroud And the secondary flow which generate | occur | produces in the platform both end wall vicinity can be suppressed. Also, the height of the collision force shapes and 2.6% or less of the height of the blade, and further matches the position of the vertex of the flow direction of the projection shape in the throat, and measure the optimization. As a result, the secondary flow is suppressed on the shroud at the tip of the moving blade and the both end walls of the platform, and the flow is uniform at the outlet of the moving blade, thereby improving the efficiency.
[Brief description of the drawings]
1A and 1B show an end wall structure between turbine blades according to a first embodiment of the present invention, in which FIG. 1A is a side view and FIG. 1B is a perspective view of an end wall portion;
FIG. 2 shows the positional relationship of the end wall structure between turbine blades according to the first embodiment, the second embodiment of the present invention, and a study example studied in connection with the present invention, and (a) is a plan view. (B) is sectional drawing of an end wall.
FIG. 3 is a side view of an end wall structure between turbine blades according to a study example studied in connection with the present invention.
FIG. 4 is a side view of an end wall structure between turbine blades according to a second embodiment of the present invention.
5A and 5B show a conventional end wall structure between turbine blades, where FIG. 5A is a sectional view of the blades, and FIG. 5B is a sectional view taken along line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Stator blade 11 Hub side end wall 12 Casing 13, 23, 33, 35 Projection wall 14, 24, 34, 36 Top part 20, 30 Rotor blade 21, 31 Platform 22, 32 Tip shroud 51 Throat

Claims (2)

タービン静翼の翼間ハブ側端壁面は前縁、後縁両翼端間に頂部を有する突起形状を備え、同突起形状の頂部は曲面形状であり、かつ、その曲面の頂点の軌跡はタービン軸と直交する方向に直線を形成し、更に同直線の位置は隣接する静翼間で形成されるスロートの位置に設定され、前記突起形状の高さは翼高さの2.6%以下とすることを特徴とするタービン翼間の端壁構造。The inter-blade hub side wall surface of the turbine vane has a protruding shape with a apex between the leading and trailing blades, the apex of the protruding shape is a curved surface, and the locus of the apex of the curved surface is the turbine shaft A straight line is formed in a direction perpendicular to the vertical direction, and the position of the straight line is set to the position of the throat formed between adjacent stationary blades, and the height of the protrusion is 2.6% or less of the blade height. An end wall structure between turbine blades. 先端にシュラウドを有し基部がハブ側のプラットフォームに固定されている動翼の翼間シュラウド内側端壁面は前縁、後縁両翼端間に頂部を有する突起形状を備え、同突起形状の頂部は曲面形状であり、かつその曲面の頂点の軌跡はタービン軸と直交する方向に直線を形成し、更に同直線の位置は隣接する動翼間で形成されるスロートの位置に設定されるとともに、前記シュラウドの突起形状に加えて、更に、前記プラットフォーム外側端壁面にも前記突起形状が形成され、前記突起形状の高さは翼高さの2.6%以下とすることを特徴とするタービン翼間の端壁構造。 The inner wall surface of the inner surface of the interblade shroud of the rotor blade, which has a shroud at the tip and the base is fixed to the platform on the hub side, has a protrusion shape having a top portion between the leading edge and the trailing edge of the blade. curved in shape, and the trajectory of the vertex of the curved surface to form a straight line in a direction orthogonal to the turbine axis, is set to further position the throat position of the straight line formed between the rotor blades adjacent Rutotomoni, wherein In addition to the projection shape of the shroud, the projection shape is also formed on the outer end wall surface of the platform, and the height of the projection shape is 2.6% or less of the blade height. of Tankabe構elephants.
JP2000242373A 2000-08-10 2000-08-10 End wall structure between turbine blades Expired - Lifetime JP3626899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242373A JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242373A JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Publications (2)

Publication Number Publication Date
JP2002054401A JP2002054401A (en) 2002-02-20
JP3626899B2 true JP3626899B2 (en) 2005-03-09

Family

ID=18733404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242373A Expired - Lifetime JP3626899B2 (en) 2000-08-10 2000-08-10 End wall structure between turbine blades

Country Status (1)

Country Link
JP (1) JP3626899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564168A (en) * 2013-10-23 2015-04-29 通用电气公司 Gas turbine nozzle trailing edge fillet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327977A1 (en) * 2003-06-21 2005-01-05 Alstom Technology Ltd Sidewall design of a deflecting flow channel
US7220100B2 (en) * 2005-04-14 2007-05-22 General Electric Company Crescentic ramp turbine stage
WO2007113149A1 (en) * 2006-03-31 2007-10-11 Alstom Technology Ltd Guide blade for turbomachinery, in particular for a steam turbine
EP2434094A3 (en) 2010-09-28 2018-02-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564168A (en) * 2013-10-23 2015-04-29 通用电气公司 Gas turbine nozzle trailing edge fillet
US10352180B2 (en) 2013-10-23 2019-07-16 General Electric Company Gas turbine nozzle trailing edge fillet

Also Published As

Publication number Publication date
JP2002054401A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
JP4640339B2 (en) Wall shape of axial flow machine and gas turbine engine
JP5433793B2 (en) Transonic wing
JP5300874B2 (en) Blade with non-axisymmetric platform and depression and protrusion on outer ring
JP6038180B2 (en) Turbojet fan blade
JP5730649B2 (en) Impeller and turbomachine having the same
JP5777627B2 (en) Turbomachine compressor rotor with optimal inner end wall
JP4876206B2 (en) Turbine stage with crescent shaped slope
RU2598970C2 (en) Bladed element for turbo-machine and turbo-machine itself
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
JP2008106775A (en) Airfoil shape for turbine nozzle
JP2003184503A (en) Airfoil of second stage turbine bucket
JP2001132696A (en) Stationary blade having narrow waist part
KR19980024999A (en) Axial flow machine wing
JP2003074306A (en) Axial flow turbine
JP5449087B2 (en) Wing
EP1260674B1 (en) Turbine blade and turbine
JP5562566B2 (en) Wing body for fluid machinery
JP3626899B2 (en) End wall structure between turbine blades
JPH09195705A (en) Axial-flow turbine blade
JPH0544691A (en) Axial flow turbomachinery blade
JPS6133968B2 (en)
CN110939603A (en) Blade and axial flow impeller using same
JPWO2018116394A1 (en) Turbocharger and turbocharger nozzle vanes and turbines
JP3402176B2 (en) Blades for turbomachinery
US11162375B2 (en) Turbocharger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

R151 Written notification of patent or utility model registration

Ref document number: 3626899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term