JP3626010B2 - Continuous blood pressure monitor - Google Patents

Continuous blood pressure monitor Download PDF

Info

Publication number
JP3626010B2
JP3626010B2 JP10729098A JP10729098A JP3626010B2 JP 3626010 B2 JP3626010 B2 JP 3626010B2 JP 10729098 A JP10729098 A JP 10729098A JP 10729098 A JP10729098 A JP 10729098A JP 3626010 B2 JP3626010 B2 JP 3626010B2
Authority
JP
Japan
Prior art keywords
exciter
vibration
vibration sensor
radial artery
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10729098A
Other languages
Japanese (ja)
Other versions
JPH11299745A (en
Inventor
原 尚 萩
喜 多 博 福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10729098A priority Critical patent/JP3626010B2/en
Publication of JPH11299745A publication Critical patent/JPH11299745A/en
Application granted granted Critical
Publication of JP3626010B2 publication Critical patent/JP3626010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医療用器具の分野において、生体内血管に微弱な振動を与え、血管内を伝搬した振動を検出し、解析することで血圧を連続的に測定する連続式血圧計に関する。
【0002】
【従来の技術】
従来、この種の連続式血圧計では、例えば特表平9−506024号公報に示すように、非侵襲で血圧をリアルタイムに計測する方法が提案されている。この方法は、血圧の変化に応じて血管の弾性が変化することを利用し、血管を伝搬する振動の速度を検出することで血管の弾性を算出し、その血管の弾性値から血圧を推定するものである。
【0003】
以下、この血圧計測方法について説明する。まず、被検体の体表から血管を振動させ、血管上を伝搬した振動を検出する。検出した振動をディジタル信号に変換した後、フィルタリング処理、位相検波処理を行い、血圧変動による位相変化を算出し振動伝搬速度の変化を得る。振動伝搬速度変化は、血管の弾性の変化を表し、血管の弾性の変化は、血圧の変化すなわち動圧を表す。この変化を同一被検体に別に設置した校正用のカフ式血圧計による最高血圧および最低血圧の測定値で校正することにより、生体内の血圧を非侵襲でリアルタイムに計測する。この方式において精度の高い血圧検出を行うには、生体内の血管に効率良く振動を伝え、血管を伝搬した振動を感度良く検出することが重要である。
【0004】
また、上記特表平9−506024号公報では、生体内に振動を伝える励振器およびその装着方法として、図7に示す方法を公開している。図7は前腕に取り付けた励振器の断面とそれに接続された構成要素を示している。励振器101は空気管102を介してコンプレッサ103および電気−圧力変換器104に接続された膨張可能な袋で、止め具105により橈骨動脈106を被うように固定される。コンプレッサ103は、励振器101が橈骨動脈106を十分圧迫できる一定圧力を発生し、電気−圧力変換器104は、図示しないプロセッサからの電気信号を空気圧に変換し、励振器101を介し橈骨動脈106を振動させる。
【0005】
また、上記特表平9−506024号公報では、血管を伝搬した振動を検出する振動センサおよびその装着方法として、図8に示す方法を公開している。図8は手首に取り付けられた振動センサの断面を示している。振動センサ107は、止め具108により橈骨動脈106近くに固定される。止め具108にはノイズを減らすためのバッフル109も含まれている。バッフル109は、センサ107を橈骨動脈に圧接させるための空気袋である。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例の励振器では、空気圧により血管を振動させる方式であるため、圧搾空気を作るためのコンプレッサ、圧搾空気を振動させる変換器および腕と空気袋を圧接するための止め具といった多くの構成要素が必要となる。また、圧搾空気を振動させる電気−変換器は、大きな圧力変動を圧力変動としては高い周波数で発生させなければならず、例えばボイスコイル式の変換器を用いた場合、数ワット以上の電力を必要とし、消費電力も大きい。また長時間連続で動作させるには、放熱器等による過熱を抑える機構をも導入する必要があり、装置容積も大きなものとなってしまう。また、腕を止め具で絞める必要が有るので、被験者に不快感を与えてしまう。
【0007】
また、上記従来例の振動センサでは、常に一定の圧力で振動センサを腕に押し付けるためのバッフルと締め具が必要である。腕とセンサを止め具で押さえ付けているため、被験者が腕を動かした場合、センサが血管を押し付けて血管を変形させてしまう場合があり、測定する振動の伝搬経路を大きく歪めることとなり、安定した血圧波形を得ることが困難である。また、前記励振器と同様に腕を止め具で絞める必要が有るので、被験者に不快感を与えてしまう。
【0008】
本発明は、上記従来の問題点に鑑みてなされたものであり、患者に不快感を与えず、効率よく振動を体内に伝え、安定して伝搬した振動を検出可能な連続式血圧計を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、励振器を励振器と手首橈骨下端の隆起とで橈骨動脈5を挟むように配置し、振動センサを励振器よりも心臓側に配置し、励振器および振動センサの振動面を粘着材によって人体に接触させるようにしたものである。これにより、患者に不快感を与えず、効率よく振動を体内に伝え、安定して伝搬した振動を検出することができる。
【0010】
【発明の実施の形態】
本発明の請求項1に記載の発明は、血管を振動させるための励振器が人体手首の橈骨末端部と励振器の振動面とにより橈骨動脈を挟むように配置され、振動センサが前記励振器より心臓側の橈骨動脈上部の皮膚に配置され、前記励振器の振動面および振動センサのセンサ面が粘着材により人体皮膚に取り付けられることを特徴とするものであり、橈骨動脈の背面が橈骨下端の隆起により支えられるため、励振器の振動が効率よく橈骨動脈に伝えられる。また、粘着剤により励振器および振動センサの振動面が皮膚に接着されることにより、さらに効率良く振動の伝搬、検出を行うことができる。
【0011】
また請求項2に記載の発明は、請求項1記載の発明において、前記励振器が金属板と圧電セラミックスから構成されるモノモルフ振動子としたものである。これにより、軽量・小型で消費電力の小さい励振器を実現できる。
【0012】
また請求項3に記載の発明は、請求項1記載の発明において、前記振動センサが、長方形もしくは楕円形でその長軸は直下の橈骨動脈直径の2倍以上の長さで、長軸が橈骨動脈と直交するように配置されるようにしたものである。これにより、センサの長軸方向の両端は皮膚上で固定され、橈骨動脈の上に位置するセンサ中心部のみが橈骨動脈の振動を受けてたわむため、橈骨動脈のわずかな振動でも感度良く検出可能となる。
【0013】
また請求項4に記載の発明は、請求項1記載の発明において、前記励振器および振動センサを人体皮膚に取り付けるための粘着剤を両面テープとしたものである。これにより、励振器および振動センサの振動面に薄く均一な粘着剤を構成することが可能である。
【0014】
また請求項5に記載の発明は、請求項4記載の発明において、前記両面テープに幅細のスリットを設けたものである。これにより、励振器および振動センサの接着部の通気性が確保でき、長時間センサを装着した場合でもむれおよび発汗による励振器およびセンサの剥離を防ぐことができる。
【0015】
以下、本発明の実施の形態について、図面を参照して説明する。
(実施の形態1)
図1は本発明の実施の形態1に係る血圧計の励振器および振動センサを生体前腕に取り付けた様子を示している。励振器1は、手首の橈骨動脈上に、また振動センサ2は、同じ橈骨動脈上の心臓側に粘着されている。これらの取り付け位置および方法をより詳細に説明するために、直線l(Lの小文字)を通る平面での断面図を図2に示す。
【0016】
図2において、励振器1および振動センサ2は、それぞれ両面テープ3,4により橈骨動脈5の真上の皮膚6に接着されている。両面テープ3,4は橈骨動脈5より硬い材質で構成される。橈骨下端には橈骨下端隆起7が存在し、皮膚6の真下に橈骨動脈5が存在する。励振器1は、橈骨動脈5を橈骨下端隆起7で挟む位置に接着される。なお、励振器1と振動センサ2の距離は2〜10cm程度が最適で、これより小さいと振動の伝搬経路が短いため、振動伝搬速度が正確に求められず、これより長いと振動の減衰が大きいため振動センサ2において十分な振幅の振動が検出不能となる。
【0017】
励振器1の構成についてより詳細に図3を用いて説明する。図3は皮膚に取り付けられた励振器1の断面を詳細に示したものである。直径約20mmの円形の金属板10に同じく円形の圧電セラミックス11が着けられ、図示しない電極が金属板10と圧電セラミックス11にそれぞれ設けられており、モノモルフ型振動板を構成している。金属板10のもう一方の面にはシリコンゴム12が接着され、それらはケース13に覆われている。シリコンゴム12の外面は励振器振動面8であり、両面テープ3により皮膚6に粘着されている。なお、上記の構成の励振器1は、100〜3000Hzの周波数の振動を橈骨動脈に与えることに適したものとなっている。
【0018】
振動センサ2の構成についてより詳細に図4を用いて説明する。図1で示したように、本実施の形態では振動センサ2は長方形をしており、長軸が橈骨動脈5と垂直に交わるように配置されている。直線mを通る平面での断層図を図4に示す。これは振動センサ2の長軸方向の断面図である。橈骨動脈5上の皮膚に振動センサ2が両面テープ4により粘着されている。本実施の形態では、振動センサ2の長軸は直下の橈骨動脈5の4倍程度の長さとなっている。振動センサ2は橈骨動脈5との位置関係から3つの領域に分けることができ、それらは、橈骨動脈上の領域bとそれの両側の領域a、cである。領域bは橈骨動脈5の真上に位置し、橈骨動脈5の振動に合わせて振動する。一方、領域a、cは橈骨動脈5から離れた位置にあるため、橈骨動脈の振動は受けずに皮膚に固定されている。よって、振動センサ2は長軸方向に大きなたわみを生じ、それにより振動センサ2で大きな電圧を発生させることができる。振動センサ2としては、励振器1の構成で説明したモノモルフ型振動板や、圧電高分子材料などが適している。
【0019】
次に、励振器1の配置による効果について説明する。励振器振動面8は励振波形により、上下に変形する。励振器振動面8の振動による変形は両面テープ3を介して橈骨動脈5に伝えられる。橈骨動脈5は背面を硬い橈骨下端隆起7により支えられているので、励振器振動面8から発せられた変形エネルギは、すべて橈骨動脈5の変形に使用される。よって、効率良く振動エネルギを橈骨動脈5に伝達することが可能となる。
【0020】
次に、両面テープ3による効果について説明する。前述の様に励振器振動面8は上下に変形する。下への変形は皮膚を圧縮することで伝達されるが、上への変形は両面テープの粘着力により伝達される。これにより励振器1を皮膚に加圧することなく、効率良く振動を橈骨動脈5に伝えることができる。両面テープ4の効果についても同様であり、振動センサ2を皮膚に加圧することなく、効率良く橈骨動脈5の振動を振動センサ2に伝達することができる。さらに、締め具等でセンサを血管に押し付ける必要がないので、被験者が腕を動かしても血管を変形させることがなく、安定した血圧波形を得ることができる。
【0021】
以上のように、本発明の実施の形態1によれば、励振器1は、従来の励振器に比べ、その構成がはるかに単純で、軽量、小型であるという利点を有する。また消費電力も小さく、励振器の駆動回路も含めた装置全体での小型化が可能である。さらに、実効電圧10V程度の正弦波を励振器1に与えることで、十分な振動を直下の橈骨動脈5に加えることができ、振動センサ2では、橈骨動脈5を伝搬した振動を十分な感度で検出が可能となる。さらに、締め具等でセンサを血管に押し付けるものではないので、被験者が腕を動かしても血管を変形させることがなく、被験者が腕を動かしても安定した血圧波形を得ることができる。
【0022】
また本実施の形態1によれば、シリコンゴム12により皮膚に接触する面を柔らかい材質にすることにより、皮膚との密着度を上げ、金属板10の振動を効率良く皮膚15に伝達することができる。また、シリコンゴム12は絶縁材の役割も果たしている。
【0023】
(実施の形態2)
図5は本発明の実施の形態2に係る両面テープの構成を示しており、両面テープを貼り付けた励振器を底面から見た図である。励振器1の底面に貼り付けた両面テープ20に幅細のスリットを設けた構造となっている。この励振器1を腕に取り付けた場合の断面図を図6に示す。励振器1が両面テープ20により皮膚6に粘着されている。両面テープ20にはスリット21が設けてあり、これが気道の役割を果たし、皮膚からの発汗を外気に放出することを可能とする。上記説明では励振器1を取り付けるための両面テープについて説明したが、振動センサ2を取り付けるための両面テープについても全く同様の構成を施すことができる。
【0024】
以上のように、本発明の実施の形態2に係る両面テープによれば、励振器1および振動センサ2を長時間腕に粘着させ、血圧を計測した場合でも、粘着部の発汗によるむれ、剥離を防ぐことができ、長時間の血圧測定が可能となる。
【0025】
なお、本実施の形態2では、スリット21は一方向のものを説明したが、スリットの形状は縦横方向に交わったものなど任意の形状とすることが可能である。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明によれば橈骨と励振器で橈骨動脈を挟むように励振器を配置し、励振器および振動センサの振動面を粘着剤で皮膚に粘着させるようにしたので、振動を効率良く橈骨動脈に与え、橈骨動脈を伝搬した振動を感度良く検出できる。また、励振器を駆動するための駆動回路も小さくすることが可能で、小型、軽量の連続式血圧系を実現可能とする。さらに、締め具等でセンサを血管に押し付けるものではないので、被験者が腕を動かしても血管を変形させることがなく、被験者が腕を動かしても安定した血圧波形を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る血圧計の励振器、振動センサの取り付け方法を示す模式図
【図2】実施の形態1に係る血圧計の励振器、振動センサの取り付け方法を示す断面図
【図3】実施の形態1に係る血圧計の励振器の構成を説明する断面図
【図4】実施の形態1に係る血圧計の振動センサの構成を説明する断面図
【図5】本発明の実施の形態2に係る血圧計の励振器に取り付ける両面テープ形状を示す正面図
【図6】実施の形態2に係る血圧計の励振器と両面テープの構成を説明する断面図
【図7】従来の血圧計の励振器の構成と取り付け方法を示す断面図
【図8】従来の血圧計の振動センサの構成と取り付け方法を示す断面図
【符号の説明】
1 励振器
2 振動センサ
3 両面テープ
4 両面テープ
5 橈骨動脈
6 皮膚
7 橈骨下端の隆起
8 励振器振動面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous sphygmomanometer that continuously measures blood pressure by applying a weak vibration to a blood vessel in a living body and detecting and analyzing the vibration propagated through the blood vessel in the field of medical instruments.
[0002]
[Prior art]
Conventionally, in this type of continuous sphygmomanometer, a method for measuring blood pressure non-invasively in real time has been proposed as disclosed in, for example, Japanese Translation of PCT Publication No. 9-506024. This method uses the fact that the elasticity of the blood vessel changes according to the change in blood pressure, calculates the elasticity of the blood vessel by detecting the speed of vibration propagating through the blood vessel, and estimates the blood pressure from the elasticity value of the blood vessel. Is.
[0003]
Hereinafter, this blood pressure measurement method will be described. First, the blood vessel is vibrated from the body surface of the subject, and the vibration propagated on the blood vessel is detected. After the detected vibration is converted into a digital signal, filtering processing and phase detection processing are performed to calculate a phase change due to blood pressure fluctuation and obtain a change in vibration propagation speed. The change in vibration propagation speed represents a change in blood vessel elasticity, and the change in blood vessel elasticity represents a change in blood pressure, that is, dynamic pressure. By calibrating this change with the measured values of the maximum blood pressure and the minimum blood pressure by a cuff sphygmomanometer for calibration separately installed on the same subject, the blood pressure in the living body is measured non-invasively in real time. In order to perform highly accurate blood pressure detection in this method, it is important to efficiently transmit vibration to a blood vessel in a living body and detect vibration propagated through the blood vessel with high sensitivity.
[0004]
In the above Japanese National Publication No. 9-506024, the method shown in FIG. 7 is disclosed as an exciter for transmitting vibrations in a living body and a method for mounting the exciter. FIG. 7 shows a cross section of the exciter attached to the forearm and the components connected thereto. The exciter 101 is an inflatable bag connected to a compressor 103 and an electric-pressure converter 104 via an air tube 102 and is fixed by a stopper 105 so as to cover the radial artery 106. The compressor 103 generates a constant pressure that allows the exciter 101 to sufficiently compress the radial artery 106, and the electric-pressure converter 104 converts an electrical signal from a processor (not shown) into air pressure, and the radial artery 106 passes through the exciter 101. Vibrate.
[0005]
In the above Japanese National Publication No. 9-506024, the method shown in FIG. 8 is disclosed as a vibration sensor for detecting vibration propagated through a blood vessel and its mounting method. FIG. 8 shows a cross section of the vibration sensor attached to the wrist. The vibration sensor 107 is fixed near the radial artery 106 by a stopper 108. The stop 108 also includes a baffle 109 for reducing noise. The baffle 109 is an air bag for pressing the sensor 107 against the radial artery.
[0006]
[Problems to be solved by the invention]
However, since the conventional exciter is a system that vibrates blood vessels by air pressure, there are many compressors for creating compressed air, transducers for vibrating compressed air, and stoppers for press-contacting arms and air bags. The components are required. In addition, an electric-converter that vibrates compressed air must generate a large pressure fluctuation at a high frequency as a pressure fluctuation. For example, when a voice coil type converter is used, a power of several watts or more is required. And power consumption is large. In addition, in order to operate continuously for a long time, it is necessary to introduce a mechanism for suppressing overheating due to a radiator or the like, resulting in a large apparatus volume. Moreover, since it is necessary to squeeze the arm with a stopper, the subject is uncomfortable.
[0007]
The conventional vibration sensor requires a baffle and a fastener for pressing the vibration sensor against the arm at a constant pressure at all times. Since the arm and sensor are pressed with a stopper, if the subject moves the arm, the sensor may press the blood vessel and deform the blood vessel, which greatly distorts the propagation path of the vibration to be measured and is stable. It is difficult to obtain a blood pressure waveform. Moreover, since it is necessary to squeeze the arm with a stopper as in the case of the exciter, the subject is uncomfortable.
[0008]
The present invention has been made in view of the above-described conventional problems, and provides a continuous blood pressure monitor capable of efficiently transmitting vibrations to the body and detecting stably propagated vibrations without causing discomfort to the patient. The purpose is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention arranges the exciter so that the radial artery 5 is sandwiched between the exciter and the bulge at the lower end of the wrist rib, and the vibration sensor is arranged on the heart side of the exciter. The vibration surfaces of the container and the vibration sensor are brought into contact with the human body with an adhesive material. Accordingly, vibration can be efficiently transmitted to the body without causing discomfort to the patient, and the stably propagated vibration can be detected.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an exciter for vibrating a blood vessel is disposed so that the radial artery is sandwiched between the distal end portion of the human wrist and the vibration surface of the exciter, and the vibration sensor is the exciter. It is disposed on the skin on the upper side of the radial artery on the heart side, and the vibration surface of the exciter and the sensor surface of the vibration sensor are attached to the human skin with an adhesive material, and the back surface of the radial artery is the lower end of the radius Therefore, the vibration of the exciter is efficiently transmitted to the radial artery. Further, the vibration and the vibration surface of the exciter and the vibration sensor are adhered to the skin by the adhesive, so that the vibration can be propagated and detected more efficiently.
[0011]
The invention according to claim 2 is the invention according to claim 1, wherein the exciter is a monomorph vibrator composed of a metal plate and piezoelectric ceramics. As a result, it is possible to realize an exciter that is light and small and consumes less power.
[0012]
The invention according to claim 3 is the invention according to claim 1, wherein the vibration sensor is rectangular or elliptical, and its major axis is at least twice the diameter of the radial artery immediately below, and the major axis is the radius. It is arranged so as to be orthogonal to the artery. As a result, both ends in the long axis direction of the sensor are fixed on the skin, and only the center of the sensor located above the radial artery bends due to vibration of the radial artery, so even slight vibration of the radial artery can be detected with high sensitivity. It becomes.
[0013]
According to a fourth aspect of the present invention, in the first aspect of the present invention, the adhesive for attaching the exciter and the vibration sensor to the human skin is a double-sided tape. Thereby, it is possible to constitute a thin and uniform adhesive on the vibration surfaces of the exciter and the vibration sensor.
[0014]
The invention according to claim 5 is the invention according to claim 4, wherein the double-sided tape is provided with a narrow slit. Thereby, the air permeability of the bonding portion between the exciter and the vibration sensor can be ensured, and even when the sensor is worn for a long time, the exciter and the sensor can be prevented from peeling off due to peeling and sweating.
[0015]
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a state in which an exciter and a vibration sensor of a sphygmomanometer according to Embodiment 1 of the present invention are attached to a living body forearm. The exciter 1 is adhered to the radial artery of the wrist, and the vibration sensor 2 is adhered to the heart side on the same radial artery. In order to describe these attachment positions and methods in more detail, a cross-sectional view in a plane passing through a straight line l (lowercase letter L) is shown in FIG.
[0016]
In FIG. 2, the exciter 1 and the vibration sensor 2 are bonded to the skin 6 directly above the radial artery 5 with double-sided tapes 3 and 4, respectively. The double-sided tapes 3 and 4 are made of a material harder than the radial artery 5. A rib lower end bulge 7 exists at the lower end of the rib, and a radial artery 5 exists directly under the skin 6. The exciter 1 is bonded to a position where the radial artery 5 is sandwiched between the lower rib ridges 7. The distance between the exciter 1 and the vibration sensor 2 is optimally about 2 to 10 cm. If the distance is smaller than this, the vibration propagation path is short, so the vibration propagation speed cannot be obtained accurately. Since it is large, vibration with sufficient amplitude cannot be detected in the vibration sensor 2.
[0017]
The configuration of the exciter 1 will be described in more detail with reference to FIG. FIG. 3 shows the cross section of the exciter 1 attached to the skin in detail. Similarly, a circular piezoelectric ceramic 11 is attached to a circular metal plate 10 having a diameter of about 20 mm, and electrodes (not shown) are respectively provided on the metal plate 10 and the piezoelectric ceramic 11 to constitute a monomorph type diaphragm. Silicon rubber 12 is bonded to the other surface of the metal plate 10 and is covered with a case 13. The outer surface of the silicone rubber 12 is an exciter vibration surface 8 and is adhered to the skin 6 by the double-sided tape 3. The exciter 1 having the above configuration is suitable for applying vibrations having a frequency of 100 to 3000 Hz to the radial artery.
[0018]
The configuration of the vibration sensor 2 will be described in more detail with reference to FIG. As shown in FIG. 1, in the present embodiment, the vibration sensor 2 has a rectangular shape and is arranged so that the long axis intersects the radial artery 5 perpendicularly. A tomogram on a plane passing through the straight line m is shown in FIG. This is a cross-sectional view of the vibration sensor 2 in the long axis direction. The vibration sensor 2 is adhered to the skin on the radial artery 5 with a double-sided tape 4. In the present embodiment, the long axis of the vibration sensor 2 is about four times as long as the radial artery 5 directly below. The vibration sensor 2 can be divided into three regions from the positional relationship with the radial artery 5, which are a region b on the radial artery and regions a and c on both sides thereof. The region b is located immediately above the radial artery 5 and vibrates in accordance with the vibration of the radial artery 5. On the other hand, since the regions a and c are located away from the radial artery 5, they are fixed to the skin without receiving vibration of the radial artery. Therefore, the vibration sensor 2 generates a large deflection in the major axis direction, and thereby the vibration sensor 2 can generate a large voltage. As the vibration sensor 2, the monomorph type diaphragm described in the configuration of the exciter 1, a piezoelectric polymer material, or the like is suitable.
[0019]
Next, the effect of the arrangement of the exciter 1 will be described. The exciter vibration surface 8 is deformed up and down by the excitation waveform. Deformation due to vibration of the exciter vibration surface 8 is transmitted to the radial artery 5 via the double-sided tape 3. Since the radial artery 5 is supported on the back by a hard radial lower end bulge 7, all the deformation energy emitted from the exciter vibration surface 8 is used for the deformation of the radial artery 5. Therefore, vibration energy can be efficiently transmitted to the radial artery 5.
[0020]
Next, the effect of the double-sided tape 3 will be described. As described above, the exciter vibration surface 8 is deformed up and down. The downward deformation is transmitted by compressing the skin, while the upward deformation is transmitted by the adhesive force of the double-sided tape. Thereby, vibration can be efficiently transmitted to the radial artery 5 without applying the exciter 1 to the skin. The same applies to the effect of the double-sided tape 4. The vibration of the radial artery 5 can be efficiently transmitted to the vibration sensor 2 without pressurizing the vibration sensor 2 against the skin. Furthermore, since it is not necessary to press the sensor against the blood vessel with a fastener or the like, a stable blood pressure waveform can be obtained without deforming the blood vessel even when the subject moves his arm.
[0021]
As described above, according to the first embodiment of the present invention, the exciter 1 has the advantages that the configuration is much simpler, lighter and smaller than the conventional exciter. In addition, the power consumption is small, and the entire device including the drive circuit of the exciter can be miniaturized. Furthermore, by applying a sine wave having an effective voltage of about 10V to the exciter 1, sufficient vibration can be applied to the radial artery 5 directly below, and the vibration sensor 2 can sufficiently generate vibration transmitted through the radial artery 5 with sufficient sensitivity. Detection is possible. Furthermore, since the sensor is not pressed against the blood vessel with a fastener or the like, the blood vessel is not deformed even if the subject moves the arm, and a stable blood pressure waveform can be obtained even if the subject moves the arm.
[0022]
Further, according to the first embodiment, the surface that contacts the skin with the silicon rubber 12 is made of a soft material, so that the degree of adhesion with the skin can be increased and the vibration of the metal plate 10 can be efficiently transmitted to the skin 15. it can. The silicon rubber 12 also serves as an insulating material.
[0023]
(Embodiment 2)
FIG. 5 shows the configuration of the double-sided tape according to Embodiment 2 of the present invention, and is a view of the exciter with the double-sided tape attached as seen from the bottom. The double-sided tape 20 affixed to the bottom surface of the exciter 1 is provided with a narrow slit. FIG. 6 shows a cross-sectional view when the exciter 1 is attached to the arm. The exciter 1 is adhered to the skin 6 with a double-sided tape 20. The double-sided tape 20 is provided with a slit 21, which serves as an airway and allows sweating from the skin to be released to the outside air. In the above description, the double-sided tape for mounting the exciter 1 has been described, but the same configuration can be applied to the double-sided tape for mounting the vibration sensor 2.
[0024]
As described above, according to the double-sided tape according to the second embodiment of the present invention, even when the exciter 1 and the vibration sensor 2 are adhered to the arm for a long time and blood pressure is measured, the adhesive part is peeled off due to sweating and peeled off. Can be prevented, and blood pressure can be measured for a long time.
[0025]
In the second embodiment, the slit 21 has been described as being unidirectional. However, the slit may have any shape such as a shape that intersects in the vertical and horizontal directions.
[0026]
【The invention's effect】
As is clear from the above description, according to the present invention, the exciter is disposed so as to sandwich the radial artery between the rib and the exciter, and the vibration surfaces of the exciter and the vibration sensor are adhered to the skin with an adhesive. Therefore, vibration can be efficiently applied to the radial artery, and vibration transmitted through the radial artery can be detected with high sensitivity. In addition, the drive circuit for driving the exciter can be made small, and a small and lightweight continuous blood pressure system can be realized. Furthermore, since the sensor is not pressed against the blood vessel with a fastener or the like, the blood vessel is not deformed even if the subject moves the arm, and a stable blood pressure waveform can be obtained even if the subject moves the arm.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for attaching an exciter and a vibration sensor for a sphygmomanometer according to Embodiment 1 of the present invention. FIG. 2 shows a method for attaching an exciter and a vibration sensor for a sphygmomanometer according to Embodiment 1. FIG. 3 is a cross-sectional view illustrating the configuration of the exciter of the sphygmomanometer according to the first embodiment. FIG. 4 is a cross-sectional view illustrating the configuration of the vibration sensor of the sphygmomanometer according to the first embodiment. FIG. 6 is a front view showing the shape of a double-sided tape attached to the exciter of the sphygmomanometer according to Embodiment 2 of the present invention. FIG. 6 is a cross-sectional view illustrating the configuration of the exciter and double-sided tape of the sphygmomanometer according to Embodiment 2. FIG. 7 is a cross-sectional view showing the configuration and mounting method of a conventional sphygmomanometer exciter. FIG. 8 is a cross-sectional view showing the configuration and mounting method of a conventional sphygmomanometer vibration sensor.
DESCRIPTION OF SYMBOLS 1 Exciter 2 Vibration sensor 3 Double-sided tape 4 Double-sided tape 5 Radial artery 6 Skin 7 Raising of lower end of radius 8 Exciter vibration surface

Claims (5)

血管を振動させるための励振器と、血管を伝搬した振動を検出する振動センサと、振動センサからの電気信号を解析するプロセッサとを備え、振動の伝搬速度を計測することで人体の血圧を連続的かつ非観血的に測定する装置において、血管を振動させるための励振器が人体手首の橈骨末端部と励振器の振動面とにより橈骨動脈を挟むように配置され、振動センサが前記励振器より心臓側の橈骨動脈上部の皮膚に配置され、前記励振器の振動面および振動センサのセンサ面が粘着材により人体皮膚に取り付けられることを特徴とする連続式血圧計。It is equipped with an exciter for vibrating a blood vessel, a vibration sensor that detects vibration propagated through the blood vessel, and a processor that analyzes an electrical signal from the vibration sensor, and continuously measures the blood pressure of the human body by measuring the vibration propagation speed. In an apparatus for measuring in a non-invasive manner, an exciter for vibrating a blood vessel is disposed so that the radial artery is sandwiched between the distal end of the human wrist and the vibration surface of the exciter, and the vibration sensor is the exciter. A continuous sphygmomanometer, which is disposed on the skin above the radial artery on the heart side, and the vibration surface of the exciter and the sensor surface of the vibration sensor are attached to the human skin with an adhesive. 前記励振器が、金属板と圧電セラミックスから構成されるモノモルフ振動子であることを特徴とする請求項1記載の連続式血圧計。2. The continuous blood pressure monitor according to claim 1, wherein the exciter is a monomorph vibrator composed of a metal plate and piezoelectric ceramics. 前記振動センサが、長方形もしくは楕円形でその長軸は直下の橈骨動脈直径の2倍以上の長さで、長軸が橈骨動脈と直交するように配置されることを特徴とする請求項1記載の連続式血圧計。2. The vibration sensor according to claim 1, wherein the vibration sensor is rectangular or elliptical and has a long axis that is at least twice the diameter of the radial artery directly below and the long axis is orthogonal to the radial artery. Continuous blood pressure monitor. 前記励振器および振動センサを人体皮膚に取り付けるための粘着剤が両面テープであることを特徴とする請求項1から3のいずれかに記載の連続式血圧計。4. The continuous blood pressure monitor according to claim 1, wherein the adhesive for attaching the exciter and the vibration sensor to human skin is a double-sided tape. 前記両面テープに幅細のスリットを設けたことを特徴とする請求項4記載の連続式血圧計。The continuous blood pressure monitor according to claim 4, wherein a narrow slit is provided in the double-sided tape.
JP10729098A 1998-04-17 1998-04-17 Continuous blood pressure monitor Expired - Fee Related JP3626010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10729098A JP3626010B2 (en) 1998-04-17 1998-04-17 Continuous blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10729098A JP3626010B2 (en) 1998-04-17 1998-04-17 Continuous blood pressure monitor

Publications (2)

Publication Number Publication Date
JPH11299745A JPH11299745A (en) 1999-11-02
JP3626010B2 true JP3626010B2 (en) 2005-03-02

Family

ID=14455358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10729098A Expired - Fee Related JP3626010B2 (en) 1998-04-17 1998-04-17 Continuous blood pressure monitor

Country Status (1)

Country Link
JP (1) JP3626010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080068471A (en) 2007-01-19 2008-07-23 삼성전자주식회사 Portable device for measuring user's biosignals
CN102755153A (en) * 2011-04-29 2012-10-31 深圳市迈迪加科技发展有限公司 Blood pressure monitoring method
JP7178229B2 (en) * 2018-09-27 2022-11-25 セイコーインスツル株式会社 pulse wave sensor

Also Published As

Publication number Publication date
JPH11299745A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2605584Y2 (en) Multi sensor
US5904654A (en) Exciter-detector unit for measuring physiological parameters
US6176831B1 (en) Apparatus and method for non-invasively monitoring a subject's arterial blood pressure
US6228034B1 (en) Apparatus and method for non-invasively monitoring a subjects arterial blood pressure
US20020072685A1 (en) Method and apparatus for monitoring respiration
WO2016167202A1 (en) Vibration waveform sensor and waveform analysis device
JP6085099B2 (en) Sample information processing device
KR20080071587A (en) Weighted bioacoustic sensor and method of using same
KR20070102527A (en) Stethoscope with frictional noise reduction
JP3692125B2 (en) Heart sound detection device
JP2000060845A (en) Biological sound detector
JP4571311B2 (en) Sound pickup sensor
JP3626010B2 (en) Continuous blood pressure monitor
JPH06197872A (en) Pressure detecting device
JPH04317637A (en) Bioacoustic converter
AU754596B2 (en) Apparatus and method for non-invasively monitoring a subject's arterial blood pressure
JPH11226011A (en) Acoustic sensor and living body measurement device
JP5896832B2 (en) Sample information processing apparatus and sample information processing method
JP2006102191A (en) Blood pressure measuring device
JP4361454B2 (en) Blood pressure measuring device
JP3533122B2 (en) Pulse wave monitor
JP4555022B2 (en) Pulse wave sensor and biological information measuring apparatus using the same
JP4557273B2 (en) Wearable measuring instrument
JP4192302B2 (en) Body sound detection device
JP3857518B2 (en) Pulse detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees