JP3624413B2 - Rotating shaft structure - Google Patents

Rotating shaft structure Download PDF

Info

Publication number
JP3624413B2
JP3624413B2 JP04293097A JP4293097A JP3624413B2 JP 3624413 B2 JP3624413 B2 JP 3624413B2 JP 04293097 A JP04293097 A JP 04293097A JP 4293097 A JP4293097 A JP 4293097A JP 3624413 B2 JP3624413 B2 JP 3624413B2
Authority
JP
Japan
Prior art keywords
pipe
flow path
rotating shaft
hole
fluid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04293097A
Other languages
Japanese (ja)
Other versions
JPH10225842A (en
Inventor
義郎 広瀬
悦規 廣田
秋利 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Machinery Ltd
Original Assignee
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery Ltd filed Critical Howa Machinery Ltd
Priority to JP04293097A priority Critical patent/JP3624413B2/en
Publication of JPH10225842A publication Critical patent/JPH10225842A/en
Application granted granted Critical
Publication of JP3624413B2 publication Critical patent/JP3624413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、複数の流体の流路を回転軸内に設けた回転軸構造に関する。
【0002】
【従来の技術】
従来、(1)回転軸に複数の異なる流体を通すために流路を設ける場合、回転軸の振れを防止するため、回転軸の動的バランスがとれるように夫々の流体の流路である流体供給孔を回転軸線に対して複数対称に設けていた。例えば、一方の流体がエアセンサやエアブロウ等のための空気であり、他方の流体がシリンダのための油である場合、夫々比重が異なり、そのために図8に示すようにエアはエア用通路71だけで回転軸72の軸心に対して対称となるように複数設け、油は油用通路73だけで回転軸72に軸心に対して対称となるように複数設けてあった。また、(2)回転軸の軸心を通る流体供給孔内にパイプを通してパイプ両端を支持し、パイプ外周と流体供給孔内壁間及びパイプ内側を夫々流路とするものもあった。
【0003】
【発明が解決しようとする課題】
上記▲1▼の従来の技術では、回転軸に多数の流体供給孔をバランスがとれるように対称に設けなければならず、比重の異なる流体用流路が2つのみ必要な場合、例えば一方がクーラント液用であり、他方がエアブロウ用というようなときには、その2系統のためにその2倍の数の流路を持つこととなって合理的でない。しかも、回転軸が細い場合ではそのようにバランス良く多数の流体供給孔を設けることは極めて困難であって採用できない問題があった。また、▲2▼のように一方の流体の流体供給孔内に他方の流体の流路としてパイプを設けるものでは、回転軸に形成するべき流体供給孔の2倍の数の流路が得られるので、回転軸には必要とする流路数の半分の流体供給孔を穿設する手間で済み、そのため▲1▼に比べて孔加工の手間が少なく、しかも2系統の流路を必要とするときには、それと同じだけの流路を持つのみであるから合理的であるが、パイプがその直径に比して相当長い場合や、それ自体が細い場合には、パイプ中央部分がたわんでしまい、流体供給孔の孔中心に確実にパイプを保持できず、これによって回転軸の動的バランスを崩してしまうという問題があった。
本願の課題は前記▲2▼の利点を生かしつつ、更に、流体供給孔内にパイプを設けたときにパイプのたわみを防止し、流体供給孔の軸心にパイプの軸心を確実に保持することで回転軸の動的バランスを崩すことを防止することにある。
【0004】
【課題を解決するための手段】
前記課題の解決のため、本願では、回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配して、パイプの内側と外側に流路を形成し、パイプ外周とその外側に位置されそのパイプ外周との間で流路を形成する前記流体供給孔の内壁との間に、前記パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したことを特徴とする。
【0005】
また、本願では、回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配し、パイプの内側に別のパイプを配して流体供給孔の内壁と外側のパイプの外周とで第1の流路を形成し、外側のパイプの内周と内側のパイプの外周とで第2の流路を形成し、内側のパイプの内周を第3の流路とし、内壁と外側のパイプ外周の間と、外側のパイプ内周と内側のパイプ外周の間には、夫々各パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したことを特徴とする。
【0007】
【発明の実施の形態】
次に本願の回転軸構造の実施の形態について図1から図6により説明する。主軸装置1の主軸ヘッド2には主軸3が複数の軸受4を介して回動自在に支持されている。この主軸3の略中央部外周にはローター5が一体に設けてあり、主軸ヘッド2内に設けたステータ6とで主軸3を回動する電動機を構成している。主軸3の先端には工具を先端に保持する工具ホルダ7を装着するテーパ孔8が形成されており、このテーパ孔8に連続して主軸3の軸心に前方が小径孔9であり後方が大径孔10である貫通孔11が穿設されている。貫通孔11にはプルロッド12が軸方向摺動自在に挿通されて、皿バネ13により後方に付勢されている。このプルロッド12を前後方向に摺動するアンクランプシリンダ14が主軸ヘッド2の後部に一体に備えられている。また、主軸ヘッド2には図1、図2に示すようにエアブロウ用流路15が設けられており、主軸3の先端部に穿設され、前記流路15と連通するエアブロウ用流路16を介してテーパ孔8に向けてエアブロウを吹き出すようになっている。また、図2に示すように主軸3の先端部には工具ホルダ7の密着確認用エア通路17が穿設されており、この密着確認用エア通路17の主軸3先端側はテーパ孔8の周面にテーパ孔8内に向けて開口する密着確認用エア噴射孔18となっており、主軸3後端側は貫通孔11に向けて開口している。また、主軸3先端には、工具先端から噴射するクーラントのクーラント流路19が設けられており、クーラント流路19の主軸3先端側には付勢部材20により先端方向に付勢され工具ホルダ7から工具先端にかけて連通しているクーラント流路7bと主軸3のクーラント流路19とを切り離し可能に連通する連通部材21が設けられており、主軸3後端側は貫通孔11に向けて開口している。
【0008】
プルロッド12は先端部に保持部22の後端部が一体に螺合されており、プルロッド12の後端部にロッド23の先端部が一体に螺合されている。保持部22とプルロッド12とロッド23には夫々通孔24,25,26が穿設されており、通孔24,25,26が一直線に連通してクーラントが通過するクーラント流路である流体供給孔27を構成しており、流体供給孔27内にはプルロッド12の軸心(主軸の軸心でもある)Lを通るパイプ28が挿入されている。図2に示すように保持部22はその先端に複数個の鋼球29を円周方向を等分し半径方向に移動可能に組み込んであり、プルロッド12の軸方向の摺動によって貫通孔11前方のカム面30と協働して工具ホルダ7後端部のプルスタッド31をクランプ、アンクランプするようになっている。また、通孔24の先端側は保持部22の半径方向に向けて開口したT字形状をしており、主軸3のクーラント流路19と連通している。保持部22の略中央にはピン32が嵌装される嵌装孔33が通孔24に対して直交するように設けられている。
【0009】
ピン32は図2、図4に示すように太径部34と細径部35とに形成されている。また、ピン32には密着確認用エアが通過するエア用通孔36が穿設されている。このエア用通孔36に向けて細径部35外周から半径方向にパイプ28の一端が嵌挿される嵌挿孔37が穿設されている。このピン32を嵌装孔33に嵌装したときに細径部35外周と嵌装孔33との間がクーラントが通過するクーラント流路の一部になり、エア用通孔36は密着確認用エア通路17の貫通孔11側の開口に円弧溝32aと環状溝3aを介して連続する。
【0010】
ロッド23はアンクランプシリンダ14のピストンロッド38中心に遊嵌され、シリンダ本体14aに回動自在に支持されたスリーブ14bに軸方向移動自在に支持されている。先端部外周には前記アンクランプシリンダ14のピストン38が当接する顎部23aが設けてあり、一体に螺合されており、ロッド23の後端部にはロータリージョイント39のローター40が一体に装着されている。ロッド23はアンクランプシリンダ14のピストン38の前進時には、ピストン38に押されて軸方向前方に移動し、これに伴いプルロッド12と保持部22とロータリージョイント39も一体に移動する。アンクランプシリンダ14のピストン38を後退させると、前記皿ばね13のばね力でプルロッド12、保持部22、ロータリージョイント39、ロッド23が一体に後退する。また、ロッド23は略中央にピン41を嵌装する嵌装孔42が通孔26と直交するように設けられており、この嵌装孔42に連通する密着確認用エアのエア用通路43が穿設されている。
【0011】
ピン41は図3、図5に示すように太径部44と細径部45とから形成され、また、一端側の側面46に突出部47が形成されている。また、ピン41には一端が塞がれた突出部47端面と側面46とにかけて開口し、密着確認用エアが通過するエア用通孔48が穿設されている。このエア用通孔48に向けて細径部45外周から半径方向にパイプ28の他端が嵌挿される嵌挿孔49が穿設されている。このピン41を嵌装孔42に嵌装したときに細径部45外周と嵌装孔42の間がクーラントが通過するクーラント流路の一部になり、ピン41の側面46と嵌装孔42の垂直面50とで囲まれた部分を介してエア用通孔48とエア用通路43とが連通するようになっている。
【0012】
ロータリージョイント39はハウジング51内にローター40が回動自在に設けられており、ハウジング51にはクーラント供給口52と密着確認用エア供給口53を有し、クーラント供給口52と密着確認用エア供給口53とが夫々ローター40に設けられたロッド23の通孔26と連通するクーラント用通路54とロッド23のエア用通路43に連通されたエア用通路55とに連通している。また、密着確認用エア供給口53は密着確認用エアを供給するコンプレッサ等の圧空源56と連通し、その途中に密着確認用エアのエア圧を検出する圧力検出手段(圧力スイッチ)57が連結されている。また、ハウジング51には検出部材58が設けられており、アンクランプシリンダ14に取付けられた近接スイッチ59とにより工具ホルダ7のアンクランプを確認するアンクランプ確認手段60を構成している。圧力検出手段57と密着確認用エアを噴出するための前述のエア通路17、パイプ28等を連通した密着確認用エア流路とにより、主軸3の工具保持確認装置が構成されている。
【0013】
流体供給孔27に挿通されるパイプ28の両端は夫々ピン32,41の嵌挿孔37,49に嵌挿されている。このパイプ28の内側28aは密着確認用エア流路となっており、パイプ28の外周28bと流体供給孔27の内壁27aとによりクーラントが通過するクーラント用流路が形成されている。また、パイプ外周28bと流体供給孔27の内壁27aとの間にはパイプ28をプルロッド12の軸心位置に位置決め保持するパイプ保持部材であるコイルバネ(螺旋状の線材)61が挿入されている。このコイルバネ61はクーラントが円滑に通過可能な程度にリードが荒く形成されたものである。
【0014】
次に作用について説明する。ワークの加工が終了すると、アンクランプシリンダ14のピストン38が主軸先端方向(工具ホルダアンクランプ方向)に移動し、顎部23aが押されてプルロッド12が皿バネ13の付勢力に抗して主軸先端方向に移動し、保持部22とカム面30との協働により主軸3にクランプされていた工具ホルダ7がアンクランプされる。この工具ホルダ7は図示しない工具交換装置により主軸3先端から取り出されて他の工具ホルダ7に交換され、工具ホルダ7がテーパ孔8に嵌合される直前にエアブロウ用流路16からエアブロウが吹き出してこの部分を清掃する。そして工具ホルダ7がテーパ孔8に嵌合されたタイミングでアンクランプシリンダ14のピストン38を後退させるとプルロッド12が皿バネ13により主軸後端方向(工具ホルダクランプ方向)に付勢されて保持部22にプルスタッド31が引き込まれながらクランプされ、テーパ孔8にテーパ部7aが当接する。テーパ孔8にテーパ部7aが密着すると、密着確認用エア噴射孔18から吹き出していた密着確認用エアが吹き出すことができなくなり、エア圧力が上昇し、圧力検出手段57により密着確認用エアの所定の設定されたエア圧が検出されると、圧力検出手段57の接点が閉じ、これによって圧力検出手段57から密着信号が出力される。これによりテーパ孔8にテーパ部7aが密着していることが確認されて次の動作に移り、ワーク加工が再開される。
【0015】
また、テーパ部7aとテーパ孔8間への切粉等の浸入による異物のかみ込みや工具交換装置による工具ホルダ挿入不良が発生した場合にはエアがテーパ孔8とテーパ部7aの隙間から漏れるので圧力検出手段57により所定のエア圧が検出されず、圧力検出手段57の接点が閉じない。この状態では圧力検出手段57から密着信号が出力されないのでテーパ孔8とテーパ部7aとが密着していないことが検出されて次の動作に移ることなく停止する。また、工具ホルダ7の密着していないことが検出されると作業者にランプ等の報知手段により知らせ、作業者がテーパ孔8やテーパ部7aを清掃し、工具ホルダ7を挿入しなおした後、加工が再開される。
【0016】
加工が開始されるとクーラントが流体供給孔27を通過し、工具ホルダ7に設けたクーラント流路7bを介して工具先端から噴出される。加工中に流体供給孔27内に挿通されたパイプ28の外周にはクーラントが通過しており、また、パイプがたわもうとしても流体供給孔内周27aとパイプ外周28bの間のコイルバネ61によりパイプ28は主軸3の軸心位置に固定されているので主軸3の回転により振れることがない。尚、流体供給孔に密着確認用エアを、パイプにクーラントを通過するように構成しても良い。
【0017】
次に図7において別の実施の形態を示す。回転軸80に流体供給孔81が穿設され、この流体供給孔81の内側にパイプ82を配し、パイプ82の内側に更に別のパイプ83を配し、流体供給孔81の内壁81aとパイプ82の外周とで第1の流路を形成し、また、パイプ82の内周とパイプ83の外周とで第2の流路を形成し、パイプ83の内周を第3の流路とし、内壁81aとパイプ82外周の間とパイプ82内周とパイプ83外周の間とに夫々第1の実施の形態と同じコイルバネ61A、コイルバネ61Bを挿入して、パイプ82とパイプ83とを流体供給孔81の軸心位置に保持されてパイプのたわみや振れが防止されている。このように構成すれば、第1の実施の形態より多くの流体を通過させることや一方の流体を往復させることもでき、同様にパイプ82,83も振れることなく回転軸80の軸心位置に保持される。
【0019】
【発明の効果】
以上のように本発明によれば、回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配して、パイプの内側と外側に流路を形成し、パイプ外周とその外側に位置されそのパイプ外周との間で流路を形成する前記流体供給孔の内壁との間に前記パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したので、多数の流体供給孔を設ける必要がなく加工が容易であり、また、コイルバネによりパイプの中間部分を保持するのでパイプが長いものや細いものであってもたわまない。また、そのようにしてパイプがたわまないから、パイプのたわみによる動的バランスの崩れを防止できて、回転軸の振れを防止できる。また、コイルバネはパイプ外周に巻きつけるようにして流体供給孔に挿入できて、組立容易であり、また、安価となる。
また、回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配し、パイプの内側に別のパイプを配して流体供給孔の内壁と外側のパイプの外周とで第1の流路を形成し、外側のパイプの内周と内側のパイプの外周とで第2の流路を形成し、内側のパイプの内周を第3の流路とし、内壁と外側のパイプ外周の間と、外側のパイプ内周と内側のパイプ外周の間には、夫々各パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したので、2つのパイプを軸心位置に保持してより多くの流体を通過させることができる。
【図面の簡単な説明】
【図1】主軸装置の断面図である。
【図2】主軸装置の先端側拡大図である。
【図3】主軸装置の後端側拡大図である。
【図4】保持部に嵌装したピンの図である。
【図5】ロッドに嵌装したピンの図である。
【図6】主軸装置のプルロッドの断面図である。
【図7】他の実施形態である。
【図8】従来の回転軸構造である。
【符号の説明】
12 プルロッド(回転軸)
27,81 流体供給孔
27a,81a 内壁
28,82,83 パイプ
28b パイプ外周
61,61A,61B コイルバネ(パイプ保持部材)
L 軸心
[0001]
[Industrial application fields]
The present invention relates to a rotating shaft structure in which a plurality of fluid flow paths are provided in a rotating shaft.
[0002]
[Prior art]
Conventionally, (1) When a flow path is provided to allow a plurality of different fluids to pass through the rotating shaft, in order to prevent the rotating shaft from vibrating, the fluid that is the flow path of each fluid so that the rotating shaft can be dynamically balanced A plurality of supply holes are provided symmetrically with respect to the rotation axis. For example, when one fluid is air for an air sensor, an air blower, etc., and the other fluid is oil for a cylinder, the specific gravity is different from each other . Therefore, as shown in FIG. Thus, a plurality of oils are provided so as to be symmetric with respect to the axis of the rotating shaft 72, and a plurality of oils are provided on the rotating shaft 72 so as to be symmetric with respect to the axis only by the oil passage 73. (2) In some cases, both ends of the pipe are supported through the pipe in the fluid supply hole passing through the axis of the rotating shaft, and the flow path is between the pipe outer periphery and the fluid supply hole inner wall and inside the pipe.
[0003]
[Problems to be solved by the invention]
In the prior art (1), a large number of fluid supply holes must be provided symmetrically on the rotating shaft so as to be balanced, and when only two fluid flow paths with different specific gravities are required, When the coolant is for the coolant and the other is for the air blow, it is not reasonable to have twice as many flow paths for the two systems. Moreover, when the rotating shaft is thin, it is extremely difficult to provide a large number of fluid supply holes in such a balanced manner, and there is a problem that it cannot be adopted. Further, in the case of providing a pipe as a flow path for the other fluid in the fluid supply hole of one fluid as in (2), the flow path is twice as many as the fluid supply holes to be formed on the rotating shaft. Therefore, it is only necessary to make a fluid supply hole that is half the number of required flow paths on the rotating shaft. Therefore, compared with (1), there is less labor for drilling holes and two flow paths are required. Sometimes it is reasonable to have only the same number of channels, but if the pipe is considerably longer than its diameter, or if it is thin, the central part of the pipe will bend and fluid There was a problem that the pipe could not be reliably held at the hole center of the supply hole, thereby breaking the dynamic balance of the rotating shaft.
The problem of the present application is to prevent the pipe from being bent when the pipe is provided in the fluid supply hole, while keeping the advantage of the above (2), and to securely hold the axis of the pipe in the axis of the fluid supply hole. This is to prevent the dynamic balance of the rotating shaft from being lost.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, in the present application, in a rotating shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotating shaft , a fluid supply hole is provided in the axis of the rotating shaft , and the fluid supplying hole is disposed inside the fluid supplying hole. A pipe is disposed to form a flow path on the inside and outside of the pipe, and between the outer periphery of the pipe and the inner wall of the fluid supply hole that is positioned on the outer side and forms a flow path between the pipe outer periphery , A coil spring having a rough lead that holds the pipe at the axial center position of the rotating shaft and does not prevent passage of fluid in the flow path is inserted .
[0005]
In the present application, in the rotating shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotating shaft, a fluid supply hole is provided in the center of the rotating shaft, and a pipe is disposed inside the fluid supplying hole. Another pipe is arranged inside the pipe to form a first flow path by the inner wall of the fluid supply hole and the outer periphery of the outer pipe, and the second inner periphery of the outer pipe and the outer periphery of the inner pipe. A flow path is formed, and the inner circumference of the inner pipe is the third flow path, and each pipe is rotated between the inner wall and the outer circumference of the outer pipe, and between the outer circumference of the outer pipe and the outer circumference of the inner pipe. A coil spring having a rough lead that is held at the axial center position of the shaft and does not prevent passage of fluid in the flow path is inserted .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the rotating shaft structure of the present application will be described with reference to FIGS. A main shaft 3 is rotatably supported by a main shaft head 2 of the main shaft device 1 via a plurality of bearings 4. A rotor 5 is integrally provided on the outer periphery of the substantially central portion of the main shaft 3, and an electric motor that rotates the main shaft 3 is constituted by a stator 6 provided in the main shaft head 2. A taper hole 8 for mounting a tool holder 7 for holding the tool at the tip is formed at the tip of the main shaft 3, and the front of the main shaft 3 is a small-diameter hole 9 and the rear is continuous with the taper hole 8. A through-hole 11 that is a large-diameter hole 10 is formed. A pull rod 12 is inserted into the through hole 11 so as to be slidable in the axial direction, and is urged rearward by a disc spring 13. An unclamp cylinder 14 that slides the pull rod 12 in the front-rear direction is integrally provided at the rear portion of the spindle head 2. As shown in FIGS. 1 and 2, the main shaft head 2 is provided with an air blow channel 15, and an air blow channel 16 is formed at the tip of the main shaft 3 and communicates with the flow channel 15. The air blow is blown out toward the taper hole 8 through. Further, as shown in FIG. 2, a contact confirmation air passage 17 of the tool holder 7 is formed at the tip of the spindle 3, and the tip 3 of the contact confirmation air passage 17 is arranged around the tapered hole 8. An air-injection hole 18 for contact confirmation that opens toward the inside of the tapered hole 8 on the surface, and the rear end side of the main shaft 3 opens toward the through-hole 11. Further, a coolant flow path 19 for coolant sprayed from the tool tip is provided at the tip of the spindle 3, and the tool holder 7 is biased toward the tip of the spindle 3 by a biasing member 20 in the tip direction. A communication member 21 is provided to connect the coolant channel 7b communicating from the tool tip to the tool tip so that the coolant channel 19 of the main shaft 3 can be separated, and the rear end side of the main shaft 3 opens toward the through hole 11. ing.
[0008]
The pull rod 12 is integrally threaded with the rear end of the holding portion 22 at the front end, and the front end of the rod 23 is integrally threaded with the rear end of the pull rod 12. The holding portion 22, the pull rod 12 and the rod 23 are provided with through holes 24, 25 and 26, respectively. The fluid supply is a coolant flow path through which the through holes 24, 25 and 26 communicate with each other in a straight line. A hole 28 is formed, and a pipe 28 passing through an axis L (also the axis of the main shaft) L of the pull rod 12 is inserted into the fluid supply hole 27. As shown in FIG. 2, the holding portion 22 incorporates a plurality of steel balls 29 at the tip thereof so as to be equally divided in the circumferential direction and movable in the radial direction. In cooperation with the cam surface 30, the pull stud 31 at the rear end of the tool holder 7 is clamped and unclamped. Further, the front end side of the through hole 24 has a T shape that opens in the radial direction of the holding portion 22, and communicates with the coolant channel 19 of the main shaft 3. A fitting hole 33 into which the pin 32 is fitted is provided substantially at the center of the holding portion 22 so as to be orthogonal to the through hole 24.
[0009]
The pin 32 is formed in the large diameter part 34 and the small diameter part 35 as shown in FIG. 2, FIG. The pin 32 is formed with an air through hole 36 through which the contact confirmation air passes. A fitting insertion hole 37 into which one end of the pipe 28 is fitted in the radial direction from the outer periphery of the small diameter portion 35 is formed toward the air through hole 36. When the pin 32 is fitted in the fitting hole 33, the space between the outer periphery of the small-diameter portion 35 and the fitting hole 33 becomes a part of the coolant flow path through which the coolant passes, and the air through hole 36 is used for adhesion confirmation. It continues to the opening on the through hole 11 side of the air passage 17 via the arc groove 32a and the annular groove 3a.
[0010]
The rod 23 is loosely fitted in the center of the piston rod 38 of the unclamp cylinder 14, and is supported by a sleeve 14b rotatably supported by the cylinder body 14a so as to be movable in the axial direction. A jaw portion 23a with which the piston 38 of the unclamp cylinder 14 abuts is provided on the outer periphery of the tip portion, and is integrally screwed. The rotor 40 of the rotary joint 39 is integrally attached to the rear end portion of the rod 23. Has been. When the piston 38 of the unclamp cylinder 14 moves forward, the rod 23 is pushed by the piston 38 and moves forward in the axial direction, and the pull rod 12, the holding portion 22, and the rotary joint 39 also move together. When the piston 38 of the unclamp cylinder 14 is retracted, the pull rod 12, the holding portion 22, the rotary joint 39, and the rod 23 are integrally retracted by the spring force of the disc spring 13. Further, the rod 23 is provided with a fitting hole 42 in which the pin 41 is fitted substantially at the center so as to be orthogonal to the through hole 26, and an air passage 43 for contact confirmation air communicating with the fitting hole 42 is provided. It has been drilled.
[0011]
As shown in FIGS. 3 and 5, the pin 41 is formed of a large diameter portion 44 and a small diameter portion 45, and a protruding portion 47 is formed on a side surface 46 on one end side. Further, the pin 41 is provided with an air through hole 48 that opens from the end surface of the projecting portion 47 whose one end is closed to the side surface 46 and through which the contact confirmation air passes. A fitting insertion hole 49 into which the other end of the pipe 28 is fitted in the radial direction from the outer periphery of the small diameter portion 45 is formed toward the air through hole 48. When the pin 41 is fitted into the fitting hole 42, a portion between the outer periphery of the small diameter portion 45 and the fitting hole 42 becomes a part of the coolant flow path through which the coolant passes, and the side surface 46 of the pin 41 and the fitting hole 42. The air through hole 48 and the air passage 43 communicate with each other through a portion surrounded by the vertical surface 50.
[0012]
In the rotary joint 39, the rotor 40 is rotatably provided in a housing 51. The housing 51 has a coolant supply port 52 and an adhesion confirmation air supply port 53, and the coolant supply port 52 and the adhesion confirmation air supply. The opening 53 communicates with a coolant passage 54 that communicates with the through hole 26 of the rod 23 provided in the rotor 40 and an air passage 55 that communicates with the air passage 43 of the rod 23. Further, the contact confirmation air supply port 53 communicates with a pressure air source 56 such as a compressor for supplying contact confirmation air, and a pressure detection means (pressure switch) 57 for detecting the air pressure of the contact confirmation air is connected to the middle. Has been. Further, the housing 51 is provided with a detection member 58, and constitutes an unclamp confirmation means 60 for confirming unclamping of the tool holder 7 by a proximity switch 59 attached to the unclamp cylinder 14. A tool holding confirmation device for the spindle 3 is constituted by the pressure detection means 57 and the above-described air passage 17 for injecting the adhesion confirmation air, the adhesion confirmation air flow path communicating with the pipe 28 and the like.
[0013]
Both ends of the pipe 28 inserted into the fluid supply hole 27 are inserted into the insertion holes 37 and 49 of the pins 32 and 41, respectively. An inner side 28 a of the pipe 28 is an air flow path for adhesion confirmation, and a coolant flow path through which the coolant passes is formed by the outer periphery 28 b of the pipe 28 and the inner wall 27 a of the fluid supply hole 27. A coil spring (spiral wire) 61 is inserted between the pipe outer periphery 28 b and the inner wall 27 a of the fluid supply hole 27 as a pipe holding member for positioning and holding the pipe 28 at the axial center position of the pull rod 12. The coil spring 61 is formed such that the lead is rough enough to allow the coolant to pass smoothly .
[0014]
Next, the operation will be described. When the machining of the workpiece is finished, the piston 38 of the unclamp cylinder 14 moves in the direction of the spindle end (tool holder unclamping direction), the jaw portion 23a is pushed, and the pull rod 12 resists the biasing force of the disc spring 13 to the spindle. The tool holder 7 moved in the distal direction and clamped to the main shaft 3 by the cooperation of the holding portion 22 and the cam surface 30 is unclamped. The tool holder 7 is taken out from the tip of the main spindle 3 by a tool changer (not shown) and replaced with another tool holder 7. Clean the lever part. When the piston 38 of the unclamp cylinder 14 is retracted at the timing when the tool holder 7 is fitted in the taper hole 8, the pull rod 12 is urged by the disc spring 13 in the rear end direction of the main spindle (tool holder clamping direction). The pull stud 31 is clamped while being pulled into 22, and the tapered portion 7 a comes into contact with the tapered hole 8. When the taper portion 7 a comes into close contact with the taper hole 8, the adhesion confirmation air that has been blown out from the adhesion confirmation air injection hole 18 cannot be blown out, the air pressure rises, and the pressure detection means 57 determines the predetermined adhesion confirmation air. When the set air pressure is detected, the contact of the pressure detecting means 57 is closed, and a contact signal is output from the pressure detecting means 57. As a result, it is confirmed that the taper portion 7a is in close contact with the taper hole 8, and the operation proceeds to the next operation, and the workpiece machining is resumed.
[0015]
In addition, when a foreign object bites due to intrusion of chips or the like between the taper portion 7a and the taper hole 8 or a tool holder is inserted incorrectly by the tool changer, air leaks from the gap between the taper hole 8 and the taper portion 7a. Therefore, a predetermined air pressure is not detected by the pressure detection means 57, and the contact of the pressure detection means 57 is not closed. In this state, since the close contact signal is not output from the pressure detecting means 57, it is detected that the tapered hole 8 and the tapered portion 7a are not in close contact, and the operation stops without moving to the next operation. Further, when it is detected that the tool holder 7 is not in close contact, the operator is notified by a notification means such as a lamp, and after the operator cleans the tapered hole 8 and the tapered portion 7a and reinserts the tool holder 7. Processing is resumed.
[0016]
When machining is started, the coolant passes through the fluid supply hole 27 and is ejected from the tool tip via the coolant flow path 7 b provided in the tool holder 7. The coolant passes through the outer periphery of the pipe 28 inserted into the fluid supply hole 27 during processing, and even if the pipe is bent, the coil spring 61 between the inner periphery 27a of the fluid supply hole and the outer periphery 28b of the pipe is used. Since the pipe 28 is fixed at the axial center position of the main shaft 3, it does not shake due to the rotation of the main shaft 3. In addition, you may comprise so that close_contact | adherence confirmation air may be passed through a fluid supply hole and a coolant may be passed through a pipe.
[0017]
Next, another embodiment is shown in FIG. A fluid supply hole 81 is formed in the rotary shaft 80, a pipe 82 is arranged inside the fluid supply hole 81, and another pipe 83 is arranged inside the pipe 82, and the inner wall 81 a of the fluid supply hole 81 and the pipe 82 forms the first flow path, the inner periphery of the pipe 82 and the outer periphery of the pipe 83 form a second flow path, the inner periphery of the pipe 83 is the third flow path, The same coil spring 61A and coil spring 61B as those in the first embodiment are inserted between the inner wall 81a and the outer periphery of the pipe 82, and between the inner periphery of the pipe 82 and the outer periphery of the pipe 83, respectively. It is held at the axial center position 81 to prevent the pipe from being bent or shaken. With this configuration, it is possible to pass more fluid than in the first embodiment or to reciprocate one of the fluids, and similarly, the pipes 82 and 83 are not shaken and are positioned at the axial center of the rotary shaft 80. Retained.
[0019]
【The invention's effect】
As described above, according to the present invention, in a rotary shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotary shaft, a fluid supply hole is provided in the axis of the rotary shaft, and the fluid supply hole is formed inside the fluid supply hole. A pipe is arranged to form a flow path on the inside and outside of the pipe, and the pipe is formed between the pipe outer periphery and the inner wall of the fluid supply hole that is located outside the pipe and forms a flow path between the pipe outer periphery and the pipe. was held in the axial position of the rotating shaft, since the inserts rough lead of the coil spring which does not interfere with the passage of the fluid in the flow path, is easy to process is not necessary to provide a plurality of fluid supply holes, also, by the coil spring Since the middle part of the pipe is held, it will not bend even if the pipe is long or thin. Further, since the pipe does not bend in such a manner, the dynamic balance can be prevented from being lost due to the deflection of the pipe, and the rotation shaft can be prevented from shaking. Further, the coil spring can be inserted into the fluid supply hole so as to be wound around the outer periphery of the pipe, so that assembly is easy and inexpensive.
Further, in a rotating shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotating shaft, a fluid supply hole is provided in the shaft center of the rotating shaft, and a pipe is arranged inside the fluid supply hole. Another pipe is arranged to form a first flow path by the inner wall of the fluid supply hole and the outer periphery of the outer pipe, and the second flow path is formed by the inner periphery of the outer pipe and the outer periphery of the inner pipe. The inner circumference of the inner pipe is formed as a third flow path, and each pipe is arranged between the inner wall and the outer circumference of the outer pipe, and between the outer circumference of the outer pipe and the outer circumference of the inner pipe. Since the coil spring having a rough lead that is held at the center position and does not hinder the passage of the fluid in the flow path is inserted, more fluid can be passed by holding the two pipes at the axial center position.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle device.
FIG. 2 is an enlarged view of the distal end side of the spindle device.
FIG. 3 is an enlarged view of a rear end side of the spindle device.
FIG. 4 is a view of a pin fitted in a holding part.
FIG. 5 is a view of a pin fitted to a rod.
FIG. 6 is a cross-sectional view of a pull rod of the spindle device.
FIG. 7 is another embodiment.
FIG. 8 shows a conventional rotating shaft structure.
[Explanation of symbols]
12 Pull rod (rotating shaft)
27, 81 Fluid supply holes 27a, 81a Inner walls 28, 82 , 83 Pipe 28b Pipe outer periphery 61, 61A, 61B Coil spring (pipe holding member)
L axis

Claims (2)

回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配して、パイプの内側と外側に流路を形成し、パイプ外周とその外側に位置されそのパイプ外周との間で流路を形成する前記流体供給孔の内壁との間に、前記パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したことを特徴とする回転軸構造。In a rotating shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotating shaft , a fluid supply hole is provided in the axial center of the rotating shaft , and a pipe is arranged inside the fluid supply hole. passage is formed outward, held between the pipe outer circumference and an inner wall of the fluid supply hole to a flow path between the pipe outer periphery is located on the outer side, the axial center position of the rotation axis of the pipe A rotating shaft structure characterized by inserting a coil spring having a rough lead that does not obstruct the passage of fluid in the flow path. 回転軸内に複数の異なる流体を通すための流路を有する回転軸構造において、回転軸の軸心に流体供給孔を設け、その流体供給孔の内側にパイプを配し、パイプの内側に別のパイプを配して流体供給孔の内壁と外側のパイプの外周とで第1の流路を形成し、外側のパイプの内周と内側のパイプの外周とで第2の流路を形成し、内側のパイプの内周を第3の流路とし、内壁と外側のパイプ外周の間と、外側のパイプ内周と内側のパイプ外周の間には、夫々各パイプを回転軸の軸心位置に保持し、流路内の流体の通過を妨げない荒いリードのコイルバネを挿入したことを特徴とする回転軸構造。In a rotating shaft structure having a flow path for allowing a plurality of different fluids to pass through the rotating shaft, a fluid supply hole is provided in the axis of the rotating shaft, a pipe is arranged inside the fluid supply hole, and a separate pipe is provided inside the pipe. The first flow path is formed by the inner wall of the fluid supply hole and the outer periphery of the outer pipe, and the second flow path is formed by the inner periphery of the outer pipe and the outer periphery of the inner pipe. The inner circumference of the inner pipe is the third flow path, and each pipe is positioned between the inner wall and the outer circumference of the outer pipe and between the outer circumference of the outer pipe and the outer circumference of the inner pipe. A rotating shaft structure characterized in that a coil spring having a rough lead that is held in the flow path and does not prevent passage of fluid in the flow path is inserted .
JP04293097A 1997-02-11 1997-02-11 Rotating shaft structure Expired - Fee Related JP3624413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04293097A JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04293097A JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Publications (2)

Publication Number Publication Date
JPH10225842A JPH10225842A (en) 1998-08-25
JP3624413B2 true JP3624413B2 (en) 2005-03-02

Family

ID=12649742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04293097A Expired - Fee Related JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Country Status (1)

Country Link
JP (1) JP3624413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482911A (en) * 2018-11-21 2019-03-19 上海机床厂有限公司 High speed hydrostatic postposition type electric main shaft and dynamic balance method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757734B2 (en) * 2006-08-09 2011-08-24 住友重機械エンバイロメント株式会社 Flocculator
JP5265734B2 (en) * 2011-06-21 2013-08-14 大見工業株式会社 Oil supply device for drilling machine
CN103273090B (en) * 2013-05-28 2016-07-13 浙江日发精密机械股份有限公司 A kind of main shaft device having cooling-water duct and punching bits aquaporin concurrently
CN103567468B (en) * 2013-09-16 2016-08-24 浙江日发精密机械股份有限公司 Numerically controlled lathe double-channel water cooling electro spindle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482911A (en) * 2018-11-21 2019-03-19 上海机床厂有限公司 High speed hydrostatic postposition type electric main shaft and dynamic balance method
CN109482911B (en) * 2018-11-21 2020-05-12 上海机床厂有限公司 High-speed static pressure rear-mounted electric main shaft and dynamic balance method

Also Published As

Publication number Publication date
JPH10225842A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3409321B2 (en) Spindle device of machine tool
JP3058167B2 (en) Tool changer
JPH0763913B2 (en) Machine Tools
JP3027505B2 (en) Spindle device
JP3624413B2 (en) Rotating shaft structure
JP4310301B2 (en) Workpiece ejecting device for machine tools
JP3361959B2 (en) Machine tool with eccentric spindle
JP4874663B2 (en) Air pressure measuring device for main spindle
WO1996002353A1 (en) Magnetic bearing spindle apparatus
JP4786258B2 (en) Machine tool spindle equipment
JP2001259906A (en) Tool mounting confirming device
JPH1199403A (en) Spindle device
JP4232017B2 (en) Drawbar position detection mechanism for machine tools
JP2007210091A (en) Spindle device
JPH01264748A (en) Tool adapter with built-in speed increase mechanism
JP2003260638A (en) Tool clamp abnormality detector of machine tool
JP2005061560A (en) Swivel type clamp cylinder
JP4472145B2 (en) Retractable chuck
JP3011303B2 (en) Spindle device
JPS6117766Y2 (en)
JPH06170690A (en) Spindle device
KR102323826B1 (en) Low Speed Spindle Motor Having Assembled Typed Spindle
JP2000158285A (en) Main spindle device
JPH07113537B2 (en) Contact detection device
US20230087832A1 (en) Spindle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees