JP3613443B2 - Method for dissolving and extracting tantalum and / or niobium-containing alloys - Google Patents

Method for dissolving and extracting tantalum and / or niobium-containing alloys Download PDF

Info

Publication number
JP3613443B2
JP3613443B2 JP37461598A JP37461598A JP3613443B2 JP 3613443 B2 JP3613443 B2 JP 3613443B2 JP 37461598 A JP37461598 A JP 37461598A JP 37461598 A JP37461598 A JP 37461598A JP 3613443 B2 JP3613443 B2 JP 3613443B2
Authority
JP
Japan
Prior art keywords
acid
niobium
tantalum
sulfuric acid
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37461598A
Other languages
Japanese (ja)
Other versions
JP2000203841A (en
Inventor
阪 浩 通 井
下 正 典 木
浜 嘉 男 祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP37461598A priority Critical patent/JP3613443B2/en
Publication of JP2000203841A publication Critical patent/JP2000203841A/en
Application granted granted Critical
Publication of JP3613443B2 publication Critical patent/JP3613443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タンタルおよび/またはニオブ含有合金からこれらの金属元素を経済的に効率よく回収するための溶解抽出方法に関する。ここで、「タンタルおよび/またはニオブ含有合金」とは、「タンタル含有合金」、「ニオブ含有合金」および「タンタルおよびニオブを含有する合金」の三者を総称するものである(以下、本明細書において同様である)
【0002】
【従来の技術】
タンタルは、その用途が広く、耐食性、耐熱性に優れているため化学工業用として蒸留塔、オートクレーブ、熱交換器、化学繊維用紡糸ノズルなど各種化学装置に用いられている。また、一般にタンタル酸化皮膜は、弁作用(電極が正極であれば誘電体に動作するが、逆に電極が負極であると誘電体として動作しないという特性、すなわち整流特性)と呼ばれる特性を有しているため電解コンデンサの電極材料として使用され、搬送機器、電子機器、電子制御機器などに用いられている。さらに炭化タンタルは超硬切削工具用材料として、酸化タンタルは光学レンズの添加剤として利用されており、タンタルの重要性は極めて大きく、その需要は増大している。
【0003】
ニオブは、鋼中の炭素を安定化し、粒間腐食を防ぐ効果があるので鉄鋼添加材として使用されており、これが最大の用途である。また、高圧ナトリウムランプのランプ発光部に付随する導電管としてニオブ合金が実用化されており、さらに超電導材料や超合金の添加元素などに利用されている。
【0004】
タンタルおよび/またはニオブ含有合金からタンタルやニオプの酸化物を製造する方法はいくつかあるが、フッ化水素酸溶解−溶媒抽出法が一般的である。
【0005】
タンタル含有合金またはニオブ含有合金のフッ化水素酸あるいはこれと硫酸との混酸による溶解抽出においては、下記の反応式(1)、(2)および(3)に示すように、水素ガスが発生する。
【0006】

Figure 0003613443
ただし、Mは金属元素を表す。
【0007】
水素ガスは、空気に対して7〜72%の極めて広範囲の爆発組成を構成するためタンタルおよび/またはニオブ含有合金をフッ化水素酸またはこれと硫酸との混酸で直接溶解抽出する方法は危険であり、安全性の点で問題があった。
【0008】
これらの問題点を解消するため、従来方法として特公平5−20490号公報および特願平10−263288号に記載の方法が提案されている。
特公平5−20490号公報に記載されている方法は、溶解抽出工程における水素の発生を無くして爆発の危険を解消すると共に、ニオブの不働態化を阻止してニオブの回収率を高めることを目的とし、ニオブ含有合金を燃焼酸化した後、フッ化水素酸と硫酸との混酸を用いてニオブを溶解抽出する方法である。
【0009】
また特願平10−263288号に記載の方法は、タンタルおよび/またはニオブ含有合金を燃焼酸化することなくフッ化水素酸またはこれと硫酸との混酸で直接溶解抽出する際、発生する水素ガスを爆発組成以下に抑制し、安全に操業できるようにすることを目的とし、反応槽内の所定量の水中にタンタルおよび/またはニオブ含有合金を所要量投入後、フッ化水素酸またはこれと硫酸との混酸を継続的に添加し、発生する水素ガスを抑制しながら溶解する方法である。
【0010】
これらの方法は、原料であるタンタルおよび/またはニオブ含有合金の合金構成金属を全て、処理液中に溶解させるため多量のフッ化水素酸を必要とする。また溶媒抽出によりタンタルおよび/またはニオブを回収するに際しては、溶媒抽出工程で析出する恐れのある溶解している不純物金属特に鉄を沈殿、析出させ濾過分離により残渣として除去する必要があるが、その際不純物金属沈殿物側にタンタル、ニオブが一部移行するのでタンタル、ニオブの回収率が低下する。さらに、残渣を洗浄水で洗浄して洗浄水中にタンタル、ニオブを回収すると、溶媒抽出工程に供する処理液量が増加し、溶媒抽出工程での生産効率が低下するなどの課題がある。
【0011】
そこで、溶解抽出すべきタンタル、ニオブ以外の不純物金属が多い場合、使用するフッ化水素酸の使用量が少なく、ニオブ、タンタルの回収率が高く、生産性が優れたニオブ、タンタルの溶解抽出法の出現が強く求められている。
【0012】
【発明が解決しようとする課題】
本発明は、フッ化水素酸の使用量が少なく、タンタル、ニオブの回収率を向上させた、生産性の高いタンタルおよび/またはニオブ含有合金の溶解抽出方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、下記の事項をその特徴としている。
タンタルおよび/またはニオブ含有合金中のタンタルおよび/またはニオブをフッ化水素酸またはこれと硫酸との混酸で溶解抽出する方法において、反応槽内の所定量の水中に、粉砕したタンタルおよび/またはニオブ含有合金を所要量投入後、まず苛性ソーダ(NaOH)で処理し、処理液を固液分離し、得られた不溶解性生成物をフッ化水素酸以外の鉱酸で処理してタンタル、ニオブ以外の不純物金属を鉱酸中に溶出させ、次いで固液分離を行い、得られた残存する不溶解性生成物をフッ化水素酸またはこれと硫酸との混酸で溶解抽出することを特徴とするタンタルおよび/またはニオブ含有合金の溶解抽出方法。
【0014】
以下に、本発明を詳細に説明する。
まず、従来のタンタルおよび/またはニオブ含有合金を出発原料として酸化タンタルまたは酸化ニオブを製造する工程を、図1に示す。図1に基づいてニオブ含有合金のうちフェロニオブを原料として使用した一般的な例について説明すると、まず、フェロニオブの溶解率を上げるためにジョークラッシャー等の粗砕機で粗粉砕し、溶解槽に入れて55%のフッ化水素酸(HF)で金属成分を溶解する。次に硫酸(HSO)を加えて溶液の酸濃度を調整し、これをフィルタープレスで濾過し、未溶解残渣を濾過して清浄な溶液にして溶媒抽出にかける。次にこの酸濃度が高い水溶液を有機溶媒MIBK(メチルイソブチルケトンの略称)と十分接触させると、ニオブはMIBKに抽出され、不純物は抽残液に残る。次に、ニオブを含むMIBKを希硫酸で逆抽出し、精製ニオブ水溶液を得、次いでアンモニア水(NHOH)を加えて水酸化物の沈殿にし、これを濾過、乾燥し、最後に炉でか焼すれば酸化ニオブが得られる。
【0015】
本発明は、図1に示す従来工程における、粉砕工程と液調整工程の間の溶解工程の改良に係るものであって、微細化したタンタルおよび/またはニオブ含有合金を苛性ソーダで処理し、次いでフッ化水素酸以外の鉱酸で処理することを特徴とする方法であって、これによって大部分の不純物成分を鉱酸に溶出させ、精製されたタンタルまたはニオブの未溶解物を得ることができる。
【0016】
本発明に係るタンタルおよび/またはニオブ含有合金の溶解抽出方法の工程図を、図2に示す。タンタルおよび/またはニオブ含有合金として鉄を30%程度含む原料を使用した例について説明すると、まず出発原料であるTa含有フェロニオブ(Fe−Ta/Nb)をジョークラッシャで粗砕し、さらに湿式ボールミルで微粉砕し、得られた微細粉末合金を50〜100℃の苛性ソーダ水溶液で処理する。苛性ソーダの濃度は好ましくは100〜600g/l、より好ましくは300〜500g/lが適当である。苛性ソーダ水溶液の苛性ソーダ濃度が100g/l未満では反応に時間がかかりすぎ経済性が悪くなる。一方濃度が600g/l超では粘度が高く、取扱いが困難となる。苛性ソーダによる合金粉末の処理は、合金構造を破壊し、タンタルおよび/またはニオブは苛性ソーダおよびフッ化水素酸を除く鉱酸に不溶解性の反応生成物となし、またFeは苛性ソーダに不溶解性で鉱酸可溶性の反応生成物とし後工程におけるFeのフッ化水素酸以外の鉱酸への溶解、すなわち脱Feを可能とする。NaOHの一部は、NaCO、NaHCOで置き換えることができる。
【0017】
次いで濾過して処理液を固液分離し、濾液と不溶解性生成物に分ける。不溶解性生成物にはNaOHに溶解しないTa,Nb,Feなどの反応生成物が存在する。この不溶解性生成物は塩酸や硫酸のフッ化水素酸以外の鉱酸で処理し、大部分の不純物成分であるFeなどを鉱酸に溶出させる。この脱Fe工程ではFeは除去されるが、Ta/Nbは未溶解のままである。
【0018】
その後、この溶液を濾過してFeCl液あるいはFeSOの濾過液とTa/Nbを含有する未溶解物に分ける。FeCl液あるいはFeSO液は中和され廃さいとなる。一方Ta/Nbを含む未溶解物はフッ化水素酸で、Ta/Nbが溶解され、続いて濾過で溶解残渣が除去され、高品位のTa/Nb液が得られる。このTa/Nb液は、図1に示す液調整工程を経て溶媒抽出工程に移行される。
【0019】
【実施例】
以下に、本発明を実施例と比較例によりさらに説明する。
実施例1
Ta含有フェロニオブ(Fe−Ta/Nb)200g(Fe29%、Ta4.5%、Nb41.2%)をジョークラッシャーで粗粉砕し、次いで湿式ボールミルで微粉砕してFe−Ta/Nbのスラリーを得た。このFe−Ta/Nbスラリー(スラリー濃度1000g/l)とNaOH水溶液200ml(濃度100g/l)とを反応槽(容量1l)に入れ、攪拌混合しながら液温75℃に加温した。
【0020】
次に反応槽に濃度735g/lのNaOH210mlを160分かけて少量ずつ添加した結果、反応槽内のNaOH換算濃度は425g/lに達した。NaOH添加終了後も255分間液温75℃に保持しながら、攪拌を継続後、全量をフィルタプレスで濾過分離した。得られた不溶解性生成物を反応槽(容量5l)に入れ、次いで4NHSO2000mlを反応槽に添加し、更にpH1になるようにHSOを添加し、pH1に維持しながら、60分間攪拌を継続し、鉄を硫酸酸性水溶液中に溶解させた。反応終了液をフィルタプレスへ送液し濾過分離して濾液(FeSO水溶液)3000ml(Fe18.8g/l)と未溶解物(脱Feケーキ)湿量352.8g(Dry212.0g)を得た。
【0021】
このようにして得られた脱Feケーキ212.0g(Dryベース)を水0.1lを張り込んだ反応槽(容量0.5l)に入れ、攪拌しながら、濃度80%のHF0.14lを少量ずつ添加し、60℃に加温、温度保持しながら60分間攪拌を継続し、Ta/NbのHFへの溶解抽出を行った。
【0022】
得られた溶解抽出液を全量を濾紙で濾過して濾液0.44リットル(Nb185g/l、Ta20g/l、Fe21g/l)と溶解残渣12.7g(Fe0.3%、Nb13.6%、Ta1.6%)を得た。溶解抽出で回収されたTa、Nbの回収率は各々Nb97.9%、Ta97.6%であった。
【0023】
比較例1
ジョークラッシャで粗粉砕されたFe−Ta/Nb合金200gを水0.2lを張込んだ反応槽(容量1l)に入れ攪拌混合しながら、少量ずつHFを添加し、12時間かけて溶解抽出を行った。使用した55%HFの量は0.24lであった。
【0024】
次に得られた溶解抽出液に、HSOを添加し、HSO濃度が4Nになるように調整した後、全量フィルタプレスで濾過して濾液1.1l(Nb70g/l、Ta7.6g/l、Fe30g/l)と溶解残渣100g(Dryベース)を得た。溶解残渣はFe25.1%、Nb4.8%、Ta0.6%であり、Ta、Nbの回収率は各Nb93.4%、Ta92.9%であった。
【0025】
実施例2
ボールミルで微粉砕された各100gのFe−Ta/Nb合金(Fe29%、Ta4.5%、Nb41.2%)をNaOH水溶液中に投入し、NaOH処理を行った。NaOH処理はNaOHの濃度、添加量、液温、処理時間をいろいろかえて行われた。
【0026】
上記各条件でのNaOH処理後、反応終了液を全量フィルタプレスで濾過分離して不溶解性生成物を得た。得られた不溶解性生成物を反応槽(容量3l)に入れHSOをpH1に維持できるまで添加し、不溶解性生成物中の鉄を硫酸中に溶出させた。その後全量液をフィルタプレスで濾過分離し未溶解物(脱Feケーキ)を得、各々の脱Feケーキ中のFe量を分析測定し、脱Fe率を求めた。
その結果を、表1に示す。
【0027】
【表1】
Figure 0003613443
【0028】
実施例3
ボールミルで微粉砕されたFe−Ta/Nb(Fe29%、Ta4.5%、Nb41.2%)25kgを、濃度500g/lの苛性ソーダ水溶液44l中に少量ずつ添加し、10時間かけて投入し、液温を75±5℃に保持しながらNaOH処理を行った。
【0029】
Fe−Ta/Nb投入完了後のNaOH処理時間経過毎にサンプルを0.1l採取し、そのサンプルを濾紙で濾過分離し、不溶解性生成物を得、得られた不溶解性生成物を反応槽(容量1l)に入れ、HSOをpH1に維持できるまで添加し、不溶解性生成物中のFeを硫酸中に溶出させた。その後全量液を濾紙で濾過分離し、未溶解物(脱Feケーキ)を得、各々の脱Feケーキ中のFe量を分析測定した。
その結果を、図3に示す。
【0030】
実施例4
ボールミルで微粉砕された25kgのFe−Ta/Nb(Fe29%、Ta4.5%、Nb41.2%)を濃度500g/lのNaOHの苛性ソーダ44l中に少量ずつ添加し、10時間かけて投入し液温を75±5℃に保持しながら更に14時間攪拌を継続した。
【0031】
上記反応終了液を全量フィルタプレスで濾過し、不溶解性生成物を得、得られた不溶解性生成物を5分割し、各々を反応槽(容量100l)に入れ、HSO濃度および添加量をかえてFeの溶出を行い、フィルタプレスで濾過分離して未溶解物(脱Feケーキ)を得、得られた脱Feケーキ中のFe量を分析測定し、Fe除去率を求めた。
その結果を、図4に示す。
【0032】
実施例5
実施例4において、HSOの代りにHClを用いた以外は同様の条件で試験を行った。
ボールミルで微粉砕された25kgのFe−Ta/Nb(Fe29%、Ta4.5%、Nb41.2%)を濃度500g/lのNaOHの苛性ソーダ44l中に少量ずつ添加し、10時間かけて投入し、液温を75±5℃に保持しながら更に14時間攪拌を継続した。
【0033】
上記反応終了液を全量フィルタプレスで濾過し、不溶解性生成物を得、得られた不溶解性生成物を5分割し、各々を反応槽(容量100l)に入れ、HCl濃度および添加量をかえてFeの溶出を行い、フィルタプレスで濾過分離して未溶解物(脱Feケーキ)を得、得られた脱Feケーキ中のFe量を分析測定し、Fe除去率を求めた。
その結果を、図5に示す。
【0034】
【発明の効果】
1. 従来法は原料合金中のTa/Nb以外の不純物金属も全て、フッ化水素酸またはこれと硫酸との混酸で溶解抽出するので、高価なフッ化水素酸を多量に必要とするが、本発明では、原料合金中の不純物金属を前処理(NaOH処理、脱鉄処理)で除去した後、Ta/Nbをフッ化水素酸またはこれと硫酸との混酸で溶解抽出するのでフッ化水素酸の使用量が少ない。特に、Fe−Ta/Nb合金の如く、Ta/Nbに比較してFeの量が多いものはその効果の差は顕著である。
2. 原料中の不純物金属特に鉄は、中和されて廃滓として廃棄されるが、脱Fe処理工程からのFe含有濾液中には、Fが含有されていないため濾液処理に際し、Ca塩によるF処理が不要となり、中和された廃滓量は従来法に比べ大幅に減少する。
【0035】
3. 本発明ではNaOH処理により原料合金中のTa/Nbはフッ酸以外の鉱酸には不溶解性の生成物となるため、鉱酸処理ではFe等の不純物のみ溶解抽出されるため不純物側へのTa/Nbの移行がなくTa/Nbの回収率を高めることができる。
4. Ta/Nbの不純物側への移行がなく、従来行われていたFe等の不純物残渣へ移行したTa/Nbの回収のための残渣洗浄に伴う回収水の発生がなく溶媒抽出工程へ通す液中のTa/Nbの濃度が高くなり、生産性が向上する。
5. NaOH処理後の濾過工程の濾液は、不純物をあまり含まないのでNaOH処理工程で使用するNaOH溶解用の用水として、あるいはFe塩溶液の排水処理用中和剤しとて再利用できる。
【図面の簡単な説明】
【図1】従来のタンタルおよび/またはニオブ含有合金からの酸化焙焼法による酸化タンタル/酸化ニオブを製造する工程図である。
【図2】本発明の鉄含有タンタル/ニオブ合金の溶解抽出方法の工程図である。
【図3】本発明の実施例3におけるNaOH処理でのFe−Ta/Nb合金投入終了からの時間と脱Fe品のFe含有率との関係を示すグラフである。
【図4】実施例4におけるHSO使用当量とFe除去率との関係を示すグラフである。
【図5】実施例5におけるHCl使用当量とFe除去率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solution extraction method for economically and efficiently recovering these metal elements from tantalum and / or niobium-containing alloys. Here, the “tantalum and / or niobium-containing alloy” is a collective term for the “tantalum-containing alloy”, “niobium-containing alloy”, and “alloy containing tantalum and niobium” (hereinafter referred to as the present specification). The same in the book) .
[0002]
[Prior art]
Tantalum has a wide range of uses and is excellent in corrosion resistance and heat resistance. Therefore, tantalum is used in various chemical apparatuses such as distillation towers, autoclaves, heat exchangers and chemical fiber spinning nozzles for the chemical industry. In general, a tantalum oxide film has a characteristic called valve action (a characteristic that operates as a dielectric when the electrode is a positive electrode, but does not operate as a dielectric when the electrode is a negative electrode, that is, a rectifying characteristic). Therefore, it is used as an electrode material for electrolytic capacitors, and is used in conveying equipment, electronic equipment, electronic control equipment, and the like. Furthermore, tantalum carbide is used as a material for carbide cutting tools, and tantalum oxide is used as an additive for optical lenses. The importance of tantalum is extremely large, and its demand is increasing.
[0003]
Niobium is used as a steel additive because it has the effect of stabilizing the carbon in the steel and preventing intergranular corrosion, and this is the largest application. In addition, niobium alloys have been put into practical use as conductive tubes associated with the lamp light emitting part of high-pressure sodium lamps, and are further used as superconducting materials and superalloy additive elements.
[0004]
There are several methods for producing tantalum and / or niop oxides from tantalum and / or niobium-containing alloys, but the hydrofluoric acid dissolution-solvent extraction method is common.
[0005]
In dissolution extraction of a tantalum-containing alloy or niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, as shown in the following reaction formulas (1), (2) and (3), hydrogen gas is generated. .
[0006]
Figure 0003613443
However, M represents a metal element.
[0007]
Since hydrogen gas constitutes an extremely wide range of explosive composition of 7 to 72% with respect to air, it is dangerous to directly dissolve and extract tantalum and / or niobium-containing alloys with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. There was a problem in terms of safety.
[0008]
In order to solve these problems, methods described in Japanese Patent Publication No. 5-20490 and Japanese Patent Application No. 10-263288 have been proposed as conventional methods.
The method described in Japanese Patent Publication No. 5-20490 eliminates the risk of explosion by eliminating the generation of hydrogen in the dissolution and extraction process, and increases the recovery rate of niobium by preventing the passivation of niobium. The purpose is a method in which niobium-containing alloy is burnt and oxidized, and then niobium is dissolved and extracted using a mixed acid of hydrofluoric acid and sulfuric acid.
[0009]
In addition, the method described in Japanese Patent Application No. 10-263288 is a method in which hydrogen gas generated when a tantalum and / or niobium-containing alloy is directly dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid without combustion oxidation. The purpose is to suppress the explosion composition to below the level and to enable safe operation. After adding a required amount of tantalum and / or niobium-containing alloy into a predetermined amount of water in the reaction vessel, hydrofluoric acid or this and sulfuric acid In this method, the mixed acid is continuously added and dissolved while suppressing the generated hydrogen gas.
[0010]
These methods require a large amount of hydrofluoric acid in order to dissolve all the alloy constituent metals of the tantalum and / or niobium-containing alloy as raw materials in the treatment liquid. Moreover, when recovering tantalum and / or niobium by solvent extraction, it is necessary to precipitate and deposit dissolved impurity metals, especially iron, which may be precipitated in the solvent extraction step, and remove them as residues by filtration separation. At this time, since tantalum and niobium partially migrate to the impurity metal precipitate side, the recovery rate of tantalum and niobium decreases. Furthermore, when the residue is washed with washing water and tantalum and niobium are collected in the washing water, there are problems such as an increase in the amount of processing liquid used in the solvent extraction step and a decrease in production efficiency in the solvent extraction step.
[0011]
Therefore, when there are many impurity metals other than tantalum and niobium to be dissolved and extracted, the amount of hydrofluoric acid to be used is small, the niobium and tantalum recovery rate is high, and the niobium and tantalum dissolution and extraction methods have excellent productivity. The emergence of is strongly demanded.
[0012]
[Problems to be solved by the invention]
It is an object of the present invention to provide a high-productivity tantalum and / or niobium-containing alloy dissolution and extraction method that uses less hydrofluoric acid and improves the recovery rate of tantalum and niobium.
[0013]
[Means for Solving the Problems]
The present invention has the following features.
In a method of dissolving and extracting tantalum and / or niobium in a tantalum and / or niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, pulverized tantalum and / or niobium in a predetermined amount of water in a reaction vessel After the required amount of alloy is added, it is first treated with caustic soda (NaOH), the treatment liquid is separated into solid and liquid, and the resulting insoluble product is treated with a mineral acid other than hydrofluoric acid to remove tantalum and niobium. The tantalum is characterized in that the impurity metal is eluted in mineral acid, followed by solid-liquid separation, and the remaining insoluble product obtained is dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. And / or a method for dissolving and extracting a niobium-containing alloy.
[0014]
The present invention is described in detail below.
First, a process for producing tantalum oxide or niobium oxide using a conventional tantalum and / or niobium-containing alloy as a starting material is shown in FIG. A general example in which ferroniobium is used as a raw material among niobium-containing alloys will be described with reference to FIG. 1. First, in order to increase the dissolution rate of ferroniobium, it is roughly crushed by a crusher such as a jaw crusher and put in a melting tank. Dissolve the metal component with 55% hydrofluoric acid (HF). Next, sulfuric acid (H 2 SO 4 ) is added to adjust the acid concentration of the solution, this is filtered with a filter press, and the undissolved residue is filtered to form a clean solution and subjected to solvent extraction. Next, when this aqueous solution having a high acid concentration is sufficiently brought into contact with the organic solvent MIBK (abbreviation for methyl isobutyl ketone), niobium is extracted into MIBK and impurities remain in the extraction residue. Next, MIBK containing niobium is back-extracted with dilute sulfuric acid to obtain a purified niobium aqueous solution, followed by addition of aqueous ammonia (NH 4 OH) to precipitate a hydroxide, which is filtered and dried, and finally is heated in a furnace. If calcined, niobium oxide is obtained.
[0015]
The present invention relates to an improvement in the melting step between the pulverization step and the liquid adjustment step in the conventional step shown in FIG. 1, and the refined tantalum and / or niobium-containing alloy is treated with caustic soda, and then fluorinated. The method is characterized by treating with a mineral acid other than hydrofluoric acid, whereby most of the impurity components can be eluted into the mineral acid to obtain purified undissolved tantalum or niobium.
[0016]
FIG. 2 shows a process chart of the method for dissolving and extracting tantalum and / or niobium-containing alloys according to the present invention. An example of using a raw material containing about 30% iron as a tantalum and / or niobium-containing alloy will be described. First, Ta-containing ferroniobium (Fe—Ta / Nb), which is a starting material, is roughly crushed with a jaw crusher, The fine powder alloy obtained by pulverization is treated with an aqueous caustic soda solution at 50 to 100 ° C. The concentration of caustic soda is preferably 100 to 600 g / l, more preferably 300 to 500 g / l. If the concentration of caustic soda in the aqueous caustic soda solution is less than 100 g / l, the reaction takes too much time and the economy becomes worse. On the other hand, if the concentration exceeds 600 g / l, the viscosity is high and handling becomes difficult. Treatment of the alloy powder with caustic soda destroys the alloy structure, tantalum and / or niobium is not a reaction product insoluble in mineral acids except caustic soda and hydrofluoric acid, and Fe is insoluble in caustic soda. As a reaction product soluble in mineral acid, it is possible to dissolve Fe in a mineral acid other than hydrofluoric acid in the subsequent step, that is, to remove Fe. A part of NaOH can be replaced with Na 2 CO 3 or NaHCO 3 .
[0017]
Subsequently, the treatment liquid is separated into solid and liquid by filtration, and separated into a filtrate and an insoluble product. Insoluble products include reaction products such as Ta, Nb, and Fe that are not soluble in NaOH. This insoluble product is treated with a mineral acid other than hydrofluoric acid such as hydrochloric acid or sulfuric acid, and most impurities such as Fe are eluted into the mineral acid. In this Fe removal step, Fe is removed, but Ta / Nb remains undissolved.
[0018]
Thereafter, this solution is filtered and divided into an FeCl 2 liquid or FeSO 4 filtrate and an undissolved material containing Ta / Nb. The FeCl 2 liquid or FeSO 4 liquid is neutralized and discarded. On the other hand, the undissolved material containing Ta / Nb is hydrofluoric acid, and Ta / Nb is dissolved. Subsequently, the dissolution residue is removed by filtration to obtain a high-quality Ta / Nb solution. This Ta / Nb liquid is transferred to the solvent extraction process through the liquid adjustment process shown in FIG.
[0019]
【Example】
Hereinafter, the present invention will be further described with reference to examples and comparative examples.
Example 1
200 g (Fe 29%, Ta 4.5%, Nb 41.2%) of Ta-containing ferroniobium (Fe-Ta / Nb) is coarsely pulverized with a jaw crusher and then finely pulverized with a wet ball mill to obtain a Fe-Ta / Nb slurry. It was. The Fe-Ta / Nb slurry (slurry concentration 1000 g / l) and NaOH aqueous solution 200 ml (concentration 100 g / l) were placed in a reaction vessel (capacity 1 l) and heated to 75 ° C. while stirring and mixing.
[0020]
Next, 210 ml of NaOH having a concentration of 735 g / l was added to the reaction vessel little by little over 160 minutes. As a result, the NaOH equivalent concentration in the reaction vessel reached 425 g / l. The stirring was continued while maintaining the liquid temperature at 75 ° C. for 255 minutes even after the end of the addition of NaOH, and then the entire amount was separated by filtration with a filter press. The obtained insoluble product was put into a reaction vessel (volume: 5 l), and then 2000 ml of 4NH 2 SO 4 was added to the reaction vessel, and H 2 SO 4 was added so that the pH was 1, and the pH was maintained at 1. Stirring was continued for 60 minutes, and iron was dissolved in an aqueous sulfuric acid solution. The reaction-terminated liquid was sent to a filter press and filtered and separated to obtain 3000 ml (Fe 18.8 g / l) of filtrate (FeSO 4 aqueous solution) and 352.8 g (Dry 212.0 g) of undissolved (de-Fe cake) moisture. .
[0021]
212.0 g (Dry base) of the de-fe cake thus obtained was placed in a reaction tank (volume 0.5 l) filled with 0.1 l of water, and 0.14 l of 80% HF was added in a small amount while stirring. While stirring at 60 ° C. and stirring for 60 minutes, Ta / Nb was dissolved and extracted in HF.
[0022]
The total amount of the resulting dissolved extract was filtered through filter paper, and 0.44 liters of filtrate (Nb 185 g / l, Ta 20 g / l, Fe 21 g / l) and 12.7 g of dissolved residue (Fe 0.3%, Nb 13.6%, Ta1) .6%). The recovery rates of Ta and Nb recovered by dissolution extraction were Nb 97.9% and Ta 97.6%, respectively.
[0023]
Comparative Example 1
200 g of Fe-Ta / Nb alloy coarsely pulverized with a jaw crusher was placed in a reaction tank (volume 1 l) filled with 0.2 l of water, and HF was added in small portions while stirring and mixing. went. The amount of 55% HF used was 0.24 l.
[0024]
Next, H 2 SO 4 was added to the obtained dissolved extract, and the H 2 SO 4 concentration was adjusted to 4N, followed by filtration with a filter press in a total amount of 1.1 l (Nb 70 g / l, Ta7 0.6 g / l, Fe 30 g / l) and 100 g of dissolution residue (Dry base). The dissolution residues were Fe 25.1%, Nb 4.8%, and Ta 0.6%, and the recovery rates of Ta and Nb were Nb 93.4% and Ta 92.9%, respectively.
[0025]
Example 2
Each 100 g of Fe—Ta / Nb alloy (Fe 29%, Ta 4.5%, Nb 41.2%) finely pulverized by a ball mill was put into a NaOH aqueous solution and subjected to NaOH treatment. The NaOH treatment was performed by changing the concentration of NaOH, the amount added, the liquid temperature, and the treatment time.
[0026]
After the NaOH treatment under each of the above conditions, the reaction-completed liquid was filtered and separated with a filter press to obtain an insoluble product. The obtained insoluble product was put into a reaction vessel (volume: 3 l), and H 2 SO 4 was added until pH 1 could be maintained, and iron in the insoluble product was eluted in sulfuric acid. Thereafter, the whole liquid was filtered and separated with a filter press to obtain an undissolved product (de-Fe cake), and the amount of Fe in each de-Fe cake was analyzed and measured to obtain the de-Fe rate.
The results are shown in Table 1.
[0027]
[Table 1]
Figure 0003613443
[0028]
Example 3
25 kg of Fe-Ta / Nb (Fe 29%, Ta 4.5%, Nb 41.2%) finely pulverized by a ball mill was added little by little into 44 l of an aqueous caustic soda solution having a concentration of 500 g / l, and charged over 10 hours. NaOH treatment was performed while maintaining the liquid temperature at 75 ± 5 ° C.
[0029]
0.1 l of a sample is taken every time NaOH treatment time has elapsed after the completion of Fe-Ta / Nb input, the sample is filtered and separated with a filter paper, an insoluble product is obtained, and the obtained insoluble product is reacted. placed in a bath (capacity 1l), it was added until maintain H 2 SO 4 to pH 1, the Fe of insoluble product was eluted in the sulfuric acid. Thereafter, the whole liquid was separated by filtration with filter paper to obtain an undissolved product (de-Fe cake), and the amount of Fe in each de-Fe cake was analyzed and measured.
The result is shown in FIG.
[0030]
Example 4
25 kg of Fe-Ta / Nb (Fe 29%, Ta 4.5%, Nb 41.2%) finely pulverized by a ball mill is added little by little into 44 l of caustic soda having a concentration of 500 g / l and charged over 10 hours. Stirring was continued for another 14 hours while maintaining the liquid temperature at 75 ± 5 ° C.
[0031]
The reaction completion liquid is filtered through a filter press to obtain an insoluble product. The obtained insoluble product is divided into 5 parts, each is put into a reaction vessel (capacity 100 l), and the H 2 SO 4 concentration and Elution of Fe was carried out by changing the amount added, and an undissolved product (de-Fe cake) was obtained by filtration and separation with a filter press, and the amount of Fe in the obtained de-Fe cake was analyzed and measured to determine the Fe removal rate. .
The result is shown in FIG.
[0032]
Example 5
In Example 4, the test was performed under the same conditions except that HCl was used instead of H 2 SO 4 .
25 kg of Fe-Ta / Nb (Fe 29%, Ta 4.5%, Nb 41.2%) finely pulverized by a ball mill is added little by little into 44 l of caustic soda having a concentration of 500 g / l and charged over 10 hours. The mixture was further stirred for 14 hours while maintaining the liquid temperature at 75 ± 5 ° C.
[0033]
The reaction completion liquid is filtered through a filter press to obtain an insoluble product. The obtained insoluble product is divided into 5 parts, each is put into a reaction vessel (capacity 100 l), and the HCl concentration and the added amount are adjusted. Instead, Fe was eluted and separated by filtration with a filter press to obtain an undissolved product (de-Fe cake). The amount of Fe in the obtained de-Fe cake was analyzed and measured to obtain the Fe removal rate.
The result is shown in FIG.
[0034]
【The invention's effect】
1. In the conventional method, since all impurity metals other than Ta / Nb in the raw material alloy are dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, a large amount of expensive hydrofluoric acid is required. Then, after removing the impurity metal in the raw material alloy by pretreatment (NaOH treatment, deironation treatment), Ta / Nb is dissolved and extracted with hydrofluoric acid or a mixed acid of this and sulfuric acid. The amount is small. In particular, the difference in the effect is remarkable when the amount of Fe is larger than that of Ta / Nb, such as Fe-Ta / Nb alloy.
2. Impurity metals in the raw material, especially iron, are neutralized and discarded as waste. However, since Fe is not contained in the Fe-containing filtrate from the de-Fe treatment process, F treatment with Ca salt is performed during the filtrate treatment. The amount of neutralized waste is greatly reduced compared to the conventional method.
[0035]
3. In the present invention, since the Ta / Nb in the raw material alloy is insoluble in mineral acids other than hydrofluoric acid by NaOH treatment, only impurities such as Fe are dissolved and extracted in the mineral acid treatment. There is no transition of Ta / Nb, and the recovery rate of Ta / Nb can be increased.
4). There is no transfer to the impurity side of Ta / Nb, and there is no generation of recovered water due to residue cleaning for recovery of Ta / Nb transferred to impurity residues such as Fe, which has been performed in the past. This increases the Ta / Nb concentration and improves the productivity.
5. Since the filtrate of the filtration process after NaOH treatment does not contain much impurities, it can be reused as water for dissolving NaOH used in the NaOH treatment process or as a neutralizer for wastewater treatment of Fe salt solution.
[Brief description of the drawings]
FIG. 1 is a process diagram for producing tantalum oxide / niobium oxide from a conventional tantalum and / or niobium-containing alloy by oxidation roasting.
FIG. 2 is a process diagram of a method for dissolving and extracting an iron-containing tantalum / niobium alloy according to the present invention.
FIG. 3 is a graph showing the relationship between the time from the completion of Fe—Ta / Nb alloy addition in NaOH treatment in Example 3 of the present invention and the Fe content of a Fe-free product.
4 is a graph showing the relationship between the equivalent amount of H 2 SO 4 used and the Fe removal rate in Example 4. FIG.
5 is a graph showing the relationship between the equivalent amount of HCl used and the Fe removal rate in Example 5. FIG.

Claims (3)

タンタル含有合金中のタンタルをフッ化水素酸またはこれと硫酸との混酸で溶解抽出する方法において、反応槽内の水中に粉砕した前記タンタル含有合金を投入後、まず苛性ソーダで処理し、処理液を固液分離し、得られた不溶解性生成物をフッ化水素酸以外の鉱酸で処理してタンタル以外の不純物金属を鉱酸中に溶出させ、次いで固液分離を行い、得られた残存する不溶解性生成物をフッ化水素酸またはこれと硫酸との混酸で溶解抽出することを特徴とするタンタル含有合金の溶解抽出方法。In a method of dissolving and extracting tantalum in a tantalum-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, after the tantalum-containing alloy pulverized into water in a reaction vessel is charged, it is first treated with caustic soda, Solid-liquid separation, the resulting insoluble product was treated with a mineral acid other than hydrofluoric acid to elute impurity metals other than tantalum into the mineral acid, then solid-liquid separation was performed, and the resulting residue A method for dissolving and extracting a tantalum-containing alloy, wherein the insoluble product is dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. ニオブ含有合金中のニオブをフッ化水素酸またはこれと硫酸との混酸で溶解抽出する方法において、反応槽内の水中に粉砕した前記ニオブ含有合金を投入後、まず苛性ソーダで処理し、処理液を固液分離し、得られた不溶解性生成物をフッ化水素酸以外の鉱酸で処理してニオブ以外の不純物金属を鉱酸中に溶出させ、次いで固液分離を行い、得られた残存する不溶解性生成物をフッ化水素酸またはこれと硫酸との混酸で溶解抽出することを特徴とするニオブ含有合金の溶解抽出方法。In a method of dissolving and extracting niobium in a niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, after the niobium-containing alloy pulverized in water in a reaction vessel is charged, the niobium-containing alloy is first treated with caustic soda. Solid-liquid separation, the resulting insoluble product was treated with a mineral acid other than hydrofluoric acid to elute impurity metals other than niobium into the mineral acid, followed by solid-liquid separation, and the resulting residue A method for dissolving and extracting a niobium-containing alloy, wherein the insoluble product is dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. タンタルおよびニオブを含有する合金中のタンタルおよびニオブをフッ化水素酸またはこれと硫酸との混酸で溶解抽出する方法において、反応槽内の水中に粉砕した前記のタンタルおよびニオブを含有する合金を投入後、まず苛性ソーダで処理し、処理液を固液分離し、得られた不溶解性生成物をフッ化水素酸以外の鉱酸で処理してタンタル、ニオブ以外の不純物金属を鉱酸中に溶出させ、次いで固液分離を行い、得られた残存する不溶解性生成物をフッ化水素酸またはこれと硫酸との混酸で溶解抽出することを特徴とするタンタルおよびニオブを含有する合金の溶解抽出方法。In the method of dissolving and extracting tantalum and niobium in an alloy containing tantalum and niobium with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, the alloy containing tantalum and niobium pulverized in water in the reaction vessel is charged. After treatment with caustic soda, the treatment liquid is separated into solid and liquid, and the resulting insoluble product is treated with a mineral acid other than hydrofluoric acid to elute impurity metals other than tantalum and niobium into the mineral acid. Then, solid-liquid separation is performed, and the obtained remaining insoluble product is dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. Method.
JP37461598A 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys Expired - Lifetime JP3613443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37461598A JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37461598A JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Publications (2)

Publication Number Publication Date
JP2000203841A JP2000203841A (en) 2000-07-25
JP3613443B2 true JP3613443B2 (en) 2005-01-26

Family

ID=18504143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37461598A Expired - Lifetime JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Country Status (1)

Country Link
JP (1) JP3613443B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403814B2 (en) * 2008-01-10 2014-01-29 学校法人 芝浦工業大学 How to recycle useful metals
JP5431780B2 (en) * 2009-04-23 2014-03-05 三井金属鉱業株式会社 A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide.
RU2717421C1 (en) * 2019-12-20 2020-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Method for extraction of niobium from cakes from leaching complex rare-metal raw material of complex composition

Also Published As

Publication number Publication date
JP2000203841A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
US8383070B2 (en) Method for recovering rhenium and other metals from rhenium-bearing materials
JP2019127634A (en) Manufacturing method of high purity scandium oxide
WO2020250989A1 (en) Method and apparatus for producing vanadium compound, and method and apparatus for producing redox-flow battery electrolyte
CN103781923A (en) Process for purifying zinc oxide
JP2007009274A (en) Method for recovering indium
KR100821608B1 (en) Method for producing indium-containing metal
JP2010138490A (en) Method of recovering zinc
JP3641190B2 (en) Method for processing tantalum / niobium-containing raw materials
WO2018043704A1 (en) Method for producing high-purity scandium oxide
JP3613443B2 (en) Method for dissolving and extracting tantalum and / or niobium-containing alloys
JP5103541B2 (en) Niobium separation and purification method and production method
JP6256491B2 (en) Scandium recovery method
KR100277503B1 (en) Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
JP2002316822A (en) Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium
JP2007039798A (en) Method for recovering indium, and its use
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP6860628B2 (en) Vanadium compound manufacturing method and manufacturing equipment, and redox flow battery electrolyte manufacturing method and manufacturing equipment
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride
JP7453727B1 (en) How to extract aluminum
JP7243749B2 (en) Valuable metal recovery method and recovery device
JP7011794B2 (en) Cobalt and nickel recovery methods
JP3634747B2 (en) Separation and purification method of tantalum and niobium
JP3613324B2 (en) Method for producing tantalum oxide and / or niobium oxide
JP3586103B2 (en) Method for producing high-purity tantalum oxide from tantalum-containing waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term