JP3608499B2 - Material constant measuring device for piezoelectric substrate - Google Patents

Material constant measuring device for piezoelectric substrate Download PDF

Info

Publication number
JP3608499B2
JP3608499B2 JP2000316655A JP2000316655A JP3608499B2 JP 3608499 B2 JP3608499 B2 JP 3608499B2 JP 2000316655 A JP2000316655 A JP 2000316655A JP 2000316655 A JP2000316655 A JP 2000316655A JP 3608499 B2 JP3608499 B2 JP 3608499B2
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
measurement
measuring
material constant
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000316655A
Other languages
Japanese (ja)
Other versions
JP2002124844A (en
Inventor
守▲奇▼ 王
聡 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000316655A priority Critical patent/JP3608499B2/en
Publication of JP2002124844A publication Critical patent/JP2002124844A/en
Application granted granted Critical
Publication of JP3608499B2 publication Critical patent/JP3608499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧電単結晶体から切り出した圧電基板の材料定数を測定するための材料定数測定装置に関する。
【0002】
【従来の技術】
圧電単結晶体の材料定数、例えば密度や音速等が結晶の組成と育成条件とに依存することは周知である。そこで、圧電単結晶体の各所位から切り出した基板(以下、圧電基板という)について材料定数を測定し、結晶の均一性を評価する作業を行う必要がある。
【0003】
均一性評価の手法として、圧電単結晶体がLaGaSi O14(ランガサイト)等の常誘電体の場合は、圧電基板にSAWデバイスを設け、その中心周波数を測定することで結晶の均一性評価を行っている。
【0004】
ところで、誘電体の圧電単結晶体の評価を行う場合、中心周波数の測定が圧電基板の表面状態、SAWデバイスの設計および評価プロセスの再現性等に影響され易いため、測定結果の信頼性が低い。また、評価プロセスの作業時間が長く、作業効率が低いという問題がある。
【0005】
そこで、圧電基板の各所ごとに厚み滑り振動の共振周波数、および基板厚さを測定し、これらの測定データをもとに圧電基板の材料定数を求める手法が開発されている。この手法を採用すれば、従来のようにSAWデバイスを設置する必要がないので、測定に要する時間が大幅に短縮される。また、SAWデバイスの設置によって圧電基板を破壊することがないので、製品として出荷するものについても測定を実施することが可能である。
【0006】
【発明が解決しようとする課題】
上記のような材料定数測定を実施するにあたっては次のような問題点が指摘されている。
圧電基板の共振振動数を測定するには、まず、圧電基板の表裏両側に個々に測定プローブを配置し、両プローブの測定電極を圧電基板上の測定個所に当接させた後、交流信号を伝達して圧電基板を励振する。そして、交流信号の周波数走査を行って当該測定個所におけるインピーダンスと位相との周波数依存性を検出し、周波数依存性を示す波形の解析を行って共振周波数を得る。
【0007】
しかしながら、上記のようにして圧電基板の励振を行うと、測定個所以外の部位にも励振が起こり、当該部位で生じた共振信号やノイズが測定プローブによって検出されてしまうため、正確な測定が行えないのである。
【0008】
本発明は上記の事情に鑑みてなされたものであり、圧電単結晶体の均一性評価を正確に、かつ短時間のうちに実施するべく、圧電基板の材料定数を測定するための装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成の圧電基板の材料定数測定装置を採用する。すなわち、本発明に係る請求項1記載の圧電基板の材料定数測定装置は、圧電単結晶体から切り出した圧電基板の表裏両側に個々に配設された2つの測定プローブと、該測定プローブを前記圧電基板を挟んで接近離間可能に支持するプローブ支持手段とを備える圧電基板の材料定数測定装置であって、前記測定プローブが、前記圧電基板に接する測定電極を有し、該測定電極の周囲に、前記圧電基板に当接する弾性体が設けられていることを特徴とする。
【0010】
この圧電基板の材料定数測定装置においては、測定プローブの測定電極の周囲に、圧電基板に当接する弾性体を設けることにより、測定電極が当接する個所以外の部位で生じた共振信号やノイズが弾性体によって吸収されるので、測定プローブによってこれらが検出され難くなる。
【0011】
請求項2記載の圧電基板の材料定数測定装置は、請求項1記載の圧電基板の材料定数測定装置において、前記弾性体が環状であることを特徴とする。
【0012】
この圧電基板の材料定数測定装置においては、弾性体を環状とすることにより、測定電極が当接する個所に対し周囲の如何なる方向から共振信号やノイズが伝達しても、これが弾性体によって吸収されるので、測定個所において生じた共振信号のみを捉えることが可能となり、これをもとに正確な測定が行えるようになる。
【0013】
請求項3記載の圧電基板の材料定数測定装置は、請求項1または2記載の圧電基板の材料定数測定装置において、前記測定プローブを前記圧電基板に対し略垂直な方向に押圧する付勢手段が設けられていることを特徴とする。
【0014】
この圧電基板の材料定数測定装置においては、測定プローブを圧電基板に対し略垂直な方向に押圧する付勢手段を設けることにより、測定電極が圧電基板に接触する圧力が2つの測定プローブ間で均一化されるので、測定条件が等しくなってより正確な測定が行えるようになる。
【0015】
請求項4記載の圧電基板の材料定数測定装置は、請求項1、2または3記載の圧電基板の材料定数測定装置において、前記測定電極が、弾性を有する基部に金製の電極部を貼付したものであることを特徴とする。
【0016】
この圧電基板の材料定数測定装置においては、測定電極を、弾性を有する基部に金製の電極部を貼付したものとすることにより、導電性が高く、かつ基部の弾性によって圧電基板への接触が電極全体で偏りなく良好になされるようになる。
【0017】
請求項5記載の圧電基板の材料定数測定装置は、圧電単結晶体から切り出した圧電基板の表裏両側に個々に配設された2つの測定プローブと、該測定プローブを前記圧電基板を挟んで接近離間可能に支持するプローブ支持手段とを有し、前記圧電基板の各所ごとに厚み滑り振動の共振周波数を測定する周波数測定部と、前記各所ごとに基板厚さを測定する厚さ測定部を備える圧電基板の材料定数測定装置であって、
前記測定プローブの測定電極の周囲に、前記圧電基板に当接する弾性体が設けられていることを特徴とする。
【0018】
この圧電基板の材料定数測定装置においては、圧電単結晶体から切り出した圧電基板について、該圧電基板の各所ごとに厚み滑り振動の共振周波数、および基板厚さを測定し、両測定値を乗じて前記圧電基板の各所ごとの材料定数を算出する。
【0019】
圧電基板についての厚み滑り振動の共振振動数と材料定数との関係を次式に示す。
f = (E/ρ)1/2/(2t) … (I)
f:共振周波数、t:基板厚さ、ρ:結晶密度、E:結晶方向により決まる弾性定数である。ここで、式(I)を整理すると、
f・t = (E/ρ)1/2/2 … (I’)
となり、fとtの値を求め、さらにその積を求めることで式(I’)の右辺に相当する材料定数が得られる。なお、f・tは圧電基板におけるバルク波音速とみなせる。
【0020】
この圧電基板の材料定数測定装置によれば、従来のようにSAWデバイスを設置する必要がないので、測定に要する時間が大幅に短縮される。また、SAWデバイスの設置によって圧電基板を破壊することがないので、製品として出荷するものについても測定を実施することが可能である。
【0021】
請求項6記載の圧電基板の材料定数測定装置は、請求項5記載の圧電基板の材料定数測定装置において、前記周波数測定部によって測定された共振周波数と前記厚さ測定部によって測定された基板厚さとを乗じて前記各所ごとの材料定数を算出する演算部を備えることを特徴とする。
【0022】
この圧電基板の材料定数測定装置においては、圧電単結晶体から切り出した圧電基板の各所について、周波数測定部によって厚み滑り振動の共振周波数を測定するとともに、厚さ測定部によって基板厚さを測定し、演算部において圧電基板の各所ごとに共振周波数と基板厚さとの積を求めて材料定数を算出する。
【0023】
【発明の実施の形態】
本発明に係る実施形態を図1ないし図3に示して説明する。
図1は周波数測定部を構成するバルク波測定ユニット1の概略構成を示す図である。図に示すように、バルク波測定ユニット1は、圧電基板Pを支持する基板支持機構11と、圧電基板Pの表裏両側に個々に配設された測定プローブ12,13と、測定プローブ12,13を支持するプローブ支持機構(プローブ支持手段)14と、測定プローブ12,13を駆動して圧電基板Pのインピーダンス、および位相の周波数依存性を測定するインピーダンス・アナライザ15と、基板支持機構11およびプローブ支持機構14の駆動を制御する制御装置16とを備えている。
【0024】
基板支持機構11は、支持した圧電基板Pを基板面に平行かつ直交する2方向(これらをX方向、Y方向とする)に移動可能に支持しており、これによって見かけ上は圧電基板Pの各所に測定プローブ12,13を配置することができる。
【0025】
プローブ支持機構14は、支持した測定プローブ12,13を、圧電基板Pを挟んで基板面に垂直な方向(これをZ方向とする)に接近、離間可能に支持しており、圧電基板Pに対しプロービングを行う際には測定プローブ12,13を圧電基板Pの表面、裏面にそれぞれ同期して接近させることができる。
【0026】
図2は測定プローブ12,13およびその周辺の構造を示す図である。図において、符号12a,13aは各プローブの測定電極、17は各測定電極12a,13aを取り付けられる軸体、18は軸体17を支持するシリンダ、19はシリンダ18に対し軸体17を付勢するバネ(付勢手段)、20は弾性体からなる吸収リング、である。
【0027】
測定電極12a,13aはいずれも、弾性を有する基部12b,13bに金製の電極部12c,13cを貼付した構造を有し、軸体17の一端に圧電基板Pの基板面に平行に形成された板状部17aに、表裏の基板面にそれぞれ対向させて取り付けられている。
【0028】
シリンダ18はプローブ支持機構14を構成するアームに固定されており、軸体17をZ方向に移動自在に支持している。バネ19はシリンダ18と軸体17との間に介装されており、軸体17(すなわち測定電極12a,13a)をZ方向(または−Z方向)に付勢している。軸体17の他端には膨出部17bが設けられており、一端の板状部17aと合わせて測定プローブ12,13のZ方向の移動範囲を規制するストッパとしての働きを有している。
【0029】
吸収リング20には変形が容易なゴム等の弾性材料が採用されており、板状部17aに各測定電極12a,13aの周りを取り囲むように環状をなして配設されている。
【0030】
図3は厚さ測定部を構成する厚さ分布測定ユニット2の概略構成を示す図である。図に示すように、厚さ分布測定ユニット2は、He−Neレーザを発する光源21と、レーザ光を平行光に変換する光学素子22と、レーザ光を一方の面から透過し他方の面で反射させる半反射ミラー23と、半反射ミラー23を挟んで光源21と相対する位置に圧電基板Pがレーザ光に対して垂直となるように支持する基板支持台24と、半反射ミラー23の他方の面で反射した反射光を投映されるスクリーン25と、スクリーン25に投映された反射光の干渉縞を撮影するデジタルカメラ26と、デジタルカメラ26によって撮影されたデジタル画像を解析する画像解析装置27とを備えている。
【0031】
バルク波測定ユニット1におけるインピーダンス・アナライザ15および制御装置16と、厚さ分布測定ユニット2におけるデジタルカメラ26とは、これらすべてを統括、制御する演算部30を有するメインコンピュータ31に接続されている。
【0032】
バルク波測定ユニット1、厚さ分布測定ユニット2およびメインコンピュータ31により構成される圧電基板の材料定数測定装置を使用して、圧電基板Pの材料定数を測定する操作の手順について説明する。
[共振周波数の測定]
圧電単結晶体から切り出した圧電基板Pを基板支持機構11にセットしてずれないように固定する。この状態から、基板支持機構11を駆動すると、圧電基板PがX/Y方向に段階的に移動し、圧電基板P上に設けられた複数の測定個所のひとつひとつにに対して測定プローブ12,13が順を追って配置され、1箇所ごとにプロービングが行われる。
【0033】
ある測定個所を挟んで圧電基板Pの表裏両側に測定プローブ12,13が配置されると、プローブ支持機構14が駆動し、測定プローブ12,13がZ方向(または−Z方向)に移動して圧電基板Pの表面と裏面とに同期して接近する。
【0034】
測定プローブ12,13の測定電極12a,13aがともに圧電基板Pに接したら、インピーダンス・アナライザ15から交流信号が発せられ、測定電極12a,13aを経て圧電基板Pが励振される。
【0035】
そこで、交流信号の周波数走査を行って当該測定個所におけるインピーダンスと位相との周波数依存性を検出する。この測定データはメインコンピュータ31に入力される。メインコンピュータ31では、演算部30において周波数依存性を示す波形の解析が行われて共振周波数が求められる。
【0036】
共振周波数の情報が得られたら、測定プローブ12,13が先ほどとは逆方向に移動し、圧電基板Pから離間する。これと同期して基板支持機構11がX/Y方向に駆動し、圧電基板Pを移動させて測定プローブ12,13間に次の測定個所が配置される。
以降は上記の手順が繰り返され、圧電基板P上のすべての測定個所について共振周波数が求められる。
【0037】
[基板厚さの測定]
圧電基板Pを基板支持台24にずれないように固定する。この状態から、光源21からレーザ光を光学素子22に向けて発すると、レーザ光は平行光に変換され、半反射ミラー23を透過して圧電基板Pに照射される。
【0038】
照射されたレーザ光は、一部が圧電基板Pの表面で反射し、残りが圧電基板Pの裏面で反射する。このとき、表面で反射したレーザ光(以下、これを表面反射光とする)と裏面で反射したレーザ光(これを裏面反射光とする)との間には圧電基板Pの厚さの2倍にあたる光路長差が生じる。
【0039】
表面反射光と裏面反射光とは、干渉しながら半反射ミラー23の他方の面で反射し、スクリーン25に投映されるため、スクリーン25上には光路長差に依存する干渉縞が生じる。1本の干渉縞は圧電基板P上において同じ厚さを表す等高線とみなすことができる。また、隣り合う干渉縞間の厚さの差はλ/(2n)(λ;真空中におけるレーザ光の波長、n;圧電基板Pの屈折率)で表される。
【0040】
表面/裏面反射光の入射角度を変化させると、干渉縞に変化が生まれるから、これをデジタルカメラ26で撮影する。撮影されたデジタル画像を画像解析装置27で解析すると、圧電基板Pの厚い部分と薄い部分とが相対的に把握できる。これらの解析データはメインコンピュータ31に入力され、あらかじめ精密なマイクロメータで測定しておいた圧電基板Pの代表的な部分の厚さをもとに、演算部30において圧電基板P全体の厚さ分布が得られる。
【0041】
厚さ分布の情報が得られたら、先に得られた共振周波数の情報と組み合わせて圧電基板P上の各測定個所ごとの材料定数が算出されるので、これをもとに材料定数の評価を行う。
【0042】
上記のようにすれば、SAWデバイスを設けずに測定が行えることから、SAWデバイスの製作に要していた時間が短縮されるので、圧電単結晶体の均一性評価を短時間のうちに実施することができる。また、圧電基板をSAWデバイスの設置によって破壊することがないので、製品として出荷するものについても測定を実施することが可能である。
【0043】
また、バネ20の働きによって測定プローブ12,13を圧電基板Pに対し略垂直な方向に押圧することにより、測定電極12a,13aが圧電基板Pに接触する際の圧力が2つの測定プローブ12,13間で均一化されるので、測定条件が等しくなってより正確な測定が行える。
【0044】
さらに、測定電極12a,13aを、弾性を有する基部12b,13bに金製の電極部12c,13cを貼付した構造とすることにより、導電性が高く、かつ基部の弾性によって圧電基板への接触が電極全体で偏りなく良好になされる。
【0045】
なお、本実施形態においては、バルク波測定ユニット1における制御装置16、および厚さ分布測定ユニット2における画像解析装置27をメインコンピュータ31とは別に設けているが、これらの働きをメインコンピュータ31に行わせるように構成しても構わない。
【0046】
【発明の効果】
以上説明したように、本発明によれば、測定プローブの測定電極の周囲に、圧電基板に当接する弾性体を設けることにより、測定電極が当接する個所以外の部位で生じた共振信号やノイズが弾性体によって吸収されるので、測定個所において生じた共振信号のみを捉えることが可能となり、これをもとに正確な測定を行うことができる。その結果として、圧電単結晶体の均一性評価を正確に、かつ短時間のうちに実施することができる。
【図面の簡単な説明】
【図1】本発明に係る実施形態を示す図であって、周波数測定部を構成するバルク波測定ユニットの概略構成を示す図である。
【図2】測定プローブおよびその周辺の構造を示す図である。
【図3】厚さ測定部を構成する厚さ分布測定ユニットの概略構成を示す図である。
【符号の説明】
1 バルク波測定ユニット
11 基板支持機構
12,13 測定プローブ
14 プローブ支持機構
15 インピーダンス・アナライザ
20 バネ(付勢手段)
30 演算部
31 メインコンピュータ
P 圧電基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material constant measuring apparatus for measuring a material constant of a piezoelectric substrate cut out from a piezoelectric single crystal.
[0002]
[Prior art]
It is well known that the material constants of a piezoelectric single crystal, such as density and sound velocity, depend on the crystal composition and growth conditions. Therefore, it is necessary to measure the material constant of a substrate cut out from each position of the piezoelectric single crystal (hereinafter referred to as a piezoelectric substrate) and evaluate the crystal uniformity.
[0003]
As a method for evaluating the uniformity, when the piezoelectric single crystal is a paraelectric material such as La 3 Ga 5 Si O 14 (Langasite), a SAW device is provided on the piezoelectric substrate, and the center frequency is measured by measuring the center frequency. Uniformity evaluation is performed.
[0004]
By the way, when evaluating a dielectric piezoelectric single crystal, the measurement of the center frequency is easily influenced by the surface condition of the piezoelectric substrate, the design of the SAW device, the reproducibility of the evaluation process, and the like, so the reliability of the measurement results is low. . In addition, there are problems that the work time of the evaluation process is long and the work efficiency is low.
[0005]
Therefore, a method has been developed in which the resonance frequency of the thickness-shear vibration and the substrate thickness are measured for each part of the piezoelectric substrate, and the material constant of the piezoelectric substrate is obtained based on these measurement data. If this method is adopted, it is not necessary to install a SAW device as in the prior art, and the time required for measurement is greatly reduced. In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to carry out measurement even for products shipped as products.
[0006]
[Problems to be solved by the invention]
The following problems have been pointed out in conducting the material constant measurement as described above.
To measure the resonance frequency of a piezoelectric substrate, first place measurement probes on both sides of the piezoelectric substrate, bring the measurement electrodes of both probes into contact with the measurement points on the piezoelectric substrate, and then send an AC signal. Transmits to excite the piezoelectric substrate. Then, the frequency scan of the AC signal is performed to detect the frequency dependence between the impedance and the phase at the measurement location, and the waveform indicating the frequency dependence is analyzed to obtain the resonance frequency.
[0007]
However, when the piezoelectric substrate is excited as described above, excitation occurs also at a part other than the measurement location, and the resonance signal and noise generated at the measurement site are detected by the measurement probe. Therefore, accurate measurement can be performed. There is no.
[0008]
The present invention has been made in view of the above circumstances, and provides an apparatus for measuring the material constant of a piezoelectric substrate so that the uniformity evaluation of a piezoelectric single crystal can be performed accurately and in a short time. The purpose is to do.
[0009]
[Means for Solving the Problems]
As means for solving the above problems, a material constant measuring apparatus for a piezoelectric substrate having the following configuration is employed. In other words, the material constant measuring apparatus for a piezoelectric substrate according to claim 1 of the present invention includes two measuring probes individually disposed on the front and back sides of the piezoelectric substrate cut out from the piezoelectric single crystal body, A material constant measuring apparatus for a piezoelectric substrate comprising probe supporting means for supporting the piezoelectric substrate so as to be able to approach and separate, wherein the measuring probe has a measuring electrode in contact with the piezoelectric substrate, and is disposed around the measuring electrode. An elastic body that abuts against the piezoelectric substrate is provided.
[0010]
In this material constant measuring apparatus for a piezoelectric substrate, an elastic body that abuts the piezoelectric substrate is provided around the measurement electrode of the measurement probe, so that resonance signals and noise generated at portions other than the portion where the measurement electrode abuts are elastic. Since they are absorbed by the body, they are difficult to detect by the measurement probe.
[0011]
The piezoelectric substrate material constant measuring apparatus according to claim 2 is the piezoelectric substrate material constant measuring apparatus according to claim 1, wherein the elastic body is annular.
[0012]
In this material constant measuring apparatus for a piezoelectric substrate, by making the elastic body annular, even if a resonance signal or noise is transmitted from any surrounding direction to the place where the measurement electrode contacts, this is absorbed by the elastic body. Therefore, it is possible to capture only the resonance signal generated at the measurement location, and accurate measurement can be performed based on this.
[0013]
The piezoelectric substrate material constant measuring apparatus according to claim 3 is the piezoelectric substrate material constant measuring apparatus according to claim 1 or 2 , wherein biasing means for pressing the measurement probe in a direction substantially perpendicular to the piezoelectric substrate is provided. It is provided.
[0014]
In this material constant measuring device for a piezoelectric substrate, by providing a biasing means for pressing the measurement probe in a direction substantially perpendicular to the piezoelectric substrate, the pressure at which the measurement electrode contacts the piezoelectric substrate is uniform between the two measurement probes. As a result, the measurement conditions become equal, and more accurate measurement can be performed.
[0015]
The material constant measuring device for a piezoelectric substrate according to claim 4 is the material constant measuring device for a piezoelectric substrate according to claim 1, 2 or 3 , wherein the measuring electrode has a gold electrode portion attached to a base having elasticity. It is characterized by being.
[0016]
In this material constant measuring apparatus for a piezoelectric substrate, the measurement electrode is made by attaching a gold electrode portion to an elastic base portion, so that the conductivity is high and the elasticity of the base portion makes contact with the piezoelectric substrate. The entire electrode is satisfactorily made without deviation.
[0017]
6. The material constant measuring apparatus for a piezoelectric substrate according to claim 5, wherein two measuring probes individually arranged on both the front and back sides of the piezoelectric substrate cut out from the piezoelectric single crystal body, and the measuring probes approaching each other with the piezoelectric substrate interposed therebetween. Probe support means for supporting the separation of the piezoelectric substrate, a frequency measurement unit for measuring the resonance frequency of the thickness-shear vibration at each location of the piezoelectric substrate, and a thickness measurement unit for measuring the substrate thickness at each location. A material constant measuring device for a piezoelectric substrate,
An elastic body that abuts on the piezoelectric substrate is provided around the measurement electrode of the measurement probe.
[0018]
In this material constant measuring apparatus for a piezoelectric substrate, for a piezoelectric substrate cut out from a piezoelectric single crystal, the resonance frequency of the thickness-shear vibration and the substrate thickness are measured for each part of the piezoelectric substrate, and the measured values are multiplied. A material constant for each part of the piezoelectric substrate is calculated.
[0019]
The relationship between the resonance frequency of the thickness shear vibration and the material constant for the piezoelectric substrate is shown in the following equation.
f = (E / ρ) 1/2 / (2t) (I)
f: resonance frequency, t: substrate thickness, ρ: crystal density, E: elastic constant determined by crystal direction. Here, when formula (I) is arranged,
f · t = (E / ρ) 1/2/2 (I ′)
Thus, by obtaining the values of f and t and further obtaining the product, a material constant corresponding to the right side of the formula (I ′) can be obtained. Note that f · t can be regarded as the bulk wave velocity in the piezoelectric substrate.
[0020]
According to this material constant measuring apparatus for a piezoelectric substrate, since it is not necessary to install a SAW device as in the prior art, the time required for measurement is greatly reduced. In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to carry out measurement even for products shipped as products.
[0021]
The material constant measuring apparatus for a piezoelectric substrate according to claim 6 is the material constant measuring apparatus for a piezoelectric substrate according to claim 5, wherein the resonance frequency measured by the frequency measuring section and the substrate thickness measured by the thickness measuring section. And an arithmetic unit that calculates a material constant for each location.
[0022]
In this material constant measuring device for a piezoelectric substrate, the resonance frequency of the thickness shear vibration is measured by the frequency measuring unit and the substrate thickness is measured by the thickness measuring unit for each part of the piezoelectric substrate cut out from the piezoelectric single crystal. The calculation unit calculates the material constant by calculating the product of the resonance frequency and the substrate thickness for each part of the piezoelectric substrate.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a schematic configuration of a bulk wave measurement unit 1 constituting a frequency measurement unit. As shown in the figure, the bulk wave measurement unit 1 includes a substrate support mechanism 11 that supports the piezoelectric substrate P, measurement probes 12 and 13 that are individually disposed on both sides of the piezoelectric substrate P, and measurement probes 12 and 13. A probe support mechanism (probe support means) 14 that supports the impedance, an impedance analyzer 15 that drives the measurement probes 12 and 13 to measure the impedance of the piezoelectric substrate P and the frequency dependence of the phase, the substrate support mechanism 11 and the probe And a control device 16 for controlling the driving of the support mechanism 14.
[0024]
The substrate support mechanism 11 supports the supported piezoelectric substrate P so as to be movable in two directions parallel to and orthogonal to the substrate surface (these are the X direction and the Y direction). Measuring probes 12 and 13 can be arranged at various places.
[0025]
The probe support mechanism 14 supports the supported measurement probes 12 and 13 so as to be close to and away from the direction perpendicular to the substrate surface (this is the Z direction) with the piezoelectric substrate P interposed therebetween. When probing is performed, the measurement probes 12 and 13 can be brought close to the front and back surfaces of the piezoelectric substrate P, respectively.
[0026]
FIG. 2 is a diagram showing the structures of the measurement probes 12 and 13 and their surroundings. In the figure, reference numerals 12a and 13a denote measurement electrodes of the probes, 17 denotes a shaft body to which the measurement electrodes 12a and 13a are attached, 18 denotes a cylinder that supports the shaft body 17, and 19 biases the shaft body 17 against the cylinder 18. A spring (biasing means) 20 is an absorption ring made of an elastic body.
[0027]
Each of the measurement electrodes 12a and 13a has a structure in which gold electrode portions 12c and 13c are attached to the base portions 12b and 13b having elasticity, and is formed at one end of the shaft body 17 in parallel with the substrate surface of the piezoelectric substrate P. The plate-like portion 17a is attached so as to face the front and back substrate surfaces.
[0028]
The cylinder 18 is fixed to an arm constituting the probe support mechanism 14 and supports the shaft body 17 so as to be movable in the Z direction. The spring 19 is interposed between the cylinder 18 and the shaft body 17, and biases the shaft body 17 (that is, the measurement electrodes 12a and 13a) in the Z direction (or -Z direction). A bulging portion 17b is provided at the other end of the shaft body 17, and has a function as a stopper for regulating the movement range in the Z direction of the measurement probes 12, 13 together with the plate-like portion 17a at one end. .
[0029]
The absorbing ring 20 is made of an elastic material such as rubber that can be easily deformed, and is arranged in an annular shape so as to surround the measurement electrodes 12a and 13a on the plate-like portion 17a.
[0030]
FIG. 3 is a diagram showing a schematic configuration of the thickness distribution measuring unit 2 constituting the thickness measuring unit. As shown in the figure, the thickness distribution measuring unit 2 includes a light source 21 that emits a He—Ne laser, an optical element 22 that converts laser light into parallel light, and transmits the laser light from one surface to the other surface. The semi-reflective mirror 23 to be reflected, the substrate support 24 for supporting the piezoelectric substrate P so as to be perpendicular to the laser light at a position facing the light source 21 with the semi-reflective mirror 23 interposed therebetween, A screen 25 on which reflected light reflected on the surface of the image is projected, a digital camera 26 that captures interference fringes of the reflected light projected on the screen 25, and an image analysis device 27 that analyzes the digital image captured by the digital camera 26. And.
[0031]
The impedance analyzer 15 and the control device 16 in the bulk wave measurement unit 1 and the digital camera 26 in the thickness distribution measurement unit 2 are connected to a main computer 31 having a calculation unit 30 that controls and controls all of them.
[0032]
An operation procedure for measuring the material constant of the piezoelectric substrate P using the piezoelectric substrate material constant measuring apparatus including the bulk wave measuring unit 1, the thickness distribution measuring unit 2, and the main computer 31 will be described.
[Measurement of resonance frequency]
The piezoelectric substrate P cut out from the piezoelectric single crystal is set on the substrate support mechanism 11 and fixed so as not to be displaced. When the substrate support mechanism 11 is driven from this state, the piezoelectric substrate P is moved stepwise in the X / Y direction, and the measurement probes 12 and 13 for each of a plurality of measurement points provided on the piezoelectric substrate P. Are arranged in order, and probing is performed at each location.
[0033]
When the measurement probes 12 and 13 are arranged on both the front and back sides of the piezoelectric substrate P across a certain measurement location, the probe support mechanism 14 is driven, and the measurement probes 12 and 13 move in the Z direction (or -Z direction). It approaches in synchronism with the front and back surfaces of the piezoelectric substrate P.
[0034]
When the measurement electrodes 12a and 13a of the measurement probes 12 and 13 are both in contact with the piezoelectric substrate P, an AC signal is emitted from the impedance analyzer 15, and the piezoelectric substrate P is excited through the measurement electrodes 12a and 13a.
[0035]
Therefore, the frequency dependence of the impedance and phase at the measurement location is detected by frequency scanning of the AC signal. This measurement data is input to the main computer 31. In the main computer 31, the calculation unit 30 analyzes a waveform indicating frequency dependence to obtain the resonance frequency.
[0036]
When the information on the resonance frequency is obtained, the measurement probes 12 and 13 move in the opposite direction and are separated from the piezoelectric substrate P. In synchronization with this, the substrate support mechanism 11 is driven in the X / Y direction, and the piezoelectric substrate P is moved to place the next measurement location between the measurement probes 12 and 13.
Thereafter, the above procedure is repeated, and the resonance frequency is obtained for all measurement points on the piezoelectric substrate P.
[0037]
[Measurement of substrate thickness]
The piezoelectric substrate P is fixed to the substrate support 24 so as not to be displaced. From this state, when laser light is emitted from the light source 21 toward the optical element 22, the laser light is converted into parallel light, which passes through the semi-reflective mirror 23 and is irradiated onto the piezoelectric substrate P.
[0038]
A part of the irradiated laser light is reflected on the surface of the piezoelectric substrate P, and the rest is reflected on the back surface of the piezoelectric substrate P. At this time, the thickness of the piezoelectric substrate P is twice between the laser light reflected on the front surface (hereinafter referred to as front surface reflected light) and the laser light reflected on the back surface (hereinafter referred to as back surface reflected light). An optical path length difference corresponding to this occurs.
[0039]
The front surface reflected light and the back surface reflected light are reflected by the other surface of the semi-reflective mirror 23 while interfering with each other, and are projected on the screen 25, so that interference fringes depending on the optical path length difference are generated on the screen 25. One interference fringe can be regarded as a contour line representing the same thickness on the piezoelectric substrate P. The difference in thickness between adjacent interference fringes is expressed by λ 0 / (2n) (λ 0 ; wavelength of laser light in vacuum, n: refractive index of piezoelectric substrate P).
[0040]
When the incident angle of the front / back surface reflected light is changed, a change occurs in the interference fringes, and this is photographed by the digital camera 26. When the photographed digital image is analyzed by the image analyzer 27, the thick part and the thin part of the piezoelectric substrate P can be grasped relatively. These analysis data are input to the main computer 31 and based on the thickness of a representative portion of the piezoelectric substrate P measured in advance with a precise micrometer, the arithmetic unit 30 determines the thickness of the entire piezoelectric substrate P. Distribution is obtained.
[0041]
Once the thickness distribution information is obtained, the material constants for each measurement point on the piezoelectric substrate P are calculated in combination with the previously obtained resonance frequency information. Based on this, the material constants are evaluated. Do.
[0042]
Since the measurement can be performed without providing a SAW device, the time required to manufacture the SAW device can be shortened, so that the uniformity evaluation of the piezoelectric single crystal can be performed in a short time. can do. In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to carry out measurement even for products shipped as products.
[0043]
Further, when the measurement probes 12 and 13 are pressed in a direction substantially perpendicular to the piezoelectric substrate P by the action of the spring 20, the pressure when the measurement electrodes 12 a and 13 a are in contact with the piezoelectric substrate P is increased. 13 is uniformized, the measurement conditions are equal, and more accurate measurement can be performed.
[0044]
Furthermore, the measurement electrodes 12a and 13a have a structure in which the gold electrode portions 12c and 13c are attached to the base portions 12b and 13b having elasticity, so that the conductivity is high and the contact with the piezoelectric substrate is achieved by the elasticity of the base portion. The entire electrode is satisfactorily made without unevenness.
[0045]
In this embodiment, the control device 16 in the bulk wave measurement unit 1 and the image analysis device 27 in the thickness distribution measurement unit 2 are provided separately from the main computer 31, but these functions are provided in the main computer 31. You may comprise so that it may be performed.
[0046]
【The invention's effect】
As described above, according to the present invention, by providing an elastic body that comes into contact with the piezoelectric substrate around the measurement electrode of the measurement probe, resonance signals and noise generated in parts other than the place where the measurement electrode comes into contact can be prevented. Since it is absorbed by the elastic body, it is possible to capture only the resonance signal generated at the measurement location, and accurate measurement can be performed based on this. As a result, the uniformity evaluation of the piezoelectric single crystal can be performed accurately and in a short time.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an embodiment according to the present invention, and is a diagram illustrating a schematic configuration of a bulk wave measurement unit constituting a frequency measurement unit.
FIG. 2 is a diagram showing a measurement probe and its surrounding structure.
FIG. 3 is a diagram showing a schematic configuration of a thickness distribution measuring unit constituting a thickness measuring unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bulk wave measurement unit 11 Substrate support mechanism 12, 13 Measurement probe 14 Probe support mechanism 15 Impedance analyzer 20 Spring (biasing means)
30 arithmetic unit 31 main computer P piezoelectric substrate

Claims (6)

圧電単結晶体から切り出した圧電基板の表裏両側に個々に配設された2つの測定プローブと、
該測定プローブを前記圧電基板を挟んで接近離間可能に支持するプローブ支持手段とを備える圧電基板の材料定数測定装置であって、
前記測定プローブが、前記圧電基板に接する測定電極を有し、
測定電極の周囲に、前記圧電基板に当接する弾性体が設けられていることを特徴とする圧電基板の材料定数測定装置。
Two measurement probes individually disposed on both sides of the piezoelectric substrate cut out from the piezoelectric single crystal;
A material constant measuring device for a piezoelectric substrate, comprising probe support means for supporting the measurement probe so as to be able to approach and separate with the piezoelectric substrate interposed therebetween,
The measurement probe has a measurement electrode in contact with the piezoelectric substrate;
An apparatus for measuring a material constant of a piezoelectric substrate, wherein an elastic body that contacts the piezoelectric substrate is provided around the measurement electrode.
前記弾性体が環状であることを特徴とする請求項1記載の圧電基板の材料定数測定装置。2. The material constant measuring apparatus for a piezoelectric substrate according to claim 1, wherein the elastic body is annular. 前記測定プローブを前記圧電基板に対し略垂直な方向に押圧する付勢手段が設けられていることを特徴とする請求項1または2記載の圧電基板の材料定数測定装置。 3. An apparatus for measuring a material constant of a piezoelectric substrate according to claim 1 , further comprising biasing means for pressing the measurement probe in a direction substantially perpendicular to the piezoelectric substrate. 前記測定電極が、弾性を有する基部に金製の電極部を貼付したものであることを特徴とする請求項1、2または3記載の圧電基板の材料定数測定装置。4. The material constant measuring apparatus for a piezoelectric substrate according to claim 1, wherein the measurement electrode is a base having elasticity and a gold electrode part pasted thereon. 圧電単結晶体から切り出した圧電基板の表裏両側に個々に配設された2つの測定プローブと、該測定プローブを前記圧電基板を挟んで接近離間可能に支持するプローブ支持手段とを有し、前記圧電基板の各所ごとに厚み滑り振動の共振周波数を測定する周波数測定部と、
前記各所ごとに基板厚さを測定する厚さ測定部を備える圧電基板の材料定数測定装置であって、
前記測定プローブの測定電極の周囲に、前記圧電基板に当接する弾性体が設けられていることを特徴とする圧電基板の材料定数測定装置。
Two measurement probes individually disposed on the front and back sides of the piezoelectric substrate cut out from the piezoelectric single crystal body, and probe support means for supporting the measurement probes so that they can be approached and separated with the piezoelectric substrate interposed therebetween, A frequency measurement unit that measures the resonance frequency of thickness-shear vibration for each part of the piezoelectric substrate;
A material constant measuring device for a piezoelectric substrate comprising a thickness measuring unit for measuring a substrate thickness for each of the above-mentioned locations,
An apparatus for measuring a material constant of a piezoelectric substrate, wherein an elastic body that contacts the piezoelectric substrate is provided around a measurement electrode of the measurement probe.
前記周波数測定部によって測定された共振周波数と前記厚さ測定部によって測定された基板厚さとを乗じて前記各所ごとの材料定数を算出する演算部を備えることを特徴とする請求項5記載の圧電基板の材料定数測定装置。6. The piezoelectric device according to claim 5, further comprising an arithmetic unit that calculates a material constant for each part by multiplying a resonance frequency measured by the frequency measuring unit and a substrate thickness measured by the thickness measuring unit. Equipment for measuring substrate material constants.
JP2000316655A 2000-10-17 2000-10-17 Material constant measuring device for piezoelectric substrate Expired - Fee Related JP3608499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316655A JP3608499B2 (en) 2000-10-17 2000-10-17 Material constant measuring device for piezoelectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316655A JP3608499B2 (en) 2000-10-17 2000-10-17 Material constant measuring device for piezoelectric substrate

Publications (2)

Publication Number Publication Date
JP2002124844A JP2002124844A (en) 2002-04-26
JP3608499B2 true JP3608499B2 (en) 2005-01-12

Family

ID=18795571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316655A Expired - Fee Related JP3608499B2 (en) 2000-10-17 2000-10-17 Material constant measuring device for piezoelectric substrate

Country Status (1)

Country Link
JP (1) JP3608499B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547925B1 (en) * 2017-09-29 2019-07-24 株式会社村田製作所 Piezoelectric substrate manufacturing apparatus and piezoelectric substrate manufacturing method

Also Published As

Publication number Publication date
JP2002124844A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
US8649022B2 (en) Interferometric material sensing apparatus including adjustable coupling and associated methods
JP3224778U (en) Dual beam interference calibration device for laser vibrometer and its calibration method
US8842290B2 (en) Interferometric sensing apparatus including adjustable coupling and associated methods
US8675204B2 (en) Interferometric material sensing apparatus including adjustable reference arm and associated methods
US7667851B2 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
US4694699A (en) Acoustic microscopy
US8675202B2 (en) Interferometric sensing apparatus including adjustable reference arm and associated methods
US8675203B2 (en) Interferometric biological sensing apparatus including adjustable reference arm and associated methods
US8842289B2 (en) Interferometric biometric sensing apparatus including adjustable coupling and associated methods
JP3608499B2 (en) Material constant measuring device for piezoelectric substrate
JP3608498B2 (en) Method and apparatus for measuring material constant of piezoelectric substrate
US6867863B1 (en) Integrated diagnostic for photoelastic modulator
JPH01101475A (en) Continuity formation inspecting device
Yan et al. A self-calibrating piezoelectric transducer with integral sensor for in situ energy calibration of acoustic emission
JP2002540417A (en) Integrated diagnostic device for photoelastic modulator
JPH11223623A (en) Material property measuring device
JP3096304B2 (en) Structure for measuring properties of foil materials
JP2003121423A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
KR102272163B1 (en) Apparatus and method for measuring thickness of construction
Lonsdale et al. Strain Measurement with Surface Acoustic Wave (Saw) Resonators
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young's modulus and/or poisson ratio measuring instrument using the device
JPH05248815A (en) Probe mechanism for surface shape measuring device
HUANG Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation(Ph. D. Thesis)
JPH04175640A (en) Method of detecting optical audio signal and detector
Wu et al. Laser Ultrasonic and Photoacoustic NDE Using Front-Surface Piezoelectric Detection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3608499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees