JP3605012B2 - Production of ketones by oxidative decomposition of olefins. - Google Patents

Production of ketones by oxidative decomposition of olefins. Download PDF

Info

Publication number
JP3605012B2
JP3605012B2 JP2000243982A JP2000243982A JP3605012B2 JP 3605012 B2 JP3605012 B2 JP 3605012B2 JP 2000243982 A JP2000243982 A JP 2000243982A JP 2000243982 A JP2000243982 A JP 2000243982A JP 3605012 B2 JP3605012 B2 JP 3605012B2
Authority
JP
Japan
Prior art keywords
compound
mmol
complex
transition metal
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000243982A
Other languages
Japanese (ja)
Other versions
JP2002053516A (en
Inventor
誠 藤田
隆博 楠川
博一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000243982A priority Critical patent/JP3605012B2/en
Priority to PCT/JP2001/001847 priority patent/WO2002014254A1/en
Publication of JP2002053516A publication Critical patent/JP2002053516A/en
Application granted granted Critical
Publication of JP3605012B2 publication Critical patent/JP3605012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オレフィンの酸化的分解反応を利用した、カルボニル化合物の新規な製造方法に関する。
【0002】
【従来の技術】
オレフィンを酸化的に分解して対応するカルボニル化合物を製造する方法としては、これまでに、有機溶媒中オゾンを用いて炭素−炭素二重結合を分解してオゾニドを生成させ、次いでこれを還元してケトンにする方法が唯一実際的な方法として知られているのみである。
しかしながら、上記従来法は、有害物質のオゾンを使用することが必須であり、且つ有機溶媒中で反応させなければならないと云う点に問題があり、工業的な方法として実用化されるまでには到っていない。
【0003】
【発明が解決しようとする課題】
本発明は、オレフィンを酸化的に分解して対応するカルボニル化合物を製造する方法であって、オゾンのような有害物質を使用せず、且つ水媒体中での反応が可能な、簡便且つ効率的な該製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、疎水的空間を有する金属錯体の存在下、水媒体中でオレフィン化合物を過酸化水素及び鉄化合物で酸化することを特徴とする、対応するカルボニル化合物の製造法に関する。
【0005】
本発明で用いられる疎水的空間を有する金属錯体としては、例えば、配位子が実質的に平面構造であって、遷移金属と配位結合を形成することができる電子対を分子中に3個以上有する化合物が挙げられる。
また、遷移金属としては、例えば白金、パラジウム等が挙げられる。
遷移金属と配位結合を形成することができる配位子の電子対としては、例えばピリジン環の窒素原子の電子対が挙げられる。
配位子としては、分子中に遷移金属と配位結合を形成することができる電子対を3乃至6個有する化合物が好ましく、具体的には2,4,6−トリス(4−ピリジル)−1,3,5−トリアジンや2,4,6−トリス(3−ピリジル)−1,3,5−トリアジン等が、より好ましい配位子の例として挙げられる。
本発明で用いられる疎水的空間を有する金属錯体としては、例えばM型三次元かご状又はボウル状遷移金属錯体が挙げられる。
本発明で用いられるM型三次元かご状遷移金属錯体としては、例えば特開2000−86683号公報に記載の三次元かご状遷移金属錯体が挙げられる。
本発明で用いられる疎水的空間を有する金属錯体の好ましい具体例としては、例えば下式[1]
【0006】
【化3】

Figure 0003605012
【0007】
で示される化合物や、下式[2]
【0008】
【化4】
Figure 0003605012
【0009】
で示される化合物が挙げられる。
本発明に係る金属錯体の使用量は、通常オレフィン化合物1モルに対し1〜30モル%程度、好ましくは3〜20モル%、より好ましくは5〜10モル%程度である。
【0010】
本発明で用いられるオレフィン化合物としては、芳香族基を有するオレフィン化合物が好ましい。
また、本発明で用いられるオレフィン化合物としては、分子の末端に炭素−炭素二重結合を有するオレフィン化合物が好ましい。
本発明で用いられる過酸化水素としては、例えば、通常用いられる濃度約30%前後の過酸化水素水溶液が挙げられるが、濃度等は特にこれに限定されるものではなく、反応系中において酸化力を発揮し、目的とする酸化反応をスムーズに進行させ得る濃度等であればどのようなものでも良い。
過酸化水素の使用量は、通常オレフィン化合物に対し0.5〜50当量、好ましくは1〜10当量、より好ましくは1〜2当量である。
本発明で用いられる鉄化合物としては、一般的にはそのままで酸化力のある3価の鉄化合物が好ましいが、この場合は2価の鉄化合物であっても系中で酸化されて3価になるので、2価の鉄化合物も3価の鉄化合物と同様に使用可能である。
本発明で用いられる鉄化合物の具体例としては、例えば塩化第二(又は第一)鉄、硫酸第二(又は第一)鉄、硝酸第二(又は第一)鉄、リン酸第二(又は第一)鉄等の鉄塩が挙げられる。
鉄化合物の使用量は、通常オレフィン化合物に対し対し1〜50モル%程度、好ましくは3〜20モル%程度、より好ましくは5〜10モル%程度である。
【0011】
本発明の製造法は、通常、水溶媒中で反応が行われる。
本発明の製造法に於ける反応温度は、通常0〜100℃位、好ましくは20〜50℃位である。反応時間は反応温度やオレフィン化合物の種類、或いは過酸化水素の反応系中に於ける濃度、金属錯体及び3価の鉄塩の使用量等の反応条件により自ずから異なり一概には言えないが、通常2〜48時間位である。
【0012】
【実施例】
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例において使用した錯体1aは、上記式[1]で示される錯体において、遷移金属がパラジウムであるもの、また、錯体1bは、上記式[1]で示される錯体において、遷移金属が白金であるものをそれぞれ表す。
【0013】
実施例1 錯体1aを用いたアセトフェノンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物(2.0mg,0.005mmol)を入れて水(1mL)で加熱溶解させた。これを水道水で冷やした後、マイクロシリンジでα−メチルスチレン 0.0065mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRからアセトフェノンの生成量を定量した(収率66%)。
【0014】
実施例2 錯体1bを用いたアセトフェノンの合成
5mLの試験管に、錯体1b(17.6mg,0.005mmol)及び硝酸鉄・9水和物(2,2.0mg,0.005mmol)を入れて水(1mL)で加熱溶解させた。これを水道水で冷やした後、マイクロシリンジでα−メチルスチレン 0.0065mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRからアセトフェノンの生成量を定量した(収率15%)。
【0015】
比較例1 硝酸鉄・9水和物を除いた系でのアセトフェノンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)を入れて水(1mL)で加熱溶解させた。これを水道水で冷やした後、マイクロシリンジでα−メチルスチレン 0.0065mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRからアセトフェノンの生成量を定量した(収率1%)。
【0016】
比較例2 錯体1aを除いた系でのアセトフェノンの合成
5mLの試験管に、硝酸鉄・9水和物(2.0mg,0.005mmol)を入れて水(1mL)に溶解させた。これに、マイクロシリンジでα−メチルスチレン 0.0065mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRからアセトフェノンの生成量を定量した(収率4%)。
【0017】
比較例3 過酸化水素を除いた系でのアセトフェノンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物 (2.0mg,0.005mmol)を入れて水(1mL)で加熱溶解させた。これを水道水で冷やした後、マイクロシリンジでα−メチルスチレン 0.0065mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRからアセトフェノンの生成量を定量した(収率1%)。
【0018】
実施例3 錯体1aを用いた4−メトキシアセトフェノンの合成
5mLの試験管に錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物 (2.0mg,0.005mmol)を入れ、水(1mL)に加熱溶解させて水溶液を調製した。別の試験管に予め4−メトキシ−α−メチルスチレン 7.4mg(0.05mmol)を入れておき、これに上で調製した水溶液と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRから4−メトキシアセトフェノンの生成量を定量した(収率61%)。
【0019】
実施例4 錯体1aを用いた4−メチルアセトフェノンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物 (2.0mg,0.005mmol)を入れて水(1mL)で加熱溶解させた。これを水道水で冷やした後、マイクロシリンジで4−メチル−α−メチルスチレン 0.0066mL(0.05mmol)と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRから4−メチルアセトフェノンの生成量を定量した(収率53%)。
【0020】
実施例5 錯体1aを用いた4−ニトロアセトフェノンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物 (2.0mg,0.005mmol)を入れ、水(1mL)に加熱溶解させて水溶液を調製した。別の試験管に予め4−ニトロ−α−メチルスチレン 8.2mg(0.05mmol)を入れておき、これに上で調製した水溶液と34%過酸化水素水 0.005mL(0.05mmol)を順次加えて密閉した後、、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのH NMRから4−ニトロアセトフェノンの生成量を定量した(収率75%)。
【0021】
実施例6 錯体1aを用いたメチル−2−ナフチルケトンの合成
5mLの試験管に、錯体1a(15.0mg,0.005mmol)及び硝酸鉄・9水和物 (2.0mg,0.005mmol)を入れ、水(1mL)に加熱溶解させて水溶液を調製した。別の試験管に予めイソプロペニルナフタレン 8.2mg(0.05mmol)を入れておき、これに上で調製した水溶液と34%過酸化水素水0.005mL(0.05mmol)を順次加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、重クロロホルムで抽出し、そのHNMRからメチル−2−ナフチルケトンの生成量を定量した(収率40%)。
【0022】
実施例7 錯体1aを用いたメチル−2−ナフチルケトンの合成(スケールアップ合成)
100mLの茄子型フラスコにイソプロペニルナフタレン168.1mg(1.0mmol)を入れ、これに別に調製した錯体1a(299.3mg,0.1mmol)及び硝酸鉄・9水和物 (40.4mg,0.1mmol)の水溶液(30mL)を加えて10分間攪拌した。これにマイクロシリンジで34%過酸化水素水 0.11mL(1.0mmol)を加えて密閉した後、50℃で24時間攪拌した。攪拌反応後、ヘキサン50mL×3、クロロホルム50mL×2で抽出し、その抽出液を無水硫酸マグネシウムで乾燥した。乾燥後、これを濃縮し、GPCで分離してメチル−2−ナフチルケトン(78.9mg,収率47%)を得た。同時に、原料(52.2mg)を回収した。
【0023】
【発明の効果】
オレフィンの酸化的分解(開裂)反応は基本的な合成反応であるが、これまではオゾンを使用しなければならないと云うことと、有機溶媒中での反応と云うことがネックとなっていて、一般に広く行われるまでには到っていなかった。
本発明の方法によれば、オゾンのような有害物質を使用せず、且つ水媒体中での反応が進行するため、工業的な規模での実施も可能であり、今後の進展が大いに期待できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel method for producing a carbonyl compound using an oxidative decomposition reaction of an olefin.
[0002]
[Prior art]
As a method for producing the corresponding carbonyl compound by oxidatively decomposing an olefin, hitherto, an ozonide is produced by decomposing a carbon-carbon double bond using ozone in an organic solvent, and then reducing the ozonide. The only way to make ketones is known to be practical.
However, the above conventional method has a problem in that it is essential to use ozone as a harmful substance, and the reaction must be performed in an organic solvent. Not yet.
[0003]
[Problems to be solved by the invention]
The present invention is a method for producing a corresponding carbonyl compound by oxidatively decomposing an olefin, and does not use a harmful substance such as ozone and can react in an aqueous medium in a simple and efficient manner. It is an object of the present invention to provide such a production method.
[0004]
[Means for Solving the Problems]
The present invention relates to a method for producing a corresponding carbonyl compound, comprising oxidizing an olefin compound with hydrogen peroxide and an iron compound in an aqueous medium in the presence of a metal complex having a hydrophobic space.
[0005]
As the metal complex having a hydrophobic space used in the present invention, for example, a ligand having a substantially planar structure and having three electron pairs in a molecule capable of forming a coordinate bond with a transition metal is used. Compounds having the above are mentioned.
Examples of the transition metal include platinum and palladium.
Examples of the electron pair of a ligand capable of forming a coordinate bond with a transition metal include an electron pair of a nitrogen atom of a pyridine ring.
As the ligand, a compound having 3 to 6 electron pairs capable of forming a coordination bond with a transition metal in the molecule is preferable. Specifically, 2,4,6-tris (4-pyridyl)- 1,3,5-triazine, 2,4,6-tris (3-pyridyl) -1,3,5-triazine and the like are exemplified as more preferable ligands.
Examples of the metal complex having a hydrophobic space used in the present invention include an M 6 L 4- type three-dimensional cage-like or bowl-like transition metal complex.
The M 6 L 4 type three-dimensional cage transition metal complexes used in the present invention include three-dimensional cage transition metal complexes described in, for example, JP 2000-86683.
Preferred specific examples of the metal complex having a hydrophobic space used in the present invention include, for example, the following formula [1]
[0006]
Embedded image
Figure 0003605012
[0007]
A compound represented by the following formula [2]:
[0008]
Embedded image
Figure 0003605012
[0009]
The compound shown by these is mentioned.
The amount of the metal complex according to the present invention to be used is generally about 1 to 30 mol%, preferably 3 to 20 mol%, more preferably about 5 to 10 mol%, per 1 mol of the olefin compound.
[0010]
As the olefin compound used in the present invention, an olefin compound having an aromatic group is preferable.
Further, as the olefin compound used in the present invention, an olefin compound having a carbon-carbon double bond at the terminal of the molecule is preferable.
The hydrogen peroxide used in the present invention includes, for example, a hydrogen peroxide aqueous solution having a concentration of about 30%, which is usually used, but the concentration is not particularly limited thereto. And any concentration may be used as long as the concentration is such that the desired oxidation reaction can proceed smoothly.
The amount of hydrogen peroxide to be used is generally 0.5 to 50 equivalents, preferably 1 to 10 equivalents, more preferably 1 to 2 equivalents to the olefin compound.
As the iron compound used in the present invention, generally, a trivalent iron compound having oxidizing power as it is is preferable. In this case, even a divalent iron compound is oxidized in the system to become trivalent. Therefore, a divalent iron compound can be used in the same manner as a trivalent iron compound.
Specific examples of the iron compound used in the present invention include, for example, ferric (or ferrous) chloride, ferric (or ferrous) sulfate, ferric (or ferrous) nitrate, and ferric (or ferrous) phosphate. First) iron salts such as iron.
The amount of the iron compound to be used is generally about 1 to 50 mol%, preferably about 3 to 20 mol%, more preferably about 5 to 10 mol%, based on the olefin compound.
[0011]
In the production method of the present invention, the reaction is usually performed in an aqueous solvent.
The reaction temperature in the production method of the present invention is usually about 0 to 100 ° C, preferably about 20 to 50 ° C. The reaction time depends on the reaction conditions such as the reaction temperature, the type of the olefin compound, the concentration of hydrogen peroxide in the reaction system, and the amount of the metal complex and the trivalent iron salt used. It takes about 2 to 48 hours.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
The complex 1a used in the examples is a complex represented by the above formula [1] in which the transition metal is palladium, and the complex 1b is a complex represented by the above formula [1] in which the transition metal is the same. Those that are platinum are represented.
[0013]
Example 1 Synthesis of acetophenone using complex 1a Complex 1a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) were placed in a 5 mL test tube, and water ( (1 mL). After cooling this with tap water, 0.0065 mL (0.05 mmol) of α-methylstyrene and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added with a microsyringe, and the mixture was sealed. Stirred for 24 hours. After the stirring reaction, the mixture was extracted with deuterated chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (66% yield).
[0014]
Example 2 Synthesis of Acetophenone Using Complex 1b Complex 1b (17.6 mg, 0.005 mmol) and iron nitrate nonahydrate (2,2.0 mg, 0.005 mmol) were placed in a 5 mL test tube. The mixture was dissolved by heating with water (1 mL). After cooling this with tap water, 0.0065 mL (0.05 mmol) of α-methylstyrene and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added with a microsyringe, and the mixture was sealed. Stirred for 24 hours. After the stirring reaction, the mixture was extracted with deuterated chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (yield 15%).
[0015]
Comparative Example 1 Synthesis of acetophenone in a system from which iron nitrate 9-hydrate was removed A complex 1a (15.0 mg, 0.005 mmol) was put into a 5 mL test tube, and dissolved by heating with water (1 mL). After cooling this with tap water, 0.0065 mL (0.05 mmol) of α-methylstyrene and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added with a microsyringe, and the mixture was sealed. Stirred for 24 hours. After the stirring reaction, extraction was performed with heavy chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (yield 1%).
[0016]
Comparative Example 2 Synthesis of Acetophenone in a System Excluding Complex 1a Iron nitrate nonahydrate (2.0 mg, 0.005 mmol) was placed in a 5 mL test tube and dissolved in water (1 mL). To this, 0.0065 mL (0.05 mmol) of α-methylstyrene and 0.005 mL (0.05 mmol) of 34% hydrogen peroxide solution were sequentially added with a microsyringe, and the mixture was sealed, followed by stirring at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with deuterated chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (yield 4%).
[0017]
Comparative Example 3 Synthesis of Acetophenone in a System Excluding Hydrogen Peroxide In a 5 mL test tube, complex 1a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) were added. The mixture was added and dissolved by heating with water (1 mL). After cooling this with tap water, 0.0065 mL (0.05 mmol) of α-methylstyrene and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added with a microsyringe, and the mixture was sealed. Stirred for 24 hours. After the stirring reaction, extraction was performed with heavy chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (yield 1%).
[0018]
Example 3 Synthesis of 4-methoxyacetophenone using complex 1a A complex 1a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) were placed in a 5 mL test tube. An aqueous solution was prepared by heating and dissolving in water (1 mL). In a separate test tube, 7.4 mg (0.05 mmol) of 4-methoxy-α-methylstyrene was put in advance, and the aqueous solution prepared above and 0.005 mL (0.05 mmol) of 34% hydrogen peroxide solution were added thereto. After sequentially adding and sealing, the mixture was stirred at 50 ° C. for 24 hours. After the stirring reaction, the mixture was extracted with deuterated chloroform, and the amount of 4-methoxyacetophenone produced was quantified from its 1 H NMR (61% yield).
[0019]
Example 4 Synthesis of 4-Methylacetophenone Using Complex 1a Complex 5a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) were placed in a 5 mL test tube. And dissolved by heating with water (1 mL). After cooling this with tap water, 0.0066 mL (0.05 mmol) of 4-methyl-α-methylstyrene and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added with a microsyringe, and the mixture was sealed. And stirred at 50 ° C. for 24 hours. After the stirring reaction, the mixture was extracted with deuterated chloroform, and the amount of 4-methylacetophenone produced was quantified from its 1 H NMR (yield 53%).
[0020]
Example 5 Synthesis of 4-nitroacetophenone using complex 1a Complex 1a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) were placed in a 5 mL test tube. And dissolved in water (1 mL) by heating to prepare an aqueous solution. In a separate test tube, previously put 8.2 mg (0.05 mmol) of 4-nitro-α-methylstyrene, and add thereto the aqueous solution prepared above and 0.005 mL (0.05 mmol) of 34% hydrogen peroxide solution. After sequentially adding and sealing, the mixture was stirred at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with deuterated chloroform, and the amount of 4-nitroacetophenone produced was quantified from its 1 H NMR (yield 75%).
[0021]
Example 6 Synthesis of methyl-2-naphthyl ketone using complex 1a In a 5 mL test tube, complex 1a (15.0 mg, 0.005 mmol) and iron nitrate nonahydrate (2.0 mg, 0.005 mmol) Was dissolved in water (1 mL) by heating to prepare an aqueous solution. Another test tube was previously charged with 8.2 mg (0.05 mmol) of isopropenylnaphthalene, and the aqueous solution prepared above and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added thereto and sealed. Thereafter, the mixture was stirred at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with deuterated chloroform, and the amount of methyl-2-naphthyl ketone produced was quantified from its 1 HNMR (yield 40%).
[0022]
Example 7 Synthesis of methyl-2-naphthyl ketone using complex 1a (scale-up synthesis)
168.1 mg (1.0 mmol) of isopropenylnaphthalene was placed in a 100 mL eggplant-shaped flask, and separately prepared complex 1a (299.3 mg, 0.1 mmol) and iron nitrate nonahydrate (40.4 mg, 0 .1 mmol) (30 mL) and stirred for 10 minutes. 0.11 mL (1.0 mmol) of 34% aqueous hydrogen peroxide was added thereto with a microsyringe, and the mixture was sealed, followed by stirring at 50 ° C. for 24 hours. After the stirring reaction, the mixture was extracted with hexane 50 mL × 3 and chloroform 50 mL × 2, and the extract was dried over anhydrous magnesium sulfate. After drying, this was concentrated and separated by GPC to obtain methyl-2-naphthyl ketone (78.9 mg, yield 47%). At the same time, a raw material (52.2 mg) was recovered.
[0023]
【The invention's effect】
The oxidative decomposition (cleavage) reaction of olefins is a basic synthesis reaction, but the fact that ozone must be used and the reaction in an organic solvent have been a bottleneck so far. It was not yet widely practiced.
According to the method of the present invention, no harmful substance such as ozone is used, and the reaction proceeds in an aqueous medium. Therefore, the method can be carried out on an industrial scale, and great progress can be expected in the future. .

Claims (11)

遷移金属と配位結合を形成することができる電子対を分子中に3個以上有し、実質的に平面構造である化合物から形成される、疎水的空間を有する3次元かご状又はボウル状金属錯体の存在下、水媒体中でオレフィン化合物を過酸化水素及び鉄化合物で酸化分解して、対応するカルボニル化合物の製造法であり、当該金属錯体の使用量がオレフィン化合物1モルに対し、1〜30モル%であることを特徴とするカルボニル化合物の製造法。Three-dimensional cage- or bowl-shaped metal having a hydrophobic space and formed from a compound having at least three electron pairs in a molecule capable of forming a coordinate bond with a transition metal and having a substantially planar structure. A method for producing a corresponding carbonyl compound by oxidatively decomposing an olefin compound with hydrogen peroxide and an iron compound in an aqueous medium in the presence of a complex, wherein the amount of the metal complex used is 1 to 1 mol per 1 mol of the olefin compound. A process for producing a carbonyl compound, which is 30 mol%. オレフィン化合物が芳香族基を有するオレフィン化合物である請求項1に記載の製造法。The method according to claim 1, wherein the olefin compound is an olefin compound having an aromatic group. オレフィン化合物が、分子の末端に炭素−炭素二重結合を有するオレフィン化合物である請求項1又は2に記載の製造法。The production method according to claim 1 or 2, wherein the olefin compound is an olefin compound having a carbon-carbon double bond at a terminal of a molecule. 遷移金属が白金又はパラジウムである請求項3に記載の製造法。The method according to claim 3, wherein the transition metal is platinum or palladium. 遷移金属と配位結合を形成することができる配位子の電子対が、ピリジン環の窒素原子の電子対である請求項3又は4に記載の製造法。The method according to claim 3, wherein the electron pair of the ligand capable of forming a coordination bond with the transition metal is an electron pair of a nitrogen atom of a pyridine ring. 配位子が、分子中に遷移金属と配位結合を形成することができる電子対を3乃至6個有する化合物である請求項3〜5の何れかに記載の製造法。The method according to any one of claims 3 to 5, wherein the ligand is a compound having 3 to 6 electron pairs capable of forming a coordinate bond with a transition metal in the molecule. 配位子が、2,4,6−トリス(4−ピリジル)−1,3,5−トリアジンである請求項6に記載の製造法。The method according to claim 6, wherein the ligand is 2,4,6-tris (4-pyridyl) -1,3,5-triazine. 配位子が、2,4,6−トリス(3−ピリジル)−1,3,5−トリアジンである請求項6に記載の製造法。The method according to claim 6, wherein the ligand is 2,4,6-tris (3-pyridyl) -1,3,5-triazine. 疎水的空間を有する金属錯体が、M型三次元かご状又はボウル状遷移金属錯体である請求項1〜6の何れかに記載の製造法。A metal complex having a hydrophobic space, process according to claim 1 is a M 6 L 4 type three-dimensional cage or bowl-shaped transition metal complex. 疎水的空間を有する金属錯体が下式[1]
Figure 0003605012
で示される化合物である請求項3に記載の製造法。
The metal complex having a hydrophobic space is represented by the following formula [1]
Figure 0003605012
The production method according to claim 3, which is a compound represented by the formula:
疎水的空間を有する金属錯体が下式[2]
Figure 0003605012
で示される化合物である請求項3に記載の製造法。
The metal complex having a hydrophobic space is represented by the following formula [2]
Figure 0003605012
The production method according to claim 3, which is a compound represented by the formula:
JP2000243982A 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins. Expired - Fee Related JP3605012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000243982A JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.
PCT/JP2001/001847 WO2002014254A1 (en) 2000-08-11 2001-03-09 Process for producing ketone by oxidative decomposition of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243982A JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.

Publications (2)

Publication Number Publication Date
JP2002053516A JP2002053516A (en) 2002-02-19
JP3605012B2 true JP3605012B2 (en) 2004-12-22

Family

ID=18734746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243982A Expired - Fee Related JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.

Country Status (2)

Country Link
JP (1) JP3605012B2 (en)
WO (1) WO2002014254A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929920A (en) * 2004-01-12 2007-03-14 西巴特殊化学制品控股公司 Use of metal complex compounds comprising pyridine, pyrimidine or S-triazine derived ligands as catalysts for oxidations with organic peroxy acids and/or precursors of organic peroxy acids and H2O2
JP2007534479A (en) * 2004-04-29 2007-11-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Use of metal complexes with bispyridylpyrimidine or bispyridyltriazine ligands as catalysts for reactions with peroxy compounds to bleach colored stains on hard surfaces
DE102004036157B4 (en) 2004-07-26 2023-03-16 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Electromagnetic radiation emitting optoelectronic component and light module
BRPI0621307A2 (en) * 2006-02-06 2011-12-06 Ciba Holding Inc use of metal complex compounds as oxidation catalysts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927111A (en) * 1971-12-08 1975-12-16 Mead Corp Production of carbonyl compounds
CH643226A5 (en) * 1978-12-18 1984-05-30 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CARBONYL COMPOUNDS BY OXIDATION OF OLEFINIC COMPOUNDS.

Also Published As

Publication number Publication date
WO2002014254A1 (en) 2002-02-21
JP2002053516A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
Fernandes et al. Bis-and tris-pyridyl amino and imino thioether Cu and Fe complexes. Thermal and microwave-assisted peroxidative oxidations of 1-phenylethanol and cyclohexane in the presence of various N-based additives
Meijs et al. Formation of functionalized dihydrobenzofurans by radical cyclization
Mahmudov et al. Mn II and Cu II complexes with arylhydrazones of active methylene compounds as effective heterogeneous catalysts for solvent-and additive-free microwave-assisted peroxidative oxidation of alcohols
Figiel et al. Self-assembled dicopper (II) diethanolaminate cores for mild aerobic and peroxidative oxidation of alcohols
Fernandes et al. Mild homogeneous oxidation and hydrocarboxylation of cycloalkanes catalyzed by novel dicopper (II) aminoalcohol-driven cores
Bakhtiary et al. Recent trends in the direct oxyphosphorylation of C–C multiple bonds
Hazra et al. Sulfonated Schiff base dimeric and polymeric copper (II) complexes: Temperature dependent synthesis, crystal structure and catalytic alcohol oxidation studies
Karmakar et al. Solvent-free microwave-assisted peroxidative oxidation of alcohols catalyzed by iron (III)-TEMPO catalytic systems
Li et al. Understanding the reaction mechanisms of Pd-catalysed oxidation of alcohols and domino oxidation–arylation reactions using phenyl chloride as an oxidant
JP3605012B2 (en) Production of ketones by oxidative decomposition of olefins.
WO2022050236A1 (en) Production method for alkaline earth metal formate
JP2788747B2 (en) Method for producing p-hydroxybenzaldehyde
JPS5865242A (en) Manufacture of alpha-arylpropionic acid and alkali salt of same
CN115181081A (en) Synthesis method of beta-phenyl-gamma-butyrolactone
Sarkar et al. Bio-inspired Cu (ii) amido-quinoline complexes as catalysts for aromatic C–H bond hydroxylation
JP3854442B2 (en) Catalyst for highly selective oxidation reaction
CN116730911A (en) Preparation method of difluoromethyl (2-pyridyl) sulfone compound
JPH0248419A (en) Separation and recovery of oxo synthetic product from distillation residue
US8946470B2 (en) Method for the oxidation of unsaturated organic compounds
JP4223710B2 (en) Method for producing amine oxide
Kaushal et al. Click chemistry in the synthesis of catalytically relevant organoselenium compounds: development and applications of catalysts for organic synthesis
SU992521A1 (en) Process for preparing cyclopentadienyl-ferroaquadicarbonyl tetraphenylborate
JP4080155B2 (en) Solid organometallic compound with organic phosphine carboxylic acid as ligand
Ruiz et al. Counter cation-controlled air oxidation of manganese derivatives of tetrachlorocatechol
JPS5826032A (en) Manufacture of cupric chloride from oxycupric chloride and tertiary amine hydrochloride

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees