JP3604298B2 - Method of forming light emitting diode - Google Patents

Method of forming light emitting diode Download PDF

Info

Publication number
JP3604298B2
JP3604298B2 JP4746799A JP4746799A JP3604298B2 JP 3604298 B2 JP3604298 B2 JP 3604298B2 JP 4746799 A JP4746799 A JP 4746799A JP 4746799 A JP4746799 A JP 4746799A JP 3604298 B2 JP3604298 B2 JP 3604298B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting diode
light emitting
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4746799A
Other languages
Japanese (ja)
Other versions
JP2000252523A (en
Inventor
広昭 為本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP4746799A priority Critical patent/JP3604298B2/en
Publication of JP2000252523A publication Critical patent/JP2000252523A/en
Application granted granted Critical
Publication of JP3604298B2 publication Critical patent/JP3604298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パッケージ内に配置したLEDチップを蛍光体を利用して封止してなる発光ダイオードおよびその形成方法に係わり、特に、発光ダイオードの発光方位、蛍光体量の製造過程における変化などによる色調むらや発光むらをより少なくするために改善した発光ダイオードの形成方法に関するものである。
【0002】
【従来の技術】
発光ダイオード(以下、LEDとも呼ぶ。)は、小型で効率が良く鮮やかな色の発光をする。また、半導体素子であるため球切れなどの心配がない。初期駆動特性が優れ、振動やON/OFF点灯の繰り返しに強いという特徴を有する。そのため各種インジケータや種々の光源として利用されている。しかしながら、LEDは優れた単色性ピーク波長を有するが故に効率を向上させようとすると白色系などの混色発光を行うことができない。そこで、本願出願人は、青色発光ダイオードと蛍光体により、青色発光ダイオードからの発光を蛍光体によって色変換させる発光ダイオードを開発した。蛍光体を利用した発光ダイオードはその特性ゆえに色むらや輝度むらが発生しやすい傾向にある。
【0003】
具体的には、青色LEDチップからの光と、その光を吸収してより長波長の蛍光を出す蛍光体からの光、との混色光を発光させる発光ダイオードなのであるが、この場合、青色LEDチップの光が多すぎても、蛍光体からの光が多すぎても混色光は色むらなどが生ずる。特に、LEDチップ上に蛍光体を配置させる場合、蛍光体を透過する青色LEDチップの光の行路長が部分によって違うと、発光観測面上の部分的な色むらが生ずることとなる。
【0004】
このような部分的な色むらを解消し、所望の指向角を得るために本出願人は、特開平10−107325号公報に記載された発光ダイオードを開発した。図3に示す如き、LEDチップからの光路長差が小さくなるようカップの底面に、さらに窪みを形成させる。カップ内部よりも狭い窪み内にLEDチップとこのLEDチップを被覆する蛍光体含有の樹脂を流し込むことによって、窪みから放出されるLEDチップからの光の行路長差を小さくさせる。これによって、LEDチップから放出された光が蛍光体含有の樹脂中を透過する距離の差が小さくなり、実質的に均質な発光とすることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、蛍光体を利用した発光ダイオードの使用分野の広がりと共に複数個同時に使用されるなど、より色むらや輝度むらに対して厳しい条件が課せられる現在においては十分ではなく更なる改良が求められている。特に、人間の色調感覚は、白色において特に敏感である。そのため、わずかな色調差でも赤ぽい白、緑色ぽい白、黄色っぽい白等と感じる。更に、この様な色むらなどは見ばえばかりでなくセンサーなど特定用途に合わせて色調などを選択して形成させた発光ダイオードにおいては、使用できなくなる場合もある。そのため、歩留まりが大きく低下することとなる。本出願人は上記問題を解決してより色調むら、輝度むらの少ない発光ダイオードを歩留まりよく形成させることができる発光ダイオードの形成方法を提供することにある。
【0006】
【課題を解決するための手段】
そこで本願発明は、表面に凹部を有する基体と、基体底面上に配置されたLEDチップと、LEDチップ上にLEDチップからの可視光をより長波長の光に変換する蛍光体を含有する封止部材とを有し、LEDチップからの可視光と蛍光体からの蛍光との混色光である白色系が発光可能な発光ダイオードの形成方法であって、凹部は少なくとも2段状であってLEDチップが配置されLEDチップから放出される光を絞り込み色調むら、発光むらを抑制する下段凹部と封止部材の形状を均一にする縁部分を備えてなる上段凹部からなり且つ、下段凹部及び下段凹部上面を超え上段の凹部内に蛍光体を含有する封止部材が到達するように封止部材の流し込み量を設定してなる白色系が発光可能な発光ダイオードの形成方法に係わるものである。
【0007】
これによって、蛍光体が含有された樹脂の流し込みの不均一によって生ずる、色調むらなどを低減させることができる。
【0008】
【発明の実施の形態】
本発明者は種々の実験の結果、蛍光体を有するモールド部材をLEDチップを配置させたカップ内に特定量形成させることにより、発光ダイオードの色調むらを改善し歩留まりの高い発光ダイオードとできることを見出し、本発明を成すに到った。
【0009】
本発明と比較のために示す発光ダイオードの部分拡大図、図2(A)の如く、LEDチップから放出された発光が蛍光体を透過する距離は、蛍光放射によりその光路長に差が生ずることになり、蛍光体により変換される光量が異なる。特に、LEDチップから放出させる光を絞り込み色調むらや発光むらを抑制すべく、カップ内部に窪みを設けその窪み内にLEDチップ及び蛍光体含有の樹脂を形成させた場合、製造条件の経時的変化に伴う蛍光体量の変動がLEDチップから放出される光の行路長に顕著に影響する。特に、蛍光体を含有させた樹脂を細管から窪み内に流し込む場合は、約0.5μl程度の極めて少量であり、その量を調整しながら量産性よく形成させることは極めて難しい。また、細管中を蛍光体含有の樹脂で流すためには樹脂は3000CPS程度の比較的低粘度のものを利用しなければならない。しかしながら、連続的に量産させている設備の中においては最初に用いられた蛍光体含有樹脂と、量産中において時間的に経過した後の蛍光体含有樹脂とにおいてはその粘度が微妙に異なる。そのため、同様に発光ダイオードを形成させたとしても、初めに形成された発光ダイオードに用いられた蛍光体含有樹脂と、後に形成されたものに用いられた蛍光体含有樹脂と、の量が異なることとなる。このような蛍光体含有樹脂の量の差は、窪みが小さいゆえに、LEDチップから放出される光が樹脂中を透過する距離に顕著な差を生じさせてしまう。そこで、今度は正確に蛍光体量を調整しようとすると量産性が低下してしまい、つまりは、これまでは発光ダイオードの色のばらつき低減と量産性とは、トードオフの関係にあった。特に上述の如く、色のばらつきの低減を優先させることは極めて困難であった。
【0010】
本発明は、図2(B)の断面図でも示すとおり、パッケージ内部のLEDチップを搭載させる凹部の上部に、例えば外側へと向かって広がる縁部分を設け、即ち少なくとも2段状の凹部を有する発光ダイオードにおいて、その広がった部分即ち上段の凹部内に蛍光体含有樹脂が到達するように、該樹脂の流し込み量を設定させる。これによって、蛍光体含有の樹脂量が変動したとしても、該上段凹部のような比較的体積の大きいカップ内では、図2(A)に見られるような比較的体積の小さい窪み内よりも樹脂厚の変動が少ない。
【0011】
というのは具体的には、図2(A)、(B)において、それぞれの樹脂注入設定値▲1▼、▲4▼から両者ともに同体積の樹脂量の増減があった場合を考えると分かりやすい。まず同体積の樹脂量が増加してしまった場合、図2(A)では樹脂表面が▲2▼まで達し、図2(B)では▲5▼までしか達しなかった。次に同体積の樹脂量が減少してしまった場合、図2(A)では樹脂表面は▲3▼まで下がり、図2(B)では▲6▼までしか下がらなかった。このように図2にみられる如く、同じだけの体積の樹脂が変動したのにも関わらず、それによる樹脂表面位置の上下への変動は図2(B)の方が小さい。即ち樹脂厚の変動が小さくてすむ。結果として、LEDチップから放出された光の行路長差の変動が少なく、所望の色調を持った発光ダイオードを歩留まりよく形成させることができる。
【0012】
本発明による具体的な発光ダイオードの一例として、チップタイプLEDを図1に示す。チップタイプLEDの筐体内は、窒化ガリウム系半導体を用いたLEDチップが配される下段凹部と、封止樹脂の形状を均一にする縁部分を備え、即ち2段状凹部を形成したパッケージとなっている。下段凹部の内部にはLEDチップをエポキシ樹脂などを用いて固定させてある。導電性ワイヤーとして金線を用い、LEDチップの各電極と筐体に設けられた各電極とをそれぞれ電気的に接続させてある。(RE1−xSm(Al1−yGa12:Ce蛍光体をエポキシ樹脂中に混合分散させたものをLEDチップが配された下部凹部に流し込み硬化形成させる。蛍光体含有の樹脂は下段凹部よりも多い量を流し込むように設定させてある。このような発光ダイオードに電力を供給させることによってLEDチップを発光させる。LEDチップからの発光と、その発光によって励起された蛍光体からの発光光との混色により白色系などが発光可能な発光ダイオードを量産性よく形成させることができる。
【0013】
以下、さらに具体的に本発明の発光ダイオードの形成方法について詳述するが、これのみに限られないことはいうまでもない。
発光素子として主発光ピークが470nmのGaInN半導体を用いた。LED素子は、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させた。ドーパントガスとしてSiHとCpMgと、を切り替えることによってn型導電性を有する窒化ガリウム系半導体とp型導電性を有する窒化ガリウム系半導体を形成しpn接合を形成させた。(なお、p型半導体は、成膜後400℃以上でアニールさせてある。)
エッチングによりpn各半導体表面を露出させた後、スパッタリング法により各電極をそれぞれ形成させた。こうして出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ発光素子として250μm角のLED素子を形成させた。
【0014】
一方、金型内にリード電極となる金属片を配置させた後、液晶ポリマーを注入させインサート形成し、冷却後金型から取り出すことによりパッケージ部材を形成させた。該パッケージは、中央部に開口部が設けられており、該開口部底面にはさらに、LED素子及びモールド封止部材を収納する凹部を設けた。つまり凹部が2段状に形成されている。下段凹部内には、LED素子をエポキシ樹脂でダイボンディングした。LED素子の各電極と外部電極とをそれぞれ金線でワイヤーボンディングし電気的導通を取った。
【0015】
また、モールド部材に含ませる蛍光体は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。
【0016】
形成された(Y0.4Gd0.6Al12:Ce蛍光体80重量部、透光性エポキシ樹脂100重量部をよく混合して封止部材とした。封止部材を細管からLED素子が配置されたパッケージ内の2段状の凹部内に注入させた。注入量は最下段の凹部内を十分に満たすと共にその上の段に当たる凹部まで満たすように設定させてある。モールド封止部材は、注入後150℃5時間にて硬化させ、図1の如き発光ダイオードを形成させた。
【0017】
次に、図1に基づいて本発明の発光ダイオードの各構成部材について詳述する。
(凹部11、15)
本発明による少なくとも2段状である凹部のうち、下段凹部11はLED素子12を収納させるためのものであり、上段凹部15は注入されたモールド封止部材の形状を均一化し、かつ該封止部材の注入量の変化による樹脂厚を低減させる。こうしてLED素子12からの光の行路長差を低減させ、LED素子12からの光と蛍光体からの光とを十分混色させられるのである。即ち、LED素子12の光が蛍光体によって変換される光の行路長差が実質的に少ない、或いは極めて小さいものとできる。
【0018】
LED素子12と下段凹部11との接着は熱硬化性樹脂などによって行うことができる。具体的には、エポキシ樹脂、アクリル樹脂やイミド樹脂などが挙げられる。LED素子と凹部11との接続部は、LED素子から放出された光や紫外線などが蛍光体などによっても反射され凹部11内においても特に高密度になる。そのため、接続部の樹脂劣化による黄変などにより発光効率が低下することが考えられる。このような接続部の劣化防止のために、紫外線などによる劣化を防ぐ、或いは紫外線吸収を少なくする目的でガラスや紫外線吸収剤を含有させた樹脂などを使用することがより好ましい。
【0019】
さらに、発光ダイオードの光利用効率を向上させるためにLED素子が配置される下段凹部11と、上段凹部15の表面を鏡面状とし、表面に反射機能を持たせても良い。該凹部の材料として具体的には、反射率の高い銀や金をメッキさせたもの、銅、鉄入り銅、錫入り銅、アルミ合金、メタライズパターン付きセラミック等が挙げられる。
【0020】
(蛍光体)
次に、凹部11、15内に充填された封止部材に含まれる蛍光体について述べる。本発明に用いられる蛍光体としては、少なくとも半導体発光層から発光された可視光で励起されて発光する蛍光体をいう。窒化ガリウム系化合物半導体を用いたLED素子12から発光した光と、蛍光体から発光する光が補色関係などにある場合やLED素子12からの光とそれによって励起され発光する蛍光体の光がそれぞれ光の3原色(赤色系、緑色系、青色系)に相当する場合、LED素子からの発光と、蛍光体からの発光と、を混色表示させると白色系の発光色表示を行うことができる。そのため発光ダイオードの外部には、LED素子12からの発光と蛍光体からの発光とがモールド封止部材を透過する必要がある。蛍光体と樹脂などとの比率や塗布、充填量を種々調整すること及び発光素子の発光波長を選択することにより、白色を含め電球色など任意の色調を提供することができる。
【0021】
半導体発光層によって励起される蛍光体は、無機蛍光体、有機蛍光体、蛍光染料、蛍光顔料など種々のものが挙げられる。具体的な蛍光体としては、ペリレン系の誘導体や(RE1−xSm(Al1−yGa12:Ce(0≦x<1、0≦y≦1、但し、REは、Y,Gd,Laからなる群より選択される少なくとも一種の元素である。)などが挙げられる。蛍光体として特に(RE1−xSm(Al1−yGa12:Ceを用いた場合には、LED素子と接する或いは近接して配置され、放射照度として(Ee)=3W・cm−2以上10W・cm−2以下においても高効率に十分な耐光性を有する発光ダイオードとすることができる。
【0022】
(RE1−xSm(Al1−yGa12:Ce蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが470nm付近などにさせることができる。また、発光ピークも530nm付近にあり720nmまで裾を引くブロードな発光スペクトルを持たせることができる。しかも、組成のAlの一部をGaで置換することで発光波長が短波長にシフトし、また組成のYの一部をGdで置換することで、発光波長が長波長へシフトする。このように組成を変化することで発光色を連続的に調節することが可能である。したがって、長波長側の強度がGdの組成比で連続的に変えられるなど窒化物半導体の青色系発光を利用して白色系発光に変換するための理想条件を備えている。
【0023】
また、窒化ガリウム系半導体を用いたLED素子と、セリウムで付活されたイットリウム・アルミニウム・ガーネット蛍光体(YAG)に希土類元素のサマリウム(Sm)を含有させた蛍光体と、を有する発光ダイオードについては、さらに光効率を向上させることもできる。
このような蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を、蓚酸で共沈し、それを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、次に焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。
【0024】
(Y1−p−q−rGdCeSmAl12蛍光体は、結晶中にGdを含有することにより、特に460nm以上の長波長域の励起発光効率を高くすることができる。ガドリニウムの含有量の増加により、発光ピーク波長が、530nmから570nmまで長波長に移動し、全体の発光波長も長波長側にシフトする。赤みの強い発光色が必要な場合、Gdの置換量を多くすることで達成できる。一方、Gdが増加すると共に、青色光によるの発光輝度は徐々に低下する。したがって、pは0.8以下であることが好ましく、0.7以下であることがより好ましい。さらに好ましくは0.6以下である。
【0025】
Smを含有する(Y1−p−q−rGdCeSmAl12蛍光体は、Gdの含有量の増加にかかわらず温度特性の低下が少ない。このようにSmを含有させることにより、高温度における蛍光体の発光輝度は大幅に改善される。その改善される程度はGdの含有量が高くなるほど大きくなる。すなわち、Gdを増加して蛍光体の発光色調に赤みを付与した組成ほどSmの含有による温度特性改善に効果的であることが分かった。(なお、ここでの温度特性とは、450nmの青色光による常温(25°C)における励起発光輝度に対する、同蛍光体の高温(200°C)における発光輝度の相対値(%)で表している。)
Smの含有量は0.0003≦r≦0.08の範囲で温度特性が60%以上となり好ましい。この範囲よりrが小さいと、温度特性改良の効果が小さくなる。また、この範囲よりrが大きくなると温度特性は逆に低下してくる。0.0007≦r≦0.02の範囲では温度特性は80%以上となり最も好ましい。
【0026】
Ceは0.003≦q≦0.2の範囲で相対発光輝度が70%以上となる。qが0.003以下では、Ceによるの励起発光中心の数が減少することで輝度低下し、逆に、0.2より大きくなると濃度消光が生ずる。具体的には、(Y0.39Gd0.57Ce0.03Sm0.01Al12蛍光体等が挙げられる。
本発明の発光ダイオードにおいて、蛍光体は、2種類以上の蛍光体を混合させてもよい。即ち、Al、Ga、Y、La及びGdやSmの含有量が異なる2種類以上の(RE1−xSm(Al1−yGa12:Ce蛍光体を混合させてRGBの波長成分を増やすことができる。これに、カラーフィルターを用いることによりフルカラー液晶表示装置用としても利用できる。
【0027】
(LED素子12)
本発明に用いられるLED素子12とは、蛍光体を効率良く励起できる比較的短波長な光、を効率よく発光可能な窒化物系化合物半導体などが挙げられる。発光素子であるLED素子は、MOCVD法等により基板上にInGaN等の半導体を発光層として形成させる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
【0028】
窒化ガリウム系化合物半導体を使用した場合、半導体基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が用いられる。結晶性の良い窒化ガリウムを形成させるためにはサファイヤ基板を用いることが好ましい。このサファイヤ基板上にGaN、AlN等のバッファー層を形成しその上にpn接合を有する窒化ガリウム半導体を形成させる。窒化ガリウム系半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化ガリウム半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化ガリウム半導体を形成させる場合は、p型ドーパンドであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。
【0029】
窒化ガリウム系化合物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱、低速電子線照射やプラズマ照射等により低抵抗化させることが好ましい。エッチングなどによりp型半導体及びn型半導体の露出面を形成させた後、半導体層上にスパッタリング法や真空蒸着法などを用いて所望の形状の各電極を形成させる。
【0030】
次に、形成された半導体ウエハー等をダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る。あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割り半導体ウエハーからチップ状にカットする。このようにして窒化ガリウム系化合物半導体であるLED素子12を形成させることができる。
【0031】
本発明の発光ダイオードにおいて白色系を発光させる場合は、蛍光体との補色等を考慮して発光素子の主発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。LED素子と蛍光体との効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。
【0032】
(導電性ワイヤー13)
導電性ワイヤー13としては、LED素子12の電極とのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm/cm/℃以上が好ましく、より好ましくは0.5cal/cm/cm/℃以上である。また、作業性などを考慮して導電性ワイヤーの直径は、好ましくは、Φ10μm以上、Φ45μm以下である。このような導電性ワイヤーとして具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いた導電性ワイヤーが挙げられる。
【0033】
(モールド封止部材)
凹部11、15に充填するモールド部材は、発光ダイオードの使用用途に応じてLED素子12、導電性ワイヤー13などを外部から保護するためである。モールド部材は、各種樹脂や硝子などを用いて形成させることができる。またその充填量は、色調むら、輝度むらの少ない発光ダイオードとするため、少なくともパッケージ内の下段凹部上面を超える量に、予め設定されている。
【0034】
モールド部材の具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーンなどの耐候性に優れた透明樹脂や硝子などが好適に用いられる。また、モールド部材に拡散剤を含有させることによってLED素子からの指向性を緩和させ視野角を増やすこともできる。拡散剤の具体的材料としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。
【0035】
(リード電極14)
リード電極としては、凹部内に配置されたLED素子をパッケージ外部と電気的に接続させるものであるため、電気伝導性に優れたものが好ましい。具体的材料としては、ニッケル等のメタライズあるいはリン青銅等の電気良導体を挙げることができる。またこのような材料の表面に銀あるいは金等の平滑なメッキを施し、電極部材であると共にLED素子からの光を効率よく外部に放出させるように、その表面を光反射部材として利用することもできる。
【0036】
以下、本発明による発光ダイオードの効果を確認するため、図3の如き発光ダイオードを形成させ、本発明による発光ダイオードとの比較実験を行った。
図3の発光ダイオードは、蛍光体含有の樹脂注入量の設定値を2段の凹部における最下段表面に設定した以外は、本発明のものと同様にして形成させた。こうして形成させた発光ダイオード1200個と、本発明による発光ダイオード1200個との光色のばらつきを観測した。本発明の方法において形成された各発光ダイオードの許容範囲内のばらつきは、図3の各発光ダイオードの約21%にも満たなかった。
【0037】
図3の発光ダイオード1200個のうち、特に光色のばらつきが目立ったものを調べたところ、蛍光体含有の樹脂が2段状の凹部における下段凹部31の表面よりも下であった。1200個の量産を行ったために樹脂注入量の設定値を制御しきれなかったためである。設定値よりも樹脂量が増えてしまった場合には、図3の発光ダイオードでも本発明のものと同等の効果を発揮するが、このように少なくなってしまった場合には、図3のものでは2段状凹部31、35を設けた効果がなくなってくる。
【0038】
一方、本発明の発光ダイオードのように、少なくとも2段状の凹部を設け、かつ注入樹脂量の設定値を予め下段凹部を超える量に設定しておけば、注入樹脂量に多少ばらつきが起こって樹脂量が少なくなってしまった場合でも、下段凹部表面よりも樹脂が下回るということがなるべく避けられるので、図3の発光ダイオードにみられるような問題は極力回避できる。
【0039】
【発明の効果】
本発明の、少なくとも2段状の凹部を設け、かつ蛍光体含有の樹脂注入量を下段凹部上面を超える量に設定させた発光ダイオードとすることにより、蛍光体を含んだ封止部材の注入量が多少増減しても、色調ずれ、色むら、輝度むらが極めて少ない発光ダイオードを量産性よく形成させることができる。
【図面の簡単な説明】
【図1】図1は、本発明の発光ダイオード例であるチップタイプLEDの模式的断面図である。
【図2】図2は本発明の効果を説明するための模式図であり、図2(A)は、比較のために示した発光ダイオードの部分拡大図である。図2(B)は、2段状凹部を有する本発明の発光ダイオードの部分拡大図である。
【図3】図3は、本発明と比較のために示す発光ダイオードの模式的断面図である。
【符号の説明】
11、31・・・段状凹部のうち、下段凹部
12、32・・・LED素子
13、33・・・導電性ワイヤー
14、34・・・リード電極
15、35・・・段状凹部のうち、上段凹部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting diode in which an LED chip disposed in a package is sealed using a phosphor and a method of forming the same, and more particularly, to a light emitting direction of the light emitting diode, a change in a manufacturing process of a phosphor amount, and the like. The present invention relates to a method for forming a light-emitting diode, which is improved to reduce uneven color tone and uneven light emission.
[0002]
[Prior art]
Light emitting diodes (hereinafter, also referred to as LEDs) are small, efficient, and emit bright colors. In addition, since it is a semiconductor element, there is no risk of a broken ball. It has excellent initial drive characteristics and is resistant to vibration and ON / OFF lighting. Therefore, it is used as various indicators and various light sources. However, since LEDs have an excellent monochromatic peak wavelength, it is not possible to perform mixed color light emission such as white light in order to improve the efficiency. Therefore, the present applicant has developed a light emitting diode in which light emitted from the blue light emitting diode is color-converted by the phosphor using the blue light emitting diode and the phosphor. Light-emitting diodes using phosphors tend to cause uneven color and uneven brightness due to their characteristics.
[0003]
Specifically, it is a light-emitting diode that emits mixed light of light from a blue LED chip and light from a phosphor that absorbs the light and emits fluorescence of a longer wavelength. Even if there is too much light from the chip or too much light from the phosphor, the mixed color light may cause color unevenness. In particular, when a phosphor is arranged on an LED chip, if the path length of light of the blue LED chip that passes through the phosphor differs depending on the portion, partial color unevenness on the emission observation surface occurs.
[0004]
In order to eliminate such partial color unevenness and obtain a desired directional angle, the present applicant has developed a light emitting diode described in Japanese Patent Application Laid-Open No. 10-107325. As shown in FIG. 3, a recess is further formed on the bottom surface of the cup so as to reduce the difference in optical path length from the LED chip. By pouring the LED chip and the phosphor-containing resin that covers the LED chip into a recess that is narrower than the inside of the cup, the difference in path length of light emitted from the LED chip from the recess is reduced. As a result, the difference in the distance that the light emitted from the LED chip passes through the resin containing the phosphor is reduced, and substantially uniform light emission can be achieved.
[0005]
[Problems to be solved by the invention]
However, with the spread of fields of use of light-emitting diodes using phosphors, a plurality of light-emitting diodes are used at the same time, and more stringent conditions are imposed on color unevenness and luminance unevenness. I have. In particular, human tone perception is particularly sensitive in white. Therefore, even a slight difference in color tone is perceived as reddish white, greenish white, yellowish white, or the like. Further, such color unevenness is not only visible, but may not be used in a light emitting diode formed by selecting a color tone or the like according to a specific use such as a sensor. Therefore, the yield is greatly reduced. It is an object of the present applicant to provide a method for forming a light emitting diode capable of solving the above-described problem and forming a light emitting diode with less color tone unevenness and less uneven brightness with a high yield.
[0006]
[Means for Solving the Problems]
Accordingly, the present invention provides a sealing having a base having a concave portion on the surface, an LED chip disposed on the bottom of the base, and a phosphor on the LED chip for converting visible light from the LED chip into light of a longer wavelength. A method of forming a light emitting diode capable of emitting white light, which is a mixed color of visible light from an LED chip and fluorescent light from a phosphor, wherein the recess is at least two-step-shaped and the LED chip has There disposed light narrowing color unevenness emitted from the LED chip, and consists of the upper recess formed by including a rim portion to uniform the shape of suppressing the lower recess and the sealing member uneven light emission, the lower recess and the lower recess upper surface The present invention relates to a method for forming a light emitting diode capable of emitting white light by setting a pouring amount of a sealing member so that a sealing member containing a phosphor reaches a concave portion in an upper stage.
[0007]
As a result, it is possible to reduce uneven color tone and the like, which are caused by non-uniform pouring of the resin containing the phosphor.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of various experiments, the present inventor has found that by forming a specific amount of a mold member having a phosphor in a cup in which an LED chip is arranged, it is possible to improve color tone unevenness of a light emitting diode and obtain a light emitting diode with a high yield. The present invention has been accomplished.
[0009]
As shown in FIG. 2 (A), which is a partially enlarged view of a light emitting diode shown for comparison with the present invention, the distance that light emitted from an LED chip passes through a phosphor may differ in the optical path length due to fluorescent radiation. And the amount of light converted by the phosphor is different. In particular, when the light emitted from the LED chip is narrowed down to suppress color tone unevenness and light emission unevenness, when a recess is provided inside the cup and the LED chip and the resin containing the phosphor are formed in the recess, the manufacturing conditions change over time. The change in the amount of phosphor accompanying the influence significantly affects the path length of light emitted from the LED chip. Particularly, when the resin containing the phosphor is poured from the thin tube into the depression, the amount is as small as about 0.5 μl, and it is extremely difficult to form the resin with good mass productivity while adjusting the amount. Further, in order to flow the resin containing the phosphor through the thin tube, a resin having a relatively low viscosity of about 3000 CPS must be used. However, the viscosity of the phosphor-containing resin used first in equipment that is continuously mass-produced differs slightly from that of the phosphor-containing resin after a lapse of time during mass production. Therefore, even if a light emitting diode is formed similarly, the amount of the phosphor containing resin used for the light emitting diode formed first and the amount of the phosphor containing resin used for the light emitting diode formed later are different. It becomes. Such a difference in the amount of the phosphor-containing resin causes a remarkable difference in the distance that the light emitted from the LED chip passes through the resin because the recess is small. In this case, mass productivity is reduced if the amount of the phosphor is adjusted accurately, that is, there has been a trade-off between the reduction in color variation of the light emitting diode and the mass productivity. In particular, as described above, it was extremely difficult to give priority to the reduction in color variation.
[0010]
According to the present invention, as shown in the cross-sectional view of FIG. 2B, an edge portion extending outward, for example, is provided at an upper portion of the recess for mounting the LED chip inside the package, that is, at least a two-step recess is provided. In the light emitting diode, the amount of the resin is set so that the phosphor-containing resin reaches the widened portion, that is, the upper concave portion. As a result, even if the amount of the resin containing the phosphor fluctuates, the inside of the cup having a relatively large volume such as the upper concave portion is smaller than the inside of the recess having a relatively small volume as shown in FIG. There is little variation in thickness.
[0011]
Specifically, in FIGS. 2 (A) and 2 (B), it can be understood from the case where both the resin injection set values (1) and (4) have the same volume of resin in both cases. Cheap. First, when the amount of resin of the same volume has increased, the resin surface reached (2) in FIG. 2 (A) and reached only (5) in FIG. 2 (B). Next, when the amount of resin of the same volume is reduced, the resin surface is lowered to (3) in FIG. 2 (A), and is reduced only to (6) in FIG. 2 (B). As shown in FIG. 2, as shown in FIG. 2, although the resin having the same volume fluctuates, the vertical fluctuation of the resin surface position due to the fluctuation is smaller in FIG. 2B. That is, the variation in the resin thickness is small. As a result, a variation in the path length difference of the light emitted from the LED chip is small, and a light emitting diode having a desired color tone can be formed with a high yield.
[0012]
FIG. 1 shows a chip type LED as an example of a specific light emitting diode according to the present invention. The inside of the chip type LED housing has a lower recess in which an LED chip using a gallium nitride-based semiconductor is arranged and an edge portion for making the shape of the sealing resin uniform, that is, a package in which a two-stage recess is formed. ing. An LED chip is fixed in the lower recess using an epoxy resin or the like. A gold wire is used as the conductive wire, and each electrode of the LED chip is electrically connected to each electrode provided on the housing. (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce LED chips those phosphors were mixed and dispersed in an epoxy resin cured form poured into the lower recess arranged. The phosphor-containing resin is set so as to flow in an amount larger than that of the lower recess. By supplying power to such a light emitting diode, the LED chip emits light. It is possible to form a light emitting diode capable of emitting white light or the like by mixing colors of light emitted from the LED chip and light emitted from the phosphor excited by the light emission with high mass productivity.
[0013]
Hereinafter, the method for forming the light emitting diode of the present invention will be described in more detail, but it goes without saying that the present invention is not limited to this.
A GaInN semiconductor having a main emission peak of 470 nm was used as a light emitting element. In the LED element, a TMG (trimethyl gallium) gas, a TMI (trimethyl indium) gas, a nitrogen gas and a dopant gas are caused to flow along with a carrier gas on a cleaned sapphire substrate, and a gallium nitride-based compound semiconductor is formed by MOCVD. Formed. By switching between SiH 4 and Cp 2 Mg as the dopant gas, a gallium nitride-based semiconductor having n-type conductivity and a gallium nitride-based semiconductor having p-type conductivity were formed to form a pn junction. (The p-type semiconductor is annealed at 400 ° C. or higher after film formation.)
After exposing each pn semiconductor surface by etching, each electrode was formed by a sputtering method. After a scribe line was drawn on the semiconductor wafer thus completed, the wafer was divided by an external force to form a 250 μm square LED element as a light emitting element.
[0014]
On the other hand, after a metal piece serving as a lead electrode was placed in a mold, a liquid crystal polymer was injected to form an insert, and after cooling, the package was formed by taking out the insert from the mold. The package was provided with an opening at the center, and a recess for accommodating the LED element and the mold sealing member was further provided at the bottom of the opening. That is, the concave portions are formed in two steps. The LED element was die-bonded with epoxy resin in the lower recess. Each electrode of the LED element and the external electrode were each wire-bonded with a gold wire to establish electrical continuity.
[0015]
The phosphor contained in the mold member was prepared by co-precipitating a solution obtained by dissolving rare earth elements of Y, Gd, and Ce in an stoichiometric ratio in an acid with oxalic acid. This is mixed with a coprecipitated oxide obtained by calcination and aluminum oxide to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The calcined product was ball milled in water, washed, separated, dried, and finally formed through a sieve.
[0016]
80 parts by weight of the formed (Y 0.4 Gd 0.6 ) 3 Al 5 O 12 : Ce phosphor and 100 parts by weight of the translucent epoxy resin were mixed well to form a sealing member. The sealing member was injected from the thin tube into a two-step recess in the package in which the LED elements were arranged. The injection amount is set so as to sufficiently fill the inside of the lowermost recess, and to fill the uppermost recess. The mold sealing member was cured at 150 ° C. for 5 hours after injection to form a light emitting diode as shown in FIG.
[0017]
Next, each component of the light emitting diode of the present invention will be described in detail with reference to FIG.
(Recesses 11, 15)
Among the at least two-step concave portions according to the present invention, the lower concave portion 11 is for accommodating the LED element 12, and the upper concave portion 15 makes the shape of the injected mold sealing member uniform and performs the sealing. The thickness of the resin due to the change in the injection amount of the member is reduced. Thus, the difference in the path length of the light from the LED element 12 is reduced, and the light from the LED element 12 and the light from the phosphor can be sufficiently mixed. That is, the difference in the path length of the light converted by the phosphor from the light of the LED element 12 can be substantially small or extremely small.
[0018]
The bonding between the LED element 12 and the lower recess 11 can be performed using a thermosetting resin or the like. Specifically, an epoxy resin, an acrylic resin, an imide resin, or the like is used. At the connection portion between the LED element and the concave portion 11, light, ultraviolet light, and the like emitted from the LED element are also reflected by the phosphor and the like, and the density becomes particularly high even in the concave portion 11. Therefore, it is conceivable that the luminous efficiency is reduced due to yellowing or the like due to deterioration of the resin at the connection portion. In order to prevent such deterioration of the connection portion, it is more preferable to use glass or a resin containing an ultraviolet absorber for the purpose of preventing the deterioration due to ultraviolet rays or reducing the ultraviolet absorption.
[0019]
Furthermore, in order to improve the light use efficiency of the light emitting diode, the surfaces of the lower concave portion 11 in which the LED elements are arranged and the upper concave portion 15 may be mirror-like, and the surfaces may have a reflection function. Specific examples of the material of the concave portion include those plated with silver or gold having high reflectivity, copper, copper with iron, copper with tin, aluminum alloy, and ceramics with metallized patterns.
[0020]
(Phosphor)
Next, the phosphor contained in the sealing member filled in the recesses 11 and 15 will be described. The phosphor used in the present invention refers to a phosphor that emits light when excited by at least visible light emitted from a semiconductor light emitting layer. The light emitted from the LED element 12 using the gallium nitride-based compound semiconductor and the light emitted from the phosphor are in a complementary color relationship, or the light from the LED element 12 and the light of the phosphor excited and emitted by the LED element 12 are respectively When the light corresponds to the three primary colors of light (red, green, and blue), white light emission can be displayed by mixing the light emission from the LED element and the light emission from the phosphor. Therefore, it is necessary that the light emitted from the LED element 12 and the light emitted from the phosphor pass through the mold sealing member outside the light emitting diode. By variously adjusting the ratio of the phosphor to the resin, the application and the filling amount, and by selecting the emission wavelength of the light emitting element, it is possible to provide an arbitrary color tone such as a light bulb color including white.
[0021]
Various types of phosphors excited by the semiconductor light emitting layer include inorganic phosphors, organic phosphors, fluorescent dyes, and fluorescent pigments. Specific phosphor, derivatives of perylene and (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1, however, RE is at least one element selected from the group consisting of Y, Gd, and La). Particularly phosphor (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: in the case of using the Ce is placed in contact with the LED element or close to, the irradiance (Ee) = 3 W · cm −2 or more and 10 W · cm −2 or less, a light emitting diode having sufficient light resistance can be obtained with high efficiency.
[0022]
(RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce phosphor, for garnet structure, heat, resistant to light and moisture, the peak of the excitation spectrum can be like in the vicinity of 470nm Can be. Further, the emission peak is around 530 nm, and a broad emission spectrum with a tail extending to 720 nm can be provided. Moreover, the emission wavelength shifts to a short wavelength by replacing part of the Al in the composition with Ga, and shifts to the long wavelength by replacing a part of the Y in the composition with Gd. By changing the composition in this way, the emission color can be continuously adjusted. Therefore, there is provided an ideal condition for converting the blue light emission of the nitride semiconductor to the white light emission such that the intensity on the long wavelength side can be continuously changed by the composition ratio of Gd.
[0023]
Further, a light-emitting diode having an LED element using a gallium nitride-based semiconductor and a phosphor containing a rare earth element samarium (Sm) in a yttrium aluminum garnet phosphor (YAG) activated with cerium Can further improve light efficiency.
Such a phosphor uses an oxide as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, or a compound which easily becomes an oxide at a high temperature, and thoroughly mixes them in a stoichiometric ratio. To obtain the raw material. Alternatively, a co-precipitated oxide obtained by co-precipitating a solution obtained by dissolving rare earth elements of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio with oxalic acid, and calcining the same, aluminum oxide, gallium oxide To obtain a mixed raw material. An appropriate amount of a fluoride such as ammonium fluoride is mixed into the crucible as a flux, and the mixture is baked in air at a temperature of 1350 to 1450 ° C for 2 to 5 hours to obtain a baked product. It can be obtained by ball milling, washing, separating, drying and finally passing through a sieve.
[0024]
(Y 1-p-q- r Gd p Ce q Sm r) 3 Al 5 O 12 phosphor, by containing Gd in the crystal, in particular to increase the excitation emission efficiency of 460nm or longer wavelength region Can be. Due to the increase in the content of gadolinium, the emission peak wavelength shifts from 530 nm to 570 nm to a longer wavelength, and the entire emission wavelength shifts to the longer wavelength side. When a reddish luminescent color is required, it can be achieved by increasing the substitution amount of Gd. On the other hand, as Gd increases, the emission luminance of blue light gradually decreases. Therefore, p is preferably 0.8 or less, and more preferably 0.7 or less. More preferably, it is 0.6 or less.
[0025]
Containing Sm (Y 1-p-q -r Gd p Ce q Sm r) 3 Al 5 O 12 phosphor, lowering of the temperature characteristics is small regardless of the increase in the content of Gd. By including Sm in this manner, the emission luminance of the phosphor at a high temperature is greatly improved. The degree of the improvement increases as the content of Gd increases. That is, it was found that a composition in which Gd was increased and redness was given to the emission color tone of the phosphor was more effective in improving the temperature characteristics due to the inclusion of Sm. (Note that the temperature characteristic is represented by a relative value (%) of the emission luminance of the same phosphor at a high temperature (200 ° C.) with respect to the excitation emission luminance at room temperature (25 ° C.) of 450 nm blue light. Yes.)
When the content of Sm is in the range of 0.0003 ≦ r ≦ 0.08, the temperature characteristic is preferably 60% or more. When r is smaller than this range, the effect of improving the temperature characteristics is reduced. On the other hand, when r is larger than this range, the temperature characteristics are conversely deteriorated. In the range of 0.0007 ≦ r ≦ 0.02, the temperature characteristic is 80% or more, which is the most preferable.
[0026]
Ce has a relative emission luminance of 70% or more in the range of 0.003 ≦ q ≦ 0.2. When q is 0.003 or less, the luminance decreases due to a decrease in the number of excitation and emission centers by Ce, and conversely, when it exceeds 0.2, concentration quenching occurs. Specifically, (Y 0.39 Gd 0.57 Ce 0.03 Sm 0.01 ) 3 Al 5 O 12 phosphor is exemplified.
In the light emitting diode of the present invention, the phosphor may be a mixture of two or more phosphors. That, Al, Ga, Y, the content of La and Gd and Sm are two or more different (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: by mixing Ce phosphor RGB wavelength components can be increased. By using a color filter for this, it can also be used for a full-color liquid crystal display device.
[0027]
(LED element 12)
Examples of the LED element 12 used in the present invention include a nitride-based compound semiconductor capable of efficiently emitting relatively short wavelength light capable of efficiently exciting a phosphor. In the LED element which is a light emitting element, a semiconductor such as InGaN is formed as a light emitting layer on a substrate by MOCVD or the like. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. Further, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.
[0028]
When a gallium nitride-based compound semiconductor is used, a material such as sapphire, spinel, SiC, Si, or ZnO is used for the semiconductor substrate. In order to form gallium nitride having good crystallinity, a sapphire substrate is preferably used. A buffer layer such as GaN or AlN is formed on the sapphire substrate, and a gallium nitride semiconductor having a pn junction is formed thereon. Gallium nitride-based semiconductors exhibit n-type conductivity without being doped with impurities. When a desired n-type gallium nitride semiconductor is formed, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, or the like as an n-type dopant. On the other hand, when a p-type gallium nitride semiconductor is formed, p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped.
[0029]
Since gallium nitride-based compound semiconductors are difficult to become p-type only by doping with a p-type dopant, it is preferable to lower the resistance by introducing a p-type dopant, heating by a furnace, irradiating a low-speed electron beam, irradiating plasma, or the like. After the exposed surfaces of the p-type semiconductor and the n-type semiconductor are formed by etching or the like, each electrode having a desired shape is formed on the semiconductor layer by using a sputtering method, a vacuum evaporation method, or the like.
[0030]
Next, the formed semiconductor wafer or the like is directly full-cut by a dicing saw in which a blade having a diamond cutting edge is rotated, or a groove having a width larger than the cutting edge width is cut (half cut). Crack the wafer. Alternatively, an extremely thin scribe line (meridian) is drawn on the semiconductor wafer, for example, in a checkerboard pattern by a scriber in which a diamond needle at the tip reciprocates linearly, and then the wafer is cut by an external force and cut into chips from the semiconductor wafer. Thus, the LED element 12 which is a gallium nitride-based compound semiconductor can be formed.
[0031]
In the case of emitting white light in the light emitting diode of the present invention, the main emission wavelength of the light emitting element is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less in consideration of the complementary color with the phosphor. In order to further improve the efficiency of the LED element and the efficiency of the phosphor, the thickness is more preferably 450 nm or more and 475 nm or less.
[0032]
(Conductive wire 13)
The conductive wire 13 is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrodes of the LED element 12. The thermal conductivity is preferably at least 0.01 cal / cm 2 / cm / ° C., more preferably at least 0.5 cal / cm 2 / cm / ° C. The diameter of the conductive wire is preferably Φ10 μm or more and Φ45 μm or less in consideration of workability and the like. Specific examples of such conductive wires include conductive wires using metals such as gold, copper, platinum, and aluminum and alloys thereof.
[0033]
(Mold sealing member)
The mold members filled in the recesses 11 and 15 are for protecting the LED element 12, the conductive wire 13, and the like from the outside according to the usage of the light emitting diode. The mold member can be formed using various resins, glass, or the like. In addition, the filling amount is set in advance to an amount exceeding at least the upper surface of the lower concave portion in the package in order to obtain a light emitting diode with less color tone unevenness and uneven brightness.
[0034]
As a specific material for the mold member, a transparent resin having excellent weather resistance, such as an epoxy resin, a urea resin, or silicone, or glass is preferably used. Further, by including a diffusing agent in the mold member, the directivity from the LED element can be reduced and the viewing angle can be increased. As a specific material of the diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, or the like is suitably used.
[0035]
(Lead electrode 14)
As the lead electrode, an LED element disposed in the recess is electrically connected to the outside of the package, and therefore, a lead electrode having excellent electric conductivity is preferable. Specific examples of the material include metallized metal such as nickel or an electric conductor such as phosphor bronze. Also, the surface of such a material may be plated with silver or gold or the like, and the surface may be used as a light reflecting member so as to efficiently emit light from the LED element to the outside as well as the electrode member. it can.
[0036]
Hereinafter, in order to confirm the effect of the light emitting diode according to the present invention, a light emitting diode as shown in FIG. 3 was formed, and a comparative experiment with the light emitting diode according to the present invention was performed.
The light emitting diode of FIG. 3 was formed in the same manner as that of the present invention except that the set value of the amount of the resin containing the phosphor was set on the lowermost surface of the two-step concave portion. Variations in light color were observed between the 1200 light emitting diodes thus formed and the 1200 light emitting diodes according to the present invention. The variation of each light emitting diode formed in the method of the present invention within an allowable range was less than about 21% of each light emitting diode of FIG.
[0037]
Of the 1200 light-emitting diodes in FIG. 3, the one in which light color variation was conspicuous was examined, and it was found that the phosphor-containing resin was lower than the surface of the lower recess 31 in the two-stage recess. This is because the set value of the resin injection amount could not be controlled because 1200 pieces were mass-produced. When the amount of resin is larger than the set value, the light emitting diode of FIG. 3 also exhibits the same effect as that of the present invention. In this case, the effect of providing the two-step concave portions 31 and 35 is lost.
[0038]
On the other hand, as in the light emitting diode of the present invention, if at least a two-step concave portion is provided and the set value of the injected resin amount is set in advance to an amount exceeding the lower concave portion, the injected resin amount varies somewhat. Even if the amount of the resin is reduced, it is possible to prevent the resin from being lower than the surface of the lower concave portion as much as possible, so that the problem seen in the light emitting diode of FIG.
[0039]
【The invention's effect】
The light-emitting diode of the present invention is provided with at least a two-step recess and the amount of the resin containing the phosphor is set to an amount exceeding the upper surface of the lower recess, so that the injection amount of the sealing member containing the phosphor is increased. Even if the amount of light is slightly increased or decreased, it is possible to form a light emitting diode with extremely small color shift, uneven color, and uneven brightness with good mass productivity.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a chip type LED which is an example of a light emitting diode of the present invention.
FIG. 2 is a schematic view for explaining an effect of the present invention, and FIG. 2A is a partially enlarged view of a light emitting diode shown for comparison. FIG. 2B is a partially enlarged view of a light emitting diode of the present invention having a two-step concave portion.
FIG. 3 is a schematic sectional view of a light emitting diode shown for comparison with the present invention.
[Explanation of symbols]
11, 31 ... of the stepped recesses, lower stepped recesses 12, 32 ... LED elements 13, 33 ... conductive wires 14, 34 ... lead electrodes 15, 35 ... of the stepped recesses , Upper recess

Claims (1)

表面に凹部を有する基体と、該基体底面上に配置されたLEDチップと、前記LEDチップ上にLEDチップからの可視光をより長波長の光に変換する蛍光体を含有する封止部材とを有し、前記LEDチップからの可視光と蛍光体からの蛍光との混色光である白色系が発光可能な発光ダイオードの形成方法であって、
前記凹部は少なくとも2段状であってLEDチップが配置され該LEDチップから放出される光を絞り込み色調むら、発光むらを抑制する下段凹部と封止部材の形状を均一にする縁部分を備えてなる上段凹部からなり且つ、前記下段凹部及び下段凹部上面を超え上段の凹部内に前記蛍光体を含有する封止部材が到達するように該封止部材の流し込み量を設定してなる白色系が発光可能な発光ダイオードの形成方法。
A base having a concave portion on the surface, an LED chip disposed on the bottom of the base, and a sealing member containing a phosphor that converts visible light from the LED chip into light of a longer wavelength on the LED chip. A method for forming a light emitting diode capable of emitting white light that is a mixed color of visible light from the LED chip and fluorescent light from a phosphor,
The recess is at least two-stepped, in which an LED chip is arranged, a light emitted from the LED chip is narrowed down, and a lower-stage recess that suppresses uneven color tone and uneven light emission and an edge portion that makes the shape of the sealing member uniform are provided. A white system comprising an upper concave portion, and setting the pouring amount of the sealing member so that the sealing member containing the phosphor reaches the upper concave portion beyond the upper surface of the lower concave portion and the lower concave portion. A method for forming a light-emitting diode capable of emitting light.
JP4746799A 1999-02-25 1999-02-25 Method of forming light emitting diode Expired - Lifetime JP3604298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4746799A JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4746799A JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Publications (2)

Publication Number Publication Date
JP2000252523A JP2000252523A (en) 2000-09-14
JP3604298B2 true JP3604298B2 (en) 2004-12-22

Family

ID=12775967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4746799A Expired - Lifetime JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Country Status (1)

Country Link
JP (1) JP3604298B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279346B2 (en) 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7326583B2 (en) 2004-03-31 2008-02-05 Cree, Inc. Methods for packaging of a semiconductor light emitting device
US7517728B2 (en) 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7939842B2 (en) 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101468B2 (en) * 2001-04-09 2008-06-18 豊田合成株式会社 Method for manufacturing light emitting device
JP4574248B2 (en) * 2004-06-28 2010-11-04 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4627177B2 (en) * 2004-11-10 2011-02-09 スタンレー電気株式会社 LED manufacturing method
JP4991173B2 (en) * 2005-04-27 2012-08-01 京セラ株式会社 Light-emitting element mounting substrate and light-emitting device using the same
JP2007294587A (en) * 2006-04-24 2007-11-08 Ngk Spark Plug Co Ltd Package for storing light emitting element
US8044418B2 (en) 2006-07-13 2011-10-25 Cree, Inc. Leadframe-based packages for solid state light emitting devices
JP5238618B2 (en) * 2009-06-12 2013-07-17 スタンレー電気株式会社 Semiconductor light emitting device
JP5606178B2 (en) * 2010-06-25 2014-10-15 京セラ株式会社 Light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279346B2 (en) 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7326583B2 (en) 2004-03-31 2008-02-05 Cree, Inc. Methods for packaging of a semiconductor light emitting device
US7517728B2 (en) 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7612383B2 (en) 2004-03-31 2009-11-03 Cree, Inc. Reflector packages and semiconductor light emitting devices including the same
US7799586B2 (en) 2004-03-31 2010-09-21 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element and methods for packaging the same
US7928456B2 (en) 2004-03-31 2011-04-19 Cree, Inc. Packaged light emitting devices
US8039859B2 (en) 2004-03-31 2011-10-18 Cree, Inc. Semiconductor light emitting devices including an optically transmissive element
US8154043B2 (en) 2004-03-31 2012-04-10 Cree, Inc. Packaged light emitting devices
US7939842B2 (en) 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods

Also Published As

Publication number Publication date
JP2000252523A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP3246386B2 (en) Light emitting diode and color conversion mold member for light emitting diode
JP2927279B2 (en) Light emitting diode
JP5177317B2 (en) Light emitting device and display device
JP3809760B2 (en) Light emitting diode
JP3065263B2 (en) Light emitting device and LED display using the same
JP3617587B2 (en) Light emitting diode and method for forming the same
JP3407608B2 (en) Light emitting diode and method for forming the same
JP3618221B2 (en) Light emitting device
JP4932078B2 (en) Light emitting device and manufacturing method thereof
JP2003179259A6 (en) Light emitting device and display device
JPH10107325A (en) Light-emitting device and display using it
JPH10190053A (en) Luminous device
JP3729001B2 (en) Light emitting device, bullet-type light emitting diode, chip type LED
JP3367096B2 (en) Method of forming light emitting diode
JP2003101081A (en) Light-emitting diode
JP3604298B2 (en) Method of forming light emitting diode
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP2000216434A5 (en)
JP3858829B2 (en) Method for forming light emitting diode
JP3087828B2 (en) LED display
JP2002050800A (en) Light-emitting device and forming method therefor
JP2000315826A (en) Light emitting device, formation thereof, gun type light emitting diode, chip type led
JP3775268B2 (en) Method for forming light emitting device
JP2003224307A5 (en)
JPH11243232A (en) Led display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term