JP3602471B2 - High tensile strength steel sheet excellent in weldability and method for producing the same - Google Patents

High tensile strength steel sheet excellent in weldability and method for producing the same Download PDF

Info

Publication number
JP3602471B2
JP3602471B2 JP2001154512A JP2001154512A JP3602471B2 JP 3602471 B2 JP3602471 B2 JP 3602471B2 JP 2001154512 A JP2001154512 A JP 2001154512A JP 2001154512 A JP2001154512 A JP 2001154512A JP 3602471 B2 JP3602471 B2 JP 3602471B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
heat input
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001154512A
Other languages
Japanese (ja)
Other versions
JP2002047532A (en
Inventor
等 畑野
晴弥 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001154512A priority Critical patent/JP3602471B2/en
Publication of JP2002047532A publication Critical patent/JP2002047532A/en
Application granted granted Critical
Publication of JP3602471B2 publication Critical patent/JP3602471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた590MPa以上780MPa未満の鋼板(以下、単に「590MPa級鋼板」と称す)およびその製造方法に関するものである。本発明の高張力鋼板は、特に建築構造物や橋梁などの大型構造物に好適に用いられる。
【0002】
【従来の技術】
590MPa級鋼板では、母材強度の確保という観点から合金成分を多量に添加するため、冷却速度の速い小入熱溶接条件ではHAZ(溶接熱影響部)が硬化して溶接割れ(低温割れ)が生じやすく、かかる溶接割れの防止を目的として、溶接施工時に75℃程度の予熱を行う必要がある。従って、この予熱工程を省略できれば施工効率が大幅に向上し、且つコストダウンにもつながるため、耐溶接割れ性に優れた590MPa級鋼板の提供が切望されている。
【0003】
ところで、耐溶接割れ性の指標としては下式で定義されるPcm(%)というパラメーターが一般に用いられている。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]
《式中、[ ]は各元素の含有量(質量%)を示す》
例えば、特開平10‐68045号公報に、このPcmを0.20以下に制限することで耐溶接割れ性を改善することが開示されている。
【0004】
一方、同じ590MPa級鋼板において、大入熱溶接時にHAZ靭性が劣化する問題がある。これは、入熱が大きくなるとHAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイトを生成することに基づく。この問題は厚物、薄物いずれにおいても発生し、実際の溶接施工時に入熱制限が行われ、溶接効率が悪かった。
【0005】
大入熱溶接時のHAZ靭性の改善に当たっては、上記特開平10‐68045号公報の他、特開平10‐121191号公報において、下式で表される炭素当量(Ceq)を0.35〜0.40と低く制限することが開示されている。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0006】
このように、従来はPcmを低値に制御することにより小入熱溶接時の耐溶接割れ性を改善したり、あるいはCeqを制御することにより大入熱HAZ靭性を改善すると共に、合金成分の含有量制限に伴う母材強度低下を、製造プロセスを改良するなどして補っていた。これにより、590MPa級鋼板において、母材製造時の焼入れにおける冷却速度が比較的速い薄物では溶接時の予熱フリーを達成できたが、冷却速度が遅い厚物では溶接時の予熱フリーと母材強度の両立を達成することが困難であった。また、Cuの析出を利用して母材強度を確保する方法も開示されているが、冷却速度が遅い厚物では充分な母材強度が得られなかった。
【0007】
このように、小入熱溶接においてHAZ部は高温に加熱された後の冷却速度が速いため、硬化して溶接割れ(低温割れ)を起こしやすい。一方、母材は板厚が厚くなるほど冷却速度が遅くなるため、圧延後の焼入れ効果による強度確保が難しくなる。従って、590MPa級鋼板の厚物では、小入熱溶接時の溶接割れを防止するため冷却速度が速くなっても硬くならないようにした上で、鋼板製造時の冷却速度が遅く、焼入れ効果が得難い場合であっても如何に強度を確保するかが重要課題となる。
【0008】
また、厚物、薄物いずれにおいても、大入熱溶接においては、HAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイト組織を生成して靭性が低下するが、このHAZ靭性を改善するには、冷却速度が遅い場合であっても島状マルテンサイト組織の生成を如何なる方法で抑制するかが重要課題となる。
【0009】
【発明が解決しようとする課題】
本発明は、上記事情に着目してなされたものであり、その目的は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた590MPa級鋼板を提供すること、およびこのような溶接性に優れた590MPa級鋼板を、必要により、低降伏比(以下、「低YR」と称す)、あるいは高降伏比(以下、「高YR」と称す)のいずれかに造り分けることを可能とする製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る溶接性に優れた高張力鋼板とは、C:0.010〜0.06%(質量%の意味、以下同じ),Si:1%以下,Mn:1.25〜2.5%,Cr:0.1〜2.0%,Mo:1.5%以下(0%を含む),V:0.04%以下(0%を含む),Ti:0.005〜0.03%,B:0.0006〜0.005%,P:0.020%以下,S:0.010%以下,N:0.0030〜0.010%を満たし、残部Feおよび不可避不純物よりなる鋼からなり、下記(1)式で表されるKPが2.4≦KP≦4.5を、下式(2)で表されるKVがKV≦0.040を夫々満足すると共に、引張強さが590MPa以上780MPa未満であるところに要旨を有するものである。
KP=[Mn]+1.5×[Cr]+2×[Mo] ・・・ (1)
KV=[V]+[Nb] ・・・ (2)
《式中、[ ]は各元素の含有量(質量%)を意味する》。
【0011】
本発明において、さらにNi:5%以下および/またはCu:1.2%以下を含有する高張力鋼板、あるいは上記のMn含有量が1.25〜1.8%であるとき、さらにCu:1.2%を超え、2.0%以下を含有する高張力鋼板や、これらのMn量およびCu量を満たし、さらにNi:5%以下を含有する高張力鋼板は、さらに溶接性が高められるので好ましい。また、さらにCa:0.005%以下を含有する高張力鋼板や、さらにAl:0.2%以下に抑えられている高張力鋼板は、溶接性が一層高められるので好ましい態様である。
【0012】
また、本発明の高張力鋼板は、肉厚が80mm以上のものでも良好な溶接性と母材強度を有するものである。
【0013】
上記の高張力鋼板は、以下の製造方法により製造できる。
(1)Ac3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却する工程と
720〜900℃に再加熱して冷却する工程
を含む方法。
(2)Ac3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却し、その後
c1点以下の温度で焼戻しする方法。
(3)Ac3点〜1300℃に加熱し、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却し、引き続き
c3点〜1000℃に再加熱した後冷却し、その後必要によりAc1点以下の温度で焼戻しする方法。
(4)Ac3点〜1300℃に加熱し、圧延仕上げ温度700℃以上で熱間圧延を行い、その後冷却する方法。
【0014】
上記(1)の製造方法は、熱間圧延→冷却後に720〜900℃の(α+γ)二相域温度での熱処理を含むものであり、これにより低YR(YR≦80%)の高張力鋼板を製造することができる。また、(2)〜(4)の製造方法は、(α+γ)二相域温度での熱処理を含まないものであり、このうち、(2)および(3)の製造方法により高YR(YR>80%)の高張力鋼板の製造が可能である。(4)の製造方法では、化学組成などの影響により、低YRあるいは高YRの高張力鋼板が得られるが、(1)〜(3)の製造方法に比べて少ない工程で本発明の高張力鋼板を製造できる方法である。
【0015】
なお、本発明に係る上記高張力鋼板では、その他の化学成分についても、本発明の効果を阻害しない範囲内で含有されていてもよい。
【0016】
【発明の実施の形態】
前記の通り、490MPa級の鋼板では、Pcmの制御によって耐溶接割れ性の改善と母材強度の確保を両立することができたが、590MPa級鋼板ではPcmによる成分制御を行ったとしても、特に厚物において両特性の満足を図ることは困難であった。
【0017】
また、一般に、大入熱溶接時に上部ベイナイトを生成させると島状マルテンサイトが生成し、鋼のHAZ靭性が劣化するため、490MPa級の鋼板では、HAZにおいてフェライトを積極的に生成させるべく、Ceqを制御して大入熱HAZ靭性の改善が試みられてきたが、これは高強度化・厚肉化とは相反することであり、590MPa級鋼板での大入熱HAZ靭性の改善と厚肉化の両立を図ることも困難であった。
【0018】
そこで、本発明では成分設計に当たり、これまで耐溶接割れ性の指標とされてきたPcmおよび大入熱HAZ靭性確保の指標とされてきたCeqはなく、全く別のパラメーターにより耐溶接割れ性および大入熱HAZ靭性を制御できないか鋭意検討した。その結果、鋼組織を考慮した上式(1)で表されるKPおよび上式(2)で表されるKVを用い、さらにC量を極低減化し、Bを添加することにより良好な耐溶接割れ性、大入熱HAZ靭性と母材強度を達成できることを見出し、本発明を完成するに至ったのである。
【0019】
まず、本発明において耐溶接割れ性および大入熱HAZ靭性を改善する技術について説明する。上記の通り、本発明では、Cを極低Cに制限した上で、焼入れ性向上元素であるMnおよびCr、場合によってはさらにMoを積極的に添加し、該焼入れ向上元素の含有量によって定められるKP値を適切に制御すると共に、さらにBを添加し、大入熱HAZ靭性低下元素であるVおよびNbの添加をKV値を適切に制御することで抑制したところにポイントがある。これらの成分を適切に添加することにより、ベイナイトの連続冷却曲線(図4のCCT線図を参照)が短時間側且つ低温度側に移動すると共に、フェライトのCCT線が長時間側に移動する(実線から破線へ移動)。
【0020】
従って、従来は、高冷却速度ではマルテンサイト、低冷却速度ではフェライトまたは上部ベイナイトを生成するために、硬さの冷却速度感受性が大きく、小入熱溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度の確保が両立できず、予熱フリーの達成が困難であったが、本発明によれば、高冷却速度、低冷却速度のいずれにおいても低温変態ベイナイトを生成し、硬さの冷却速度感受性が低下し、溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度確保を両立ならしめたのである。
【0021】
一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来はフェライトまたは上部ベイナイトを生成し、それに伴い粗大且つ塊状の島状マルテンサイト組織が生成してHAZ靭性が劣化していたが、本発明では、冷却速度が遅くても低温変態ベイナイトが生成するため塊状ではなくフィルム状のマルテンサイト組織になると同時に、極低Cであるため生成するマルテンサイト組織が微細となり、HAZ靭性を確保できたのである。
【0022】
なお、上述した耐溶接割れ性と大入熱HAZ靭性の向上に対するアプローチについては既に出願を済ませている(特願平10−336268、特願平11−356606)。これらの先願発明は、780MPa級以上の高張力鋼板における耐溶接割れ性と大入熱HAZ靭性の向上を目的として出願されたものである。従って、上記先願発明も本願発明も、共に耐溶接割れ性と大入熱HAZ靭性の向上を目的とする点では共通するが、本願発明は、先願発明が対象としていない「590MPa以上780MPa未満」の高張力鋼板を対象とする点でこれらの先願発明と異なるものである。
【0023】
以下、耐溶接割れ性および大入熱HAZ靭性向上に寄与する成分およびKP値、KV値について説明する。
【0024】
C:0.010〜0.06%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。Cが0.06%を超えると高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。好ましくは0.055%以下である。なお、0.010%未満では必要最小限の母材強度が得られない。好ましくは0.020%以上である。
【0025】
Mn:1.25〜2.5%
Cr:0.1〜2.0%
Mo:1.5%以下(0%を含む)
これらの元素は焼入れ性を改善する作用を有し、高冷却速度〜低冷却速度で低温変態ベイナイトを生成しやすくすると共に、上記の通り、極低Cとし、同時に所定のB量を添加することにより小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させ、且つ大入熱HAZ靭性を改善できる点で有用である。
【0026】
まず、MnおよびCrの含有量は、夫々1.25%以上、0.1%以上であることが必要である。これらの含有量に満たないと所望の焼入れ性改善作用が発揮されず、母材強度が不足する。好ましくはMn:1.3%以上、Cr:0.3%以上である。Cr:0.5%超であると一層好ましい。但し、Mn,CrおよびMoの含有量が、夫々2.5%、2.0%、1.5%を超えると母材の靭性が低下する。好ましくはMn:2.2%以下、Cr:1.5%以下、Mo:1.3%以下である。
【0027】
さらに、これらの元素で定められるKP値は2.4以上4.5以下であることが必要である。KP値が2.4未満では上記作用を有効に発揮させることができず、上部ベイナイトまたはフェライトが生成するようになり、590MPa以上の母材強度が得られなくなる(後記する図1参照)。好ましくは2.7以上である。但し、KP値が4.5を超えると大入熱HAZ靭性が低下する。好ましくは4.3以下である。
【0028】
V:0.04%以下(0%を含む)
Nb:0.04%以下(0%を含む)
Vは少量の添加により焼入れ性および焼戻し軟化抵抗を高める作用がある。但し、0.04%を超えて添加すると大入熱HAZ靭性が低下する。好ましくはV:0.03%以下である。Nbはγ粒径を微細化し、これにより変態後のベイナイトブロックサイズが微細化されるため母材靭性の向上に寄与する。但し、Nbの添加量が0.04%を超えると大入熱HAZ靭性が低下する。好ましくはNb:0.03%以下である。
【0029】
さらにこれらの元素で定められるKV値は0.040以下であることが必要である。上記の通り、これらの元素はどちらも添加量が多すぎると大入熱HAZ靭性を低下させるからである。好ましくは0.035以下である。
【0030】
B:0.0006〜0.005%
Bは焼入れ性改善元素で、低冷却速度で低温変態ベイナイトを生成しやすくすると共に、上記の通り、極低Cとし、同時に適量のMn,Cr,Moを添加することにより小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させることができる点で有用である。Bが0.0006%未満では焼入れ性改善効果が期待できず、母材強度が不足してしまう。好ましくは0.0007%以上、さらに好ましくは0.0010%以上である。但し、Bが0.005%を超えるとかえって焼入れ性が低下し、母材強度が不足する。好ましくは0.003%以下である。
【0031】
Ti:0.005〜0.03%
TiはNと窒化物を形成して大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。但し、Tiが0.03%を超えると逆にHAZ靭性が低下する。好ましくは0.02%以下である。なお、0.005%未満では大入熱HAZ靭性改善の効果が十分でない。好ましくは0.007%以上である。
【0032】
N:0.0020〜0.010%
Nは上記の通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。但し、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.010%を超えるとその作用が顕著になる。好ましくは0.008%以下である。なお、0.0020%未満ではTiとの窒化物形成による大入熱HAZ靭性改善の効果が十分でない。好ましくは0.0030%以上である。
【0033】
さらに本発明では、溶接性の一層の向上を目指して、下記の元素を積極的に添加すること、あるいはその含有量を抑制することが推奨される。
【0034】
Ni:5%以下
Niは母材靭性向上に有用な元素であるが、5%を超えて添加するとスケール疵が発生しやすくなるため、その上限を5%とすることが好ましい。より好ましくは4%以下である。
【0035】
Cu:1.2%以下
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用も有する元素である。但し、1.2%を超えて添加すると大入熱HAZ靭性が低下するため、その上限を1.2%とすることが好ましい。より好ましくは1.0%以下である。
【0036】
ただし、Mn量が1.25〜1.8%の範囲にある場合は、Cuによる大入熱HAZ靭性の低下を抑制することが可能であるため、Cu量が1.2%を超えて添加しても大入熱HAZ靭性を確保できる。しかし、この場合でもCu量が2.0%を超えると大入熱HAZ靭性が低下するため、その上限を2.0%とすることが好ましい。より好ましくは1.5%以下である。
【0037】
Ca:0.005%以下
CaはMnSを球状化するので、介在物の異方性を低減する効果を有する元素である。このような作用を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.0010%以上である。但し、0.005%を超えて過剰に添加すると母材靭性が低下するのでその上限を0.005%とすることが好ましい。より好ましくは0.004%以下である。
【0038】
Si:1%以下
Siは脱酸剤として有用な元素であるが、1%を超えて添加すると溶接性および母剤靭性が低下するのでその上限を1%とすることが好ましい。より好ましくは0.6%以下である。
【0039】
P:0.020%以下,S:0.010%以下
PおよびSは不純物元素である。よって夫々0.020%以下、0.010%以下に抑えられていることが好ましい。
【0040】
Al:0.2%以下
Alは脱酸元素であると共に、Nを固定し、固溶Bを増加させることによりBに基づく焼入れ性向上作用を高める元素であるが、0.2%を超えて添加すると母材の靭性が低下するので、その上限を0.2%とすることが好ましい。より好ましくは0.1%以下である。
【0041】
次に、本発明の鋼板を製造する方法について説明する。本発明の鋼板は、上記化学組成を満足する鋼を用い、通常用いられる高張力鋼板の製造工程、および条件(温度、時間など)を適宜採用して製造できる。
【0042】
また、上述したように、(1)〜(3)の製造方法を採用することにより、使用目的に応じた降伏比を有する高張力鋼板の造り分けが可能である。例えば、耐震性が特に要求される構造材に用いる場合は、低YRの高張力鋼板であることが好ましく、(1)の方法により製造すればよい。他方、耐力や強度重視の構造材(橋梁用など)に用いる場合は、高YRの高張力鋼板とすればよく、化学組成や要求特性に応じて(2)あるいは(3)の製造方法を適宜選択すればよい。
【0043】
このように本発明の高張力鋼板は、(1)〜(3)の方法により低YRのものと、高YRのものを造り分けることが可能である他、熱間圧延後冷却するだけの(4)の製造方法を用いれば、化学組成の影響などにより低YRとなったり高YRとなったりするものの、少ない工程数で本発明の高張力鋼板を製造することができる。
【0044】
また、(1)の製造方法においては、熱間圧延後冷却する工程と、(α+γ)二相域温度で熱処理を施す工程(720〜900℃に再加熱して冷却する工程)の間に、必要によりAc3点〜1000℃に再加熱した後冷却する工程を含めることができ、該工程により組織の微細化により鋼板の高靭性化が可能となる。また、(α+γ)二相域温度で熱処理を施す工程の後に、必要によりAc1点以下の温度で焼戻しする工程を含めてもよく、該工程によって鋼板中に残留する応力を除去して安定化を図ることができる。必要により含められるこれらの工程は、鋼の化学組成や得られる鋼板の要求特性などに応じて適宜行うこととすればよい。
【0045】
なお、本発明の製造方法において、熱間圧延後、Ac3点〜1000℃の再加熱後、および(α+γ)二相域温度での熱処理後の各冷却方法は特に限定されるものではなく、空冷や水冷など公知の冷却方法が採用でき、化学組成や要求特性などに応じて適宜選択すればよい。
【0046】
具体的な一例を示すと、950〜1300℃で2時間以上加熱した後、熱間圧延を行い、850〜950℃で圧延を完了し、その後冷却する。次いで720〜900℃の(α+γ)二相域温度で30分以上保持した後、水冷することで本発明の高張力鋼板が得られる。また、焼戻し工程をする場合、450〜650℃で10〜40分保持して行うことが推奨される。
【0047】
【実施例】
以下、実施例に基づいて本発明を詳細に述べる。但し、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に包含される。
【0048】
実験1
表1および2に示す化学組成の鋼を通常の溶製法により溶製し、スラブとした後、通常の加熱、熱間圧延を行った後、850℃から直接焼入れを行い、その後表3および4に示す条件で焼入れ、焼戻しを行い、所定の板厚からなる高張力鋼板を製造した。
【0049】
このようにして得られた各鋼板について、下記の要領で母材特性[強度および靭性(vE−40)]を評価し、本発明で基準とする母材レベル(590MPa≦引張強さ<780MPa、vE−40≧47J)をクリアしたものについては、さらに溶接性(耐溶接割れ性および大入熱HAZ靭性)を評価した。
【0050】
[母材特性試験]
▲1▼引張試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことにより0.2%耐力および引張強さを測定した。590MPa≦引張強さ<780MPaを合格とした。
▲2▼衝撃試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験をおこなうことにより吸収エネルギー(vE−40)を得た。vE−40≧47Jを合格とした。
【0051】
[溶接性試験]
▲1▼HAZ靭性:入熱100あるいは120kJ/mm(エレクトロスラグ溶接法)で溶接を行い、図3に示す部位からJIS4号試験片を採取してシャルピー衝撃試験を行い、ボンド部の吸収エネルギー(vE−10)を求めた。vE−10≧100Jを合格とした。
▲2▼耐溶接割れ性:JIS Z 3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
【0052】
これらの結果を表3および4に併記する。
【0053】
【表1】

Figure 0003602471
【0054】
【表2】
Figure 0003602471
【0055】
【表3】
Figure 0003602471
【0056】
【表4】
Figure 0003602471
【0057】
表3および4より以下のように考察することができる。
【0058】
まず、表1の鋼板は本発明の要件を満足する実施例であり、表3に示す通り、いずれの鋼板も母材特性および溶接性に優れていた。
【0059】
これに対し、表2の鋼板は本発明の要件を満足しない比較例、または一部満足しない参考例であるが、これらは表4に示す不具合を有している。
【0060】
まず、No.25はC量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.26はC量が本発明の上限値を超える例であり、耐溶接割れ性が低下した。
【0061】
No.27およびNo.28はKP値が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。
【0062】
No.29はKP値が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0063】
No.30はMn量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.31はMn量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0064】
No.32はCr量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.33はCr量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0065】
No.34はMo量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0066】
No.35はV量およびKV値が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0067】
No.36はNb量およびKV値が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0068】
No.37はKV値が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0069】
No.38はB値が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.39はB値が本発明の上限値を超える例であり、所望の母材強度が得られなかった。
【0070】
No.40はTi量が本発明の下限値を下回る例であり、大入熱HAZ靭性が低下した。また、No.41はTi量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0071】
No.42はCa量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0072】
No.43はN量が本発明の下限値を下回る例であり、大入熱HAZ靭性が低下した。また、No.44はN量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0073】
No.45は、Mn量とCu量のバランスが悪く、本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0074】
図1は、上記結果に基づき、母材強度(引張強さ)とKP値の関係をグラフ化したものであるが、KP値を2.4よりも大きく制御することで590MPa以上の引張強さが得られていることがわかる。
【0075】
図2は、上記結果に基づき、入熱100あるいは120kJ/mmの溶接時のHAZ靭性(vE−10)とKV値の関係をグラフ化したものであるが、KV値を0.040以下に制御することにより100J以上のHAZ靭性が得られることがわかる。
【0076】
実験2
表5に示す化学組成の鋼(No.46)を通常の溶製法により溶製し、スラブとした後、表6に示す条件で熱間圧延を行い、引き続き、表6に記載の条件で熱処理を行って、所定の板厚からなる高張力鋼板を製造した。なお、「熱処理条件2」の熱処理は、「熱処理条件1」の熱処理の後に行った。
【0077】
得られた各鋼板について、実験1と同様にして各評価を行った。なお、「降伏比」については、引張試験の際に測定した。これらの結果を表6に示す。
【0078】
【表5】
Figure 0003602471
【0079】
【表6】
Figure 0003602471
【0080】
表6から分かるように、熱間圧延→冷却後に(α+γ)二相域温度である720〜900℃で熱処理を施したNo.46−1〜12の鋼板では、低降伏比(YR≦80%)となっており、他方、該二相域温度で熱処理を施していないNo.46−13〜16の鋼板では、高降伏比(YR>80%)となっている。また、熱間圧延→冷却後に何ら熱処理を施していないNo.46−17の鋼板では、他の鋼板に比べて母材特性がやや低いものの、すべての特性で合格値である。
【0081】
【発明の効果】
本発明は以上のように構成されており、溶接性(耐溶接割れ性および大入熱HAZ靭性)に優れた、590MPa以上780MPa未満の鋼板を提供することができた。本発明によれば板厚が80mm以上の厚物であっても、上記の特性を備えた高張力鋼板を提供できる。
【0082】
また、上記(1)〜(3)の製造方法を採用することにより、使用目的に応じた降伏比を有する本発明の高張力鋼板が製造できる他、工程数の少ない上記(4)の製造方法によっても、本発明の高張力鋼板を製造できる。
【図面の簡単な説明】
【図1】母材強度とKP値の関係を示すグラフである。
【図2】大入熱HAZ靭性とKV値の関係を示すグラフである。
【図3】エレクトロスラグ溶接時のボンド靭性の試験片採取位置を示す概略説明図である。
【図4】本発明の成分設計の考え方を説明するための模式的なCCT線図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel sheet having excellent weldability (large heat input HAZ toughness and weld crack resistance) of 590 MPa or more and less than 780 MPa (hereinafter, simply referred to as “590 MPa grade steel sheet”) and a method for producing the same. The high-tensile steel sheet of the present invention is suitably used particularly for large structures such as building structures and bridges.
[0002]
[Prior art]
In a 590 MPa class steel sheet, since a large amount of alloy components are added from the viewpoint of securing base metal strength, HAZ (welding heat affected zone) hardens and welding cracks (low-temperature cracking) occur under small heat input welding conditions with a high cooling rate. It is easy to occur, and it is necessary to preheat at about 75 ° C. during welding for the purpose of preventing such welding cracks. Therefore, if this preheating step can be omitted, the construction efficiency will be greatly improved and the cost will be reduced. Therefore, the provision of a 590 MPa class steel sheet having excellent welding crack resistance has been desired.
[0003]
By the way, a parameter called Pcm (%) defined by the following equation is generally used as an index of weld cracking resistance.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B]
<< In the formula, [] indicates the content (% by mass) of each element >>
For example, Japanese Patent Application Laid-Open No. H10-68045 discloses that by limiting the Pcm to 0.20 or less, the resistance to weld cracking is improved.
[0004]
On the other hand, in the same 590 MPa class steel sheet, there is a problem that HAZ toughness is deteriorated during large heat input welding. This is based on the fact that as the heat input increases, the cooling rate of the HAZ decreases, and accordingly, the hardenability of the HAZ decreases, and coarse island-like martensite is generated. This problem occurred for both thick and thin objects, and heat input was restricted during actual welding work, resulting in poor welding efficiency.
[0005]
In improving the HAZ toughness at the time of large heat input welding, in addition to the above-mentioned Japanese Patent Application Laid-Open No. 10-68045, Japanese Patent Application Laid-Open No. 10-121191, the carbon equivalent (Ceq) represented by the following formula is set to 0.35 to 0. It is disclosed to limit to as low as .40.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14
<< In the formula, [] indicates the content (% by mass) of each element >>.
[0006]
As described above, conventionally, by controlling Pcm to a low value, welding crack resistance during small heat input welding is improved, or by controlling Ceq, large heat input HAZ toughness is improved, and at the same time, alloy components are improved. The decrease in base material strength due to the content limitation was compensated for by improving the manufacturing process. As a result, in a 590 MPa class steel sheet, preheating free during welding can be achieved for a thin material having a relatively high cooling rate in quenching during the manufacture of a base material, but preheating free during welding and a base material strength for a thick material having a slow cooling rate. It was difficult to achieve both. Further, a method of securing the base material strength by utilizing the precipitation of Cu is also disclosed, but sufficient base material strength cannot be obtained with a thick material having a slow cooling rate.
[0007]
As described above, in the small heat input welding, the HAZ portion has a high cooling rate after being heated to a high temperature, and is therefore likely to be hardened and to cause welding cracks (low-temperature cracking). On the other hand, as the base material becomes thicker, the cooling rate becomes slower, so that it is difficult to secure the strength by the quenching effect after rolling. Accordingly, in the case of a 590 MPa class steel sheet, in order to prevent welding cracks during small heat input welding, the steel sheet is not hardened even when the cooling rate is increased, and the cooling rate during the production of the steel sheet is slow, and it is difficult to obtain a quenching effect. Even in this case, how to secure the strength is an important issue.
[0008]
In addition, in both large and thin materials, in large heat input welding, the cooling rate of the HAZ is slowed down, the hardenability of the HAZ is reduced, and a coarse island-like martensitic structure is generated to reduce toughness. In order to improve the HAZ toughness, it is an important issue how to suppress the formation of the island-like martensite structure even when the cooling rate is low.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a 590 MPa class steel sheet excellent in weldability (large heat input HAZ toughness and weld crack resistance). 590MPa grade steel sheet with excellent resistance can be divided into either low yield ratio (hereinafter referred to as "low YR") or high yield ratio (hereinafter referred to as "high YR") as necessary. To provide a manufacturing method.
[0010]
[Means for Solving the Problems]
The high-strength steel sheet excellent in weldability according to the present invention that can solve the above-mentioned problems includes C: 0.010 to 0.06% (meaning by mass%, the same applies hereinafter), Si: 1% or less, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (including 0%), V: 0.04% or less (including 0%), Ti: 0.005 to 0.03%, B: 0.0006 to 0.005%, P: 0.020% or less, S: 0.010% or less, N: 0.0030 to 0.010%, the balance KP represented by the following formula (1) satisfies 2.4 ≦ KP ≦ 4.5, and KV represented by the following formula (2) satisfies KV ≦ 0.040. It satisfies and has a gist where the tensile strength is 590 MPa or more and less than 780 MPa.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
KV = [V] + [Nb] (2)
<< In the formula, [] means the content (% by mass) of each element >>.
[0011]
In the present invention, when the high-strength steel sheet further contains 5% or less of Ni and / or 1.2% or less of Cu, or when the Mn content is 1.25 to 1.8%, Cu: 1 is further added. High-strength steel sheets containing more than 0.2% and 2.0% or less, and high-strength steel sheets satisfying the Mn content and the Cu content and further containing Ni: 5% or less have further improved weldability. preferable. Further, a high-strength steel sheet containing Ca: 0.005% or less and a high-tensile steel sheet further suppressed to Al: 0.2% or less are preferable embodiments because the weldability is further enhanced.
[0012]
Further, the high-tensile steel sheet of the present invention has good weldability and base metal strength even if the thickness is 80 mm or more.
[0013]
The above high-tensile steel sheet can be manufactured by the following manufacturing method.
(1) Ac3A step of heating to about 1300 ° C., performing hot rolling at a rolling finish temperature of 700 ° C. or higher, and then cooling.
Step of reheating to 720-900 ° C and cooling
A method that includes
(2) Ac3After heating to a temperature of 1300 ° C., hot rolling at a rolling finish temperature of 700 ° C. or more, cooling,
Ac1Tempering at a temperature below the point.
(3) Ac3It heats to the point ~ 1300 ° C, performs hot rolling at a rolling finish temperature of 700 ° C or more, cools it, and then
Ac3After reheating to the point ~ 1000 ° C, cooling, and then Ac1Tempering at a temperature below the point.
(4) Ac3A method of heating to about 1300 ° C., performing hot rolling at a rolling finish temperature of 700 ° C. or higher, and then cooling.
[0014]
The production method of the above (1) includes a heat treatment at (α + γ) two-phase region temperature of 720 to 900 ° C. after hot rolling → cooling, whereby a high strength steel sheet with low YR (YR ≦ 80%) is obtained. Can be manufactured. Further, the production methods (2) to (4) do not include the heat treatment at the (α + γ) two-phase region temperature, and among them, the production methods (2) and (3) have high YR (YR> (80%). In the manufacturing method (4), a high-tensile steel sheet having a low YR or a high YR can be obtained due to the influence of the chemical composition or the like. This is a method that can produce steel sheets.
[0015]
In the high-tensile steel sheet according to the present invention, other chemical components may be contained within a range that does not impair the effects of the present invention.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, in the case of the 490 MPa class steel sheet, the improvement of the welding crack resistance and the securing of the base metal strength can be achieved at the same time by controlling the Pcm. It was difficult to satisfy both characteristics in a thick product.
[0017]
In general, when upper bainite is generated during large heat input welding, island martensite is generated, and the HAZ toughness of the steel is deteriorated. Has been tried to improve the large heat input HAZ toughness, but this is contrary to the increase in the strength and the wall thickness, and the improvement of the large heat input HAZ toughness and the thick It was also difficult to achieve both.
[0018]
Therefore, in the present invention, there is no Pcm, which has been used as an index for welding crack resistance, and Ceq, which has been used as an index for securing high heat input HAZ toughness. The intense study was conducted to determine whether the heat input HAZ toughness could be controlled. As a result, by using KP expressed by the above equation (1) and KV expressed by the above equation (2) in consideration of the steel structure, the amount of C is further reduced extremely, and good welding resistance is obtained by adding B. The inventors have found that cracking, high heat input HAZ toughness, and base metal strength can be achieved, and have completed the present invention.
[0019]
First, a technique for improving the resistance to weld cracking and the high heat input HAZ toughness in the present invention will be described. As described above, in the present invention, after limiting C to extremely low C, Mn and Cr, which are quenchability improving elements, and in some cases, Mo are further positively added, and the content is determined by the content of the quenchable element. The point is that the KP value to be obtained is appropriately controlled, B is further added, and the addition of V and Nb, which are the elements having a large heat input HAZ toughness, is suppressed by appropriately controlling the KV value. By appropriately adding these components, the continuous cooling curve of bainite (see the CCT diagram in FIG. 4) moves to a short time side and a low temperature side, and the CCT line of ferrite moves to a long time side. (Moved from solid line to dashed line).
[0020]
Therefore, conventionally, since martensite is formed at a high cooling rate, and ferrite or upper bainite is formed at a low cooling rate, the cooling rate sensitivity of the hardness is large, and the hardness of the HAZ portion during small heat input welding is reduced (welding resistance). It was difficult to achieve both pre-heating free and difficult to achieve preheating-free, and according to the present invention, low-temperature transformed bainite was generated at both high cooling rate and low cooling rate. In addition, the cooling rate sensitivity of the hardness is reduced, and the reduction of the hardness of the HAZ portion during welding (improvement of the resistance to welding cracking) and the securing of the base metal strength are compatible.
[0021]
On the other hand, in the case of large heat input welding, the cooling rate of the HAZ becomes slow, so that conventionally, ferrite or upper bainite was generated, and a coarse and massive island-like martensite structure was generated along with it, thereby deteriorating the HAZ toughness. However, in the present invention, even when the cooling rate is low, the low-temperature transformed bainite is formed, so that a martensite structure is formed in a film instead of a lump, and at the same time, the formed martensite structure becomes extremely fine due to the extremely low C, thereby reducing the HAZ toughness. I was able to secure it.
[0022]
In addition, the above-mentioned approaches for improving the resistance to weld cracking and the high heat input HAZ toughness have already been filed (Japanese Patent Application Nos. 10-336268 and 11-356606). These prior inventions have been filed for the purpose of improving welding crack resistance and high heat input HAZ toughness in high-tensile steel sheets of 780 MPa class or higher. Accordingly, both the above-mentioned prior invention and the present invention are common in that both aim to improve weld cracking resistance and large heat input HAZ toughness, but the present invention does not cover the prior application invention of "590 MPa or more and less than 780 MPa. The present invention is different from these prior inventions in that the invention targets a high-tensile steel sheet.
[0023]
Hereinafter, components that contribute to the improvement of weld cracking resistance and large heat input HAZ toughness, and KP and KV values will be described.
[0024]
C: 0.010-0.06%
C is an important element for achieving both welding crack resistance and base metal strength of the HAZ portion during welding, and improving high heat input HAZ toughness. When C exceeds 0.06%, martensite is formed instead of low-temperature transformed bainite on the high cooling rate side, and welding crack resistance and large heat input HAZ toughness are not improved. Preferably it is 0.055% or less. If it is less than 0.010%, the necessary minimum base material strength cannot be obtained. Preferably it is 0.020% or more.
[0025]
Mn: 1.25 to 2.5%
Cr: 0.1 to 2.0%
Mo: 1.5% or less (including 0%)
These elements have an effect of improving the quenchability, facilitate the formation of low-temperature transformed bainite at a high cooling rate to a low cooling rate, and, as described above, have an extremely low C and simultaneously add a predetermined amount of B. Accordingly, it is useful in that the welding crack resistance of the HAZ portion during the small heat input welding and the securing of the base metal strength can both be achieved, and the large heat input HAZ toughness can be improved.
[0026]
First, the contents of Mn and Cr need to be 1.25% or more and 0.1% or more, respectively. If the content is less than these, the desired hardenability improving effect is not exhibited, and the base material strength is insufficient. Preferably, Mn is at least 1.3% and Cr is at least 0.3%. Cr: More preferably, it is more than 0.5%. However, if the contents of Mn, Cr and Mo exceed 2.5%, 2.0% and 1.5%, respectively, the toughness of the base material decreases. Preferably, Mn is 2.2% or less, Cr is 1.5% or less, and Mo is 1.3% or less.
[0027]
Further, the KP value determined by these elements needs to be 2.4 or more and 4.5 or less. When the KP value is less than 2.4, the above effect cannot be effectively exerted, and upper bainite or ferrite is generated, and a base material strength of 590 MPa or more cannot be obtained (see FIG. 1 described later). Preferably it is 2.7 or more. However, when the KP value exceeds 4.5, the high heat input HAZ toughness decreases. Preferably it is 4.3 or less.
[0028]
V: 0.04% or less (including 0%)
Nb: 0.04% or less (including 0%)
V has the effect of increasing hardenability and tempering softening resistance by adding a small amount. However, if the addition exceeds 0.04%, the high heat input HAZ toughness decreases. Preferably, V is 0.03% or less. Nb refines the γ grain size and thereby refines the size of the bainite block after transformation, thereby contributing to an improvement in base metal toughness. However, if the added amount of Nb exceeds 0.04%, the high heat input HAZ toughness decreases. Preferably, Nb is 0.03% or less.
[0029]
Further, the KV value defined by these elements needs to be 0.040 or less. As described above, when both of these elements are added in an excessively large amount, the high heat input HAZ toughness is reduced. Preferably it is 0.035 or less.
[0030]
B: 0.0006 to 0.005%
B is a hardenability improving element, which facilitates the formation of low-temperature transformed bainite at a low cooling rate, and has an extremely low C as described above, and at the same time, an appropriate amount of Mn, Cr, Mo is added to achieve low heat input welding. This is useful in that both the resistance to welding cracking of the HAZ portion and the securing of the base material strength can be achieved. If B is less than 0.0006%, the effect of improving hardenability cannot be expected, and the base material strength will be insufficient. Preferably it is 0.0007% or more, more preferably 0.0010% or more. However, if B exceeds 0.005%, the hardenability is rather reduced, and the base material strength is insufficient. Preferably it is 0.003% or less.
[0031]
Ti: 0.005 to 0.03%
Ti is useful in that it forms nitrides with N to refine γ grains in the HAZ during large heat input welding and contributes to improvement in HAZ toughness. However, when Ti exceeds 0.03%, HAZ toughness is reduced. Preferably it is 0.02% or less. If the content is less than 0.005%, the effect of improving the large heat input HAZ toughness is not sufficient. Preferably it is 0.007% or more.
[0032]
N: 0.0020 to 0.010%
As described above, N is useful in that it forms a nitride with Ti and contributes to the improvement of HAZ toughness during large heat input welding. However, N combines with B to reduce solid solution B, impairs the effect of improving the hardenability of B, and also has the effect of reducing the toughness of the base material and the high heat input HAZ toughness. Exceeds 0.010%, the effect becomes significant. Preferably it is 0.008% or less. If the content is less than 0.0020%, the effect of improving the high heat input HAZ toughness by forming nitrides with Ti is not sufficient. Preferably it is 0.0030% or more.
[0033]
Furthermore, in the present invention, it is recommended to actively add the following elements or to suppress the contents thereof in order to further improve the weldability.
[0034]
Ni: 5% or less
Ni is an element useful for improving the base material toughness, but if it is added in excess of 5%, scale flaws are likely to occur, so the upper limit is preferably set to 5%. It is more preferably at most 4%.
[0035]
Cu: 1.2% or less
Cu is an element that improves the strength of the base material by solid solution strengthening and precipitation strengthening, and also has an effect of improving hardenability. However, if the addition exceeds 1.2%, the high heat input HAZ toughness decreases, so the upper limit is preferably set to 1.2%. More preferably, it is 1.0% or less.
[0036]
However, when the amount of Mn is in the range of 1.25 to 1.8%, it is possible to suppress a decrease in the high heat input HAZ toughness due to Cu. Even with this, high heat input HAZ toughness can be ensured. However, even in this case, if the Cu content exceeds 2.0%, the high heat input HAZ toughness is reduced, so the upper limit is preferably set to 2.0%. More preferably, it is 1.5% or less.
[0037]
Ca: 0.005% or less
Ca is an element that has the effect of reducing the anisotropy of inclusions because it spheroidizes MnS. In order to exert such an effect, it is preferable to add 0.0005% or more. More preferably, it is 0.0010% or more. However, if it is added in excess of 0.005%, the base material toughness is reduced. Therefore, the upper limit is preferably made 0.005%. More preferably, it is 0.004% or less.
[0038]
Si: 1% or less
Si is an element useful as a deoxidizing agent, but if added in excess of 1%, the weldability and the base metal toughness decrease, so the upper limit is preferably set to 1%. More preferably, it is 0.6% or less.
[0039]
P: 0.020% or less, S: 0.010% or less
P and S are impurity elements. Therefore, it is preferable that they are suppressed to 0.020% or less and 0.010% or less, respectively.
[0040]
Al: 0.2% or less
Al is a deoxidizing element and an element that enhances the hardenability improving effect based on B by fixing N and increasing solid solution B, but when added in excess of 0.2%, the toughness of the base material is reduced. Therefore, the upper limit is preferably set to 0.2%. It is more preferably at most 0.1%.
[0041]
Next, a method for producing the steel sheet of the present invention will be described. The steel sheet of the present invention can be manufactured by using a steel satisfying the above-mentioned chemical composition and appropriately employing the manufacturing steps and conditions (temperature, time, etc.) of a commonly used high-tensile steel sheet.
[0042]
Further, as described above, by adopting the manufacturing methods (1) to (3), it is possible to selectively produce high-strength steel sheets having a yield ratio according to the purpose of use. For example, when used for a structural material that is particularly required to have earthquake resistance, a high-strength steel sheet having a low YR is preferable, and may be manufactured by the method (1). On the other hand, when it is used for a structural material that emphasizes proof stress or strength (such as for a bridge), a high-tensile steel plate with a high YR may be used. Just select.
[0043]
As described above, the high-strength steel sheet of the present invention can be manufactured separately from the low-YR steel sheet and the high-YR steel sheet by the methods (1) to (3). By using the production method 4), the high-strength steel sheet of the present invention can be produced with a small number of steps, although the YR may be low or high due to the influence of the chemical composition.
[0044]
Further, in the manufacturing method of (1), between the step of cooling after hot rolling and the step of performing heat treatment at (α + γ) two-phase region temperature (the step of cooling by reheating to 720 to 900 ° C.) A if necessaryc3A step of cooling after reheating to a temperature of from about 1000 ° C. to 1000 ° C. can be included, and this step makes it possible to increase the toughness of the steel sheet by making the structure finer. After the step of performing the heat treatment at the (α + γ) two-phase region temperature, Ac1A step of tempering at a temperature equal to or lower than the point may be included, and by this step, stress remaining in the steel sheet can be removed and stabilization can be achieved. These steps included as necessary may be appropriately performed depending on the chemical composition of the steel, the required characteristics of the obtained steel sheet, and the like.
[0045]
In the production method of the present invention, after hot rolling, Ac3Each cooling method after the reheating at a temperature of from point to 1000 ° C. and after the heat treatment in the (α + γ) two-phase region temperature is not particularly limited, and a known cooling method such as air cooling or water cooling can be adopted, and the chemical composition and required What is necessary is just to select suitably according to a characteristic etc.
[0046]
As a specific example, after heating at 950 to 1300 ° C for 2 hours or more, hot rolling is performed, rolling is completed at 850 to 950 ° C, and then cooling is performed. Next, after maintaining at (α + γ) two-phase region temperature of 720 to 900 ° C. for 30 minutes or more, water cooling is performed to obtain the high-tensile steel sheet of the present invention. In the case of performing the tempering step, it is recommended that the tempering step be performed by holding at 450 to 650 ° C. for 10 to 40 minutes.
[0047]
【Example】
Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention, and all changes and implementations without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
[0048]
Experiment 1
Steel having the chemical composition shown in Tables 1 and 2 was smelted by a normal smelting method to form a slab, subjected to normal heating and hot rolling, and then directly quenched from 850 ° C., and then to Tables 3 and 4. The steel sheets were quenched and tempered under the following conditions to produce high-strength steel sheets having a predetermined thickness.
[0049]
The properties of the base material [strength and toughness (vE-40)] Was evaluated, and the base material level (590 MPa ≦ tensile strength <780 MPa, vE-40≧ 47J), the weldability (weld crack resistance and large heat input HAZ toughness) was further evaluated.
[0050]
[Base material property test]
{Circle around (1)} Tensile test: A JIS No. 4 test piece was sampled from a quarter of the thickness of each steel sheet, and a 0.2% proof stress and tensile strength were measured by performing a tensile test. 590MPa ≦ tensile strength <780MPa was accepted.
(2) Impact test: A JIS No. 4 test piece was sampled from a quarter of the thickness of each steel sheet and subjected to a Charpy impact test to determine the absorbed energy (vE-40) Got. vE-40≧ 47J was accepted.
[0051]
[Weldability test]
{Circle around (1)} HAZ toughness: Welding with heat input of 100 or 120 kJ / mm (electroslag welding method), taking a JIS No. 4 test piece from the site shown in FIG. vE-10). vE-10≧ 100J was accepted.
{Circle around (2)} Weld crack resistance: Based on the y-type weld crack test method described in JIS Z 3158, coated arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack preventing preheat temperature was measured. 25 ° C or less was regarded as acceptable.
[0052]
These results are shown in Tables 3 and 4.
[0053]
[Table 1]
Figure 0003602471
[0054]
[Table 2]
Figure 0003602471
[0055]
[Table 3]
Figure 0003602471
[0056]
[Table 4]
Figure 0003602471
[0057]
From Tables 3 and 4, it can be considered as follows.
[0058]
First, the steel sheets in Table 1 are examples satisfying the requirements of the present invention, and as shown in Table 3, all the steel sheets were excellent in base material properties and weldability.
[0059]
On the other hand, the steel sheets in Table 2 are comparative examples that do not satisfy the requirements of the present invention, or are reference examples that do not partially satisfy the requirements of the present invention.
[0060]
First, no. No. 25 is an example in which the C content was lower than the lower limit of the present invention, and a desired base material strength was not obtained. No. 26 is an example in which the C content exceeds the upper limit of the present invention, and the welding crack resistance was reduced.
[0061]
No. 27 and no. No. 28 is an example in which the KP value was lower than the lower limit of the present invention, and the desired base material strength could not be obtained.
[0062]
No. 29 is an example in which the KP value exceeds the upper limit of the present invention, and the high heat input HAZ toughness was reduced.
[0063]
No. Sample No. 30 was an example in which the Mn content was below the lower limit of the present invention, and the desired base material strength could not be obtained. No. 31 is an example in which the amount of Mn exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0064]
No. No. 32 is an example in which the Cr content was lower than the lower limit of the present invention, and the desired base material strength could not be obtained. No. No. 33 is an example in which the Cr content exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0065]
No. No. 34 is an example in which the Mo content exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0066]
No. No. 35 is an example in which the V amount and the KV value exceeded the upper limits of the present invention, and the large heat input HAZ toughness was reduced.
[0067]
No. No. 36 is an example in which the Nb amount and the KV value exceeded the upper limits of the present invention, and the high heat input HAZ toughness was reduced.
[0068]
No. 37 is an example in which the KV value exceeds the upper limit of the present invention, and the large heat input HAZ toughness was reduced.
[0069]
No. No. 38 is an example in which the B value was lower than the lower limit of the present invention, and the desired base material strength could not be obtained. No. 39 is an example in which the B value exceeds the upper limit of the present invention, and the desired base material strength was not obtained.
[0070]
No. No. 40 is an example in which the amount of Ti was lower than the lower limit of the present invention, and the high heat input HAZ toughness was reduced. No. 41 is an example in which the amount of Ti exceeds the upper limit of the present invention, and the high heat input HAZ toughness was reduced.
[0071]
No. 42 is an example in which the Ca amount exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0072]
No. Sample No. 43 is an example in which the amount of N was lower than the lower limit of the present invention, and the large heat input HAZ toughness was reduced. No. Sample No. 44 is an example in which the amount of N exceeds the upper limit of the present invention, and the large heat input HAZ toughness was reduced.
[0073]
No. Sample No. 45 was an example in which the balance between the Mn amount and the Cu amount was poor and exceeded the upper limit of the present invention, and the high heat input HAZ toughness was reduced.
[0074]
FIG. 1 is a graph showing the relationship between the base material strength (tensile strength) and the KP value based on the above results. By controlling the KP value to be larger than 2.4, the tensile strength of 590 MPa or more is obtained. It can be seen that is obtained.
[0075]
FIG. 2 shows the HAZ toughness (vE) when welding with a heat input of 100 or 120 kJ / mm based on the above results.-10) And the KV value are graphed. It can be seen that HAZ toughness of 100 J or more can be obtained by controlling the KV value to 0.040 or less.
[0076]
Experiment 2
After steel (No. 46) having the chemical composition shown in Table 5 was melted by a normal melting method to form a slab, hot rolling was performed under the conditions shown in Table 6, and then heat treatment was performed under the conditions shown in Table 6. Was performed to produce a high-tensile steel sheet having a predetermined thickness. The heat treatment under the “heat treatment condition 2” was performed after the heat treatment under the “heat treatment condition 1”.
[0077]
Each of the obtained steel sheets was evaluated in the same manner as in Experiment 1. The “yield ratio” was measured during a tensile test. Table 6 shows the results.
[0078]
[Table 5]
Figure 0003602471
[0079]
[Table 6]
Figure 0003602471
[0080]
As can be seen from Table 6, No. 1 was subjected to heat treatment at 720-900 ° C., which is the (α + γ) two-phase region temperature, after hot rolling → cooling. The steel sheets Nos. 46-1 to 46-12 have a low yield ratio (YR ≦ 80%). Steel plates 46-13 to 16-16 have a high yield ratio (YR> 80%). In addition, No. No heat treatment was performed after hot rolling → cooling. In the steel plates of Nos. 46-17, although the base metal characteristics were slightly lower than those of the other steel plates, all the characteristics were acceptable values.
[0081]
【The invention's effect】
The present invention is configured as described above, and has been able to provide a steel plate having excellent weldability (weld crack resistance and high heat input HAZ toughness) of 590 MPa or more and less than 780 MPa. According to the present invention, a high-strength steel sheet having the above characteristics can be provided even if the sheet thickness is 80 mm or more.
[0082]
In addition, by adopting the above-mentioned production methods (1) to (3), the high-strength steel sheet of the present invention having a yield ratio according to the purpose of use can be produced, and the production method of the above-mentioned (4) having a small number of steps. Thus, the high-tensile steel sheet of the present invention can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between base material strength and KP value.
FIG. 2 is a graph showing a relationship between a large heat input HAZ toughness and a KV value.
FIG. 3 is a schematic explanatory view showing a sample collecting position of a bond toughness at the time of electroslag welding.
FIG. 4 is a schematic CCT diagram for explaining the concept of component design of the present invention.

Claims (11)

C :0.010〜0.06%(質量%の意味、以下同じ),
Si:1%以下,
Mn:1.25〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
V :0.04%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
P :0.020%以下,
S :0.010%以下,
N :0.0030〜0.010%
を満たし、残部Feおよび不可避不純物よりなる鋼からなり、
2.4≦KP≦4.5
満足すると共に、引張強さが590MPa以上780MPa未満であることを特徴とする溶接性に優れた高張力鋼板。
但し、
KP=[Mn]+1.5×[Cr]+2×[Mo]
式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010-0.06% (meaning by mass%, the same applies hereinafter),
Si: 1% or less,
Mn: 1.25 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
V: 0.04% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
P: 0.020% or less,
S: 0.010% or less,
N: 0.0030 to 0.010%
It meets, made of steel consisting of balance of Fe and unavoidable impurities,
2.4 ≦ KP ≦ 4.5
And a tensile strength of not less than 590 MPa and less than 780 MPa.
However,
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In the formula, [] means the content (% by mass) of each element. 》
さらにNi:5%以下および/またはCu:1.2%以下を含有するものである請求項1に記載の高張力鋼板。The high-strength steel sheet according to claim 1, further comprising Ni: 5% or less and / or Cu: 1.2% or less. 請求項1に記載の高張力鋼板であって、Mn含有量が1.25〜1.8%であるとき、さらにCu:1.2%を超え、2.0%以下を含有するものである高張力鋼板。The high-tensile steel sheet according to claim 1, wherein when the Mn content is 1.25 to 1.8%, the steel further contains Cu: more than 1.2% and 2.0% or less. High tensile steel plate. さらにNi:5%以下を含有するものである請求項3に記載の高張力鋼板。The high-tensile steel sheet according to claim 3, further containing 5% or less of Ni. さらにCa:0.005%以下を含有するものである請求項1〜4のいずれかに記載の高張力鋼板。The high-tensile steel sheet according to any one of claims 1 to 4, further containing Ca: 0.005% or less. Al:0.2%以下に抑えられている請求項1〜5のいずれかに記載の高張力鋼板。The high-strength steel sheet according to any one of claims 1 to 5, wherein Al : 0.2% or less. 肉厚が80mm以上である請求項1〜6のいずれかに記載の高張力鋼板。The high-strength steel sheet according to any one of claims 1 to 6, having a thickness of 80 mm or more. 請求項1〜7に記載の高張力鋼板を製造する方法であって、
c3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却する工程と
720〜900℃に再加熱して冷却する工程
を含むことを特徴とする溶接性に優れた低降伏比高張力鋼板の製造方法。
A method for producing a high-tensile steel sheet according to claim 1,
Weldability characterized by including a step of cooling after performing hot rolling at a rolling finish temperature of 700 ° C. or more by heating to a temperature between Ac 3 point and 1300 ° C., and a step of reheating and cooling to 720-900 ° C. Method for producing high yield strength and high yield strength steel sheet.
請求項1〜7に記載の高張力鋼板を製造する方法であって、
c3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却し、その後
c1点以下の温度で焼戻しすることを特徴とする溶接性に優れた高降伏比高張力鋼板の製造方法。
A method for producing a high-tensile steel sheet according to claim 1,
And heated to A c3 point to 1300 ° C., rolling finishing temperature was cooled after hot rolling at 700 ° C. or higher, then a high yield with excellent weldability, characterized by tempering at A c1 point below the temperature Manufacturing method for high strength steel sheet.
請求項1〜7に記載の高張力鋼板を製造する方法であって、
c3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行った後冷却し、引き続き
c3点〜1000℃に再加熱した後冷却し、その後
必要によりAc1点以下の温度で焼戻しすることを特徴とする溶接性に優れた高降伏比高張力鋼板の製造方法。
A method for producing a high-tensile steel sheet according to claim 1,
And heated to A c3 point to 1300 ° C., rolling finishing temperature was cooled after hot rolling at 700 ° C. or higher, subsequently cooled after reheating to A c3 point to 1000 ° C., then the following A c1 point necessary A method for producing a high-yield-ratio high-strength steel sheet excellent in weldability, characterized in that it is tempered at a temperature.
請求項1〜7に記載の高張力鋼板を製造する方法であって、
c3点〜1300℃に加熱して、圧延仕上げ温度700℃以上で熱間圧延を行い、その後冷却することを特徴とする溶接性に優れた高張力鋼板の製造方法。
A method for producing a high-tensile steel sheet according to claim 1,
A method for producing a high-strength steel sheet excellent in weldability, characterized in that the sheet is heated to a temperature of from Ac 3 to 1300 ° C., hot-rolled at a rolling finish temperature of 700 ° C. or higher, and then cooled.
JP2001154512A 2000-05-24 2001-05-23 High tensile strength steel sheet excellent in weldability and method for producing the same Expired - Fee Related JP3602471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154512A JP3602471B2 (en) 2000-05-24 2001-05-23 High tensile strength steel sheet excellent in weldability and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000153713 2000-05-24
JP2000-153713 2000-05-24
JP2001154512A JP3602471B2 (en) 2000-05-24 2001-05-23 High tensile strength steel sheet excellent in weldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002047532A JP2002047532A (en) 2002-02-15
JP3602471B2 true JP3602471B2 (en) 2004-12-15

Family

ID=26592523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154512A Expired - Fee Related JP3602471B2 (en) 2000-05-24 2001-05-23 High tensile strength steel sheet excellent in weldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3602471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134220A1 (en) 2009-05-22 2010-11-25 Jfeスチール株式会社 Steel material for high heat input welding
WO2011096510A1 (en) 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
WO2013100106A1 (en) 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
WO2013128650A1 (en) 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610351B2 (en) * 2005-01-17 2011-01-12 株式会社神戸製鋼所 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP4652952B2 (en) * 2005-11-04 2011-03-16 株式会社神戸製鋼所 High-tensile steel plate with excellent toughness of heat affected zone
JP4878219B2 (en) * 2006-06-05 2012-02-15 株式会社神戸製鋼所 Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
JP5704706B2 (en) * 2011-03-16 2015-04-22 株式会社神戸製鋼所 High-strength thick steel plate with excellent HAZ toughness
CN104046906B (en) * 2014-05-22 2017-02-15 中国石油集团石油管工程技术研究院 Solid expandable casing for thermal production well and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134220A1 (en) 2009-05-22 2010-11-25 Jfeスチール株式会社 Steel material for high heat input welding
WO2011096510A1 (en) 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
WO2013100106A1 (en) 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
KR20140095103A (en) 2011-12-28 2014-07-31 신닛테츠스미킨 카부시키카이샤 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
WO2013128650A1 (en) 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding

Also Published As

Publication number Publication date
JP2002047532A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2002161330A (en) Wear resistant steel
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP2004010996A (en) Wear resistant steel having excellent low temperature toughness and method for producing the same
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP3618270B2 (en) High-tensile steel plate with excellent weldability and base metal toughness
JP3920523B2 (en) High-tensile steel plate with excellent weldability and base metal toughness
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Ref document number: 3602471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees