JP3600401B2 - Television signal transmission circuit - Google Patents

Television signal transmission circuit Download PDF

Info

Publication number
JP3600401B2
JP3600401B2 JP10984997A JP10984997A JP3600401B2 JP 3600401 B2 JP3600401 B2 JP 3600401B2 JP 10984997 A JP10984997 A JP 10984997A JP 10984997 A JP10984997 A JP 10984997A JP 3600401 B2 JP3600401 B2 JP 3600401B2
Authority
JP
Japan
Prior art keywords
circuit
resistor
intermediate frequency
series
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10984997A
Other languages
Japanese (ja)
Other versions
JPH10304257A (en
Inventor
博之 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP10984997A priority Critical patent/JP3600401B2/en
Publication of JPH10304257A publication Critical patent/JPH10304257A/en
Application granted granted Critical
Publication of JP3600401B2 publication Critical patent/JP3600401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、テレビ信号送信回路に関し、特に、CATV(ケ−ブルテレビジョン)システムに用いて好適なテレビジョン信号送信回路に関する。
【0002】
【従来の技術】
CATVシステムのヘッドエンド、即ち、送信側においては、一般の地上波テレビジョンの番組を再送信したり、映画、スポ−ツ等の娯楽番組や地域社会に密着した独自番組等を送信しているが、これらの番組をCATVシステムに割り当てられたチャンネルに乗せてケ−ブルで送信するために送信機が使用される。
【0003】
図6は、このような送信機における従来のテレビ信号送信回路の一部を示すものであり、送信する番組を送るチャンネル毎に設けられている。そして、例えば、中間周波回路41には、図示しない変調器等が備えられており、送信する番組の映像信号Vによって映像中間周波搬送波(米国では45.75MHz)を変調し、映像中間周波信号が出力される。また、音声信号Sも所定の処理によって、映像中間周波信号から4.5MHz離れた(41.25MHz)音声中間周波信号に位置して搬送されるようになっている。なお、中間周波回路41から出力される映像中間周波信号と音声中間周波信号とを含む中間周波信号を、以降の説明の都合上第一の中間周波信号と呼ぶことにする。
【0004】
中間周波回路41からの第一の中間周波信号は、第一の混合回路42に入力され、ここで、第一の局部発振回路43からの発振信号と混合されることによってほぼ1.3GHzの第二の中間周波信号に周波数変換される。従って、第一の混合回路42と第一の局部発振回路43とで第一の周波数変換回路44を構成している。第一の混合回路42からの第二の中間周波信号は、所定の帯域幅(ほぼ6MHz)を有するバンドパスフィルタ45を通過した後に第二中間周波増幅回路46で所定のレベルに増幅され、次の第二の混合回路47に入力され、この第二の混合回路47において第二の局部発振回路48からの発振信号と混合されて第三の中間周波信号に周波数変換される。従って、第二の混合回路47と第二の局部発振回路48とで第二の周波数変換回路49を構成している。
【0005】
ここで、第三の中間周波信号の周波数は、送信する番組毎に異なり、ほぼ50MHzから1GHzまでの間に設定されている各チャンネルの周波数のいずれかに合わせるように第二の局部発振回路48の発振周波数が設定されている。そして、第二の混合回路47からの第三の中間周波信号は、第三中間周波増幅回路50、51で所定の利得を与えられた後バンドパスフィルタ52、出力増幅回路53を介して導出され、図示しない混合回路において、他の送信回路図から同様に導出された第三の中間周波信号と混合されて図示しないケ−ブルに送られるようになっている。
【0006】
【発明が解決しようとする課題】
このような構成において、第一の混合回路42に入力された第一の中間周波信号は、後段の回路、即ち、第一の混合回路42、第二の中間周波増幅回路46、第二の混合回路47、第三中間周波増幅回路50、51、出力増幅回路53等による周波数変換や増幅の都度、相互変調歪みやC/N比が悪化していく。そして、この悪化の度合いは各回路が有する固有の歪み特性やC/N比の特性に依存している。
【0007】
また、相互変調とC/N比とは相反した特性変化を示し、例えば、第一の混合回路42や第二の混合回路47の変換利得や各増幅回路46、50、51、53等の利得を大きくすれば信号レベルが大きくなってC/N比は良くなるが相互変調歪みが悪化することになり、双方の特性をバランスすることが困難であった。
【0008】
そこで、本発明は、相互変調歪みとC/N比とを容易にバランスさせることが出来るテレビジョン信号送信回路を提供するものである。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、本発明のテレビジョン信号送信回路は、映像中間周波信号と音声中間周波信号とを含む中間周波信号を出力する中間周波回路と、前記中間周波信号を周波数変換してテレビジョン信号として出力する複数の周波数変換回路とを有し、前記中間周波回路と最前段の周波数変換回路との間に抵抗減衰回路を設け、前記抵抗減衰回路を、信号経路に直列に挿入した直列抵抗と、前記直列抵抗の一端と接地との間、及び前記直列抵抗の他端と接地との間にそれぞれ接続された二つのシャント抵抗とからなるπ型抵抗減衰回路で構成し、前記直列抵抗または前記シャント抵抗の抵抗値を変えて減衰量を変化するようにした。
【0010】
また、本発明のテレビジョン信号送信回路は、前記直列抵抗と前記シャント抵抗との接続点に、一端が接続されるとともに信号経路に直列に挿入された第二の直列抵抗を設け、一方、前記シャント抵抗に、中間タップを有する可変抵抗を用い、前記第二の直列抵抗の他端と前記可変抵抗の前記中間タップとを接続した。
【0011】
【発明の実施の形態】
以下、図1乃至図5を参照して、本発明のテレビジョン信号送信回路の実施の形態を説明する。図1は、本発明のテレビジョン信号送信回路のブロック構成の一部を示すものであり、このテレビジョン信号送信回路は、送信する番組を送るチャンネル毎に設けられている。そして、例えば、中間周波回路1には、変調器等が備えられており、この中間周波回路1において、送信する番組の映像信号Vによって映像中間周波搬送波(米国では45.75MHz)を変調し、中間周波回路1からは映像中間周波信号が出力される。また、音声信号Sも所定の処理によって、映像中間周波信号から4.5MHz離れた(41.25MHz)音声中間周波信号に位置して搬送されるようになっている。なお、中間周波回路1から出力される映像中間周波信号と音声中間周波信号とを含めた中間周波信号を、ここでは便宜上、第一の中間周波信号と呼ぶことにする。
【0012】
中間周波回路1からの第一の中間周波信号は、減衰回路2を介して第一の混合回路3に入力され、この第一の混合回路3において、第一の局部発振回路4からの発振信号と混合されることによってほぼ1.3GHzの第二の中間周波信号に周波数変換される。従って、第一の混合回路3と第一の局部発振回路4とによって最前段の周波数変換回路である第一の周波数変換回路5を構成している。なお、減衰回路2には、抵抗を用いた抵抗減衰回路あるいはピンダイオ−ドを用いたダイオ−ド減衰回路を使用することができるが、ここでは、抵抗減衰回路を用い、しかもその減衰量を変化できるようにしたもの(可変減衰回路)を用いるようにしている。
【0013】
第一の混合回路3からの第二の中間周波信号は、所定の帯域幅(ほぼ6MHz)を有するバンドパスフィルタ6を通過した後に第二中間周波増幅回路7で所定のレベルに増幅され、第一の混合回路3に直列的に設けられた次段の第二の混合回路8に入力され、この第二の混合回路8において第二の局部発振回路9からの発振信号と混合されて第三の中間周波信号に周波数変換される。従って、第二の混合回路8と第二の局部発振回路9とによって第二段目の周波数変換回路である第二の周波数変換回路10を構成している。
【0014】
なお、第三の中間周波信号は、テレビジョン信号として図示しないケ−ブルを介してCATVシステムの加入者に送信されるが、その周波数は、送信する番組毎に異なり、ほぼ50MHzから1GHzまでの間に設定されている各チャンネルの周波数のいずれかに合 わせるように第二の局部発振回路9の発振周波数が設定されている。そして、第二の混合回路8から出力される第三の中間周波信号は、第三中間周波増幅回路11、12で所定の利得を与えられた後バンドパスフィルタ13、出力増幅回路14を介して導出され、図示しない混合回路において、他のテレビジョン送信回路から同様に導出された第三の中間周波信号(テレビジョン信号)と混合されて図示しないケ−ブルに送られるようになっている。
【0015】
以上のように、本発明のテレビジョン信号送信回路では、中間周波回路1と第一の周波数変換回路5との間に減衰回路2を設けたので、この減衰回路2によって第一の周波数変換回路5を構成する第一の混合回路3に入力する第一の中間周波信号のレベルを下げることができ、第一の混合回路3及びこの第一の混合回路3の後段に接続された各回路で発生する相互変調歪みを小さくすることが可能となる。従って、テレビジョン信号送信回路のC/N比が十分に良好な場合には、この減衰回路2の減衰量を大きく設定することによって相互変調歪みを下げ、C/N比と相互変調歪みとが規格を満足するようにバランスさせることができる。
【0016】
一方、テレビジョン信号送信回路の相互変調歪みが十分に良好な(小さい)場合には、この減衰回路2の減衰量を小さく設定することによってC/N比を高くし、同様に、C/N比と相互変調歪みとが規格を満足するようにバランスさせることができる。
【0017】
また、減衰回路2を、減衰量が変化可能な可変減衰回路を用いているので、減衰量を調整することによって、各番組に対応した個々のテレビジョン信号送信回路毎にC/N比と相互変調歪みとをバランスさせることができる。さらに、減衰回路2として、抵抗減衰回路を用いているので、抵抗減衰回路では歪みを発生せず、従って、テレビジョン信号送信回路全体の相互変調歪みを少なくすることができる。
【0018】
そして、減衰回路2を、中間周波回路1と直列接続された第一の周波数変換回路5と第二の周波数変換回路10のうち、最前段の周波数変換回路である第一の周波数変換回路5との間に設けることによって、第一の周波数変換回路5を構成する第一の混合回路3以降の各回路、即ち、第二中間周波増幅回路7、第二の混合回路8、第三中間周波増幅回路11、12、出力増幅回路14のそれぞれで発生した総合的な相互変調歪みとC/N比とを一度にバランスさせることができる。
【0019】
ここで、中間周波回路1と最前段の周波数変換回路5との間、具体的には中間周波回路1と第一の混合回路3との間に設けられた減衰回路2の具体的な回路を図2に示す。図2に示す減衰回路2は抵抗を用いて構成した可変減衰回路であり、信号経路に直列に挿入した直列抵抗21と、直列接続された可変抵抗22と固定抵抗23とからなって、直列抵抗21の一端と接地との間に接続されるとともに直列抵抗21に流れようとする信号の一部を接地に分流するシャント抵抗24と、直列抵抗21の他端と接地との間に接続され、直列抵抗21から流れ出る信号の一部を接地に分流する第二のシャント抵抗25とからなるπ型減衰回路26を有している。ここで、可変抵抗22には、中間タップTを有する可変抵抗器が用いられる。
【0020】
さらに、減衰回路2は、直列抵抗21とシャント抵抗24との接続点、即ち、直列抵抗21と可変抵抗22との接続点に一端が接続されるとともに信号経路に直列に挿入された第二の直列抵抗27を有している。そしてこの第二の直列抵抗27の他端と可変抵抗22の中間タップTとを接続し、この第二の直列抵抗27の他端を入力端子とし、直列抵抗21の他端と第二のシャント抵抗25との接続点を出力端子としている。
【0021】
図2に示す減衰回路2では、可変抵抗22の中間タップTの位置を変えることによって 減衰量が変化する。即ち、可変抵抗22の中間タップTが信号経路側、即ち直列抵抗21側に位置したときは第二の直列抵抗27の両端が短絡されるとともに可変抵抗22と固定抵抗23とからなるシャント抵抗24の抵抗値が最大になることから減衰量は最少となる。逆に、可変抵抗22の中間タップTが固定抵抗23側に位置したときは、可変抵抗22が第二の直列抵抗27に並列に接続され、シャント抵抗24は固定抵抗23のみとなって減衰量が最大になる。
【0022】
そして、可変抵抗22と固定抵抗23とを合わせたシャント抵抗24全体の抵抗値の増減方向と、第二の直列抵抗27と可変抵抗22とが並列接続された合成抵抗の抵抗値の増減方向とが互いに逆となることから可変抵抗22の中間タップTの位置の変化、即ち減衰量の変化にかかわらず、この減衰回路2の入力インピ−ダンスは図3に示すように変化幅を少なくすることができる。このため、中間周波回路1の出力インピ−ダンスと第一の混合回路3の入力インピ−ダンスとの整合が維持できる。図3の入力インピ−ダンスは図2における減衰回路2の出力端子に50オ−ムの負荷を接続した状態での可変抵抗22の中間タップTの位置による変化を示し、横軸の0%は中間タップTが直列抵抗21側に位置し、また、横軸の100%は、中間タップTが固定抵抗23側に位置したときのものである。なお、この減衰回路において、直列抵抗21は12オ−ム、第二の直列抵抗27は43オ−ム、可変抵抗22は100オ−ム、固定抵抗23は150オ−ム、第二のシャント抵抗25は200オ−ムの抵抗値を有している。
【0023】
図4に示す減衰回路は、図2に示す減衰回路の第二のシャント抵抗25の代わりに、直列接続された第二の可変抵抗28と第二の固定抵抗29とからなる第三のシャント抵抗30を用いたπ型減衰回路31を有し、さらに、この第三のシャント抵抗30を構成する第二の可変抵抗28と直列抵抗21の他端との接続点に一端が接続されるとともに信号経路に直列に挿入された第三の直列抵抗32とを有している。そして、第三の直列抵抗32の他端を第二の可変抵抗28の中間タップTに接続し、第三の直列抵抗32の他端をこの減衰回路の出力端子としている。
【0024】
図4に示す減衰回路では、可変抵抗22と第二の可変抵抗28のそれぞれの中間タップTの位置を同時に同じ方向に変えることで減衰量を変化させている。そして、第二の可変抵抗28によって、出力端子側でも第三のシャント抵抗30の抵抗値が変えられるようになっているので、より一層の減衰量が得られるとともに入力インピ−ダンスの変化を少なくできる。
【0025】
図5に示す抵抗減衰回路は、信号経路に直列に挿入する直列抵抗33を、一端同志で直列接続された第三の固定抵抗34と第三の可変抵抗35とから構成し、第三の固定抵抗34と第三の可変抵抗35とのそれぞれの他端に第四のシャント抵抗36、第五のシャント抵抗37を接続してπ型減衰回路38を構成している。そして、第三の固定抵抗34と第三の可変抵抗35のそれぞれの他端を入力端子、出力端子とし、第三の可変抵抗35の他端をこの第三の可変抵抗35の中間タップTに接続したものであり、減衰回路として構成が簡単になる。そして、この第三の可変抵抗35の中間タップTを変えて減衰量を変化するようにしたものである。
【0026】
【発明の効果】
以上のように、本発明のテレビジョン信号送信回路は、中間周波回路と最前段の周波数変換回路との間に抵抗減衰回路を設け、抵抗減衰回路を、信号経路に直列に挿入した直列抵抗と、この直列抵抗の一端と接地との間、及び直列抵抗の他端と接地との間にそれぞれ接続された二つのシャント抵抗とからなるπ型抵抗減衰回路で構成し、直列抵抗またはシャント抵抗の抵抗値を変えて減衰量を変化するようにしたので、この抵抗減衰回路自身は歪みを発生することなく、最前段の周波数変換回路を構成する混合回路に入力する中間周 波信号のレベルを下げることができ、混合回路及びこの混合回路の後段に接続された各回路で発生する相互変調歪みを小さくすることが可能となる。従って、テレビジョン信号送信回路のC/N比が十分に良好な場合には、この減衰回路の減衰量を大きく設定することによって相互変調歪みを下げ、C/N比と相互変調歪みとが規格を満足するようにバランスさせることができる。一方、テレビジョン信号送信回路の相互変調歪みが十分に良好な(小さい)場合には、この減衰回路の減衰量を小さく設定することによってC/N比を高くし、同様に、C/N比と相互変調歪みとが規格を満足するようにバランスさせることができる。また、中間周波回路の出力インピ−ダンスと混合回路の入力インピ−ダンスとの整合が維持できる。
【0027】
また、本発明のテレビジョン信号送信回路は、直列抵抗とシャント抵抗との接続点に、一端が接続されるとともに信号経路に直列に挿入された第二の直列抵抗を設け、一方、シャント抵抗に、中間タップを有する可変抵抗を用い、第二の抵抗の他端と可変抵抗の中間タップとを接続したので、インピ−ダンスの変化を一層少なくできる。
【図面の簡単な説明】
【図1】本発明のテレビジョン信号送信回路のブロック構成図である。
【図2】本発明のテレビジョン信号送信回路に用いる減衰回路の回路図である。
【図3】本発明のテレビジョン信号送信回路に用いる減衰回路のインピ−ダンス特性図である。
【図4】本発明のテレビジョン信号送信回路に用いる減衰回路の他の回路図である。
【図5】本発明のテレビジョン信号送信回路に用いる減衰回路の他の回路図である。
【図6】従来のテレビジョン信号送信回路のブロック構成図である。
【符号の説明】
1 中間周波回路
2 減衰回路
3 第一の混合回路
4 第一の局部発振回路
5 第一の周波数変換回路
6 バンドパスフィルタ
7 第二中間周波増幅回路
8 第二の混合回路
9 第二の局部発振回路
10 第二の周波数変換回路
11 第三中間周波増幅回路
12 第三中間周波増幅回路
13 バンドパスフィルタ
14 出力増幅回路
21.33 直列抵抗
22 可変抵抗
23 固定抵抗
24 シャント抵抗
25 第二のシャント抵抗
26.31.38 π型減衰回路
27 第二の直列抵抗
28 第二の可変抵抗
29 第二の固定抵抗
30 第三のシャント抵抗
32 第三の直列抵抗
34 第三の固定抵抗
35 第三の可変抵抗
36 第四のシャント抵抗
37 第五のシャント抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a television signal transmission circuit, and more particularly to a television signal transmission circuit suitable for use in a CATV (cable television) system.
[0002]
[Prior art]
At the head end of the CATV system, that is, on the transmission side, general terrestrial television programs are retransmitted, entertainment programs such as movies and sports, and original programs closely related to local communities are transmitted. However, a transmitter is used to transmit these programs by cable on a channel allocated to the CATV system.
[0003]
FIG. 6 shows a part of a conventional television signal transmission circuit in such a transmitter, which is provided for each channel for transmitting a program to be transmitted. For example, the intermediate frequency circuit 41 is provided with a modulator or the like (not shown), which modulates the video intermediate frequency carrier (45.75 MHz in the United States) with the video signal V of the program to be transmitted. Is output. In addition, the audio signal S is also conveyed by a predetermined process at a position of an audio intermediate frequency signal that is 4.5 MHz away from the video intermediate frequency signal (41.25 MHz). The intermediate frequency signal including the video intermediate frequency signal and the audio intermediate frequency signal output from the intermediate frequency circuit 41 will be referred to as a first intermediate frequency signal for the sake of the following description.
[0004]
The first intermediate frequency signal from the intermediate frequency circuit 41 is input to a first mixing circuit 42, where the first intermediate frequency signal is mixed with an oscillation signal from a first local oscillation circuit 43, so that the first intermediate frequency signal has a frequency of approximately 1.3 GHz. The frequency is converted to two intermediate frequency signals. Therefore, the first mixing circuit 42 and the first local oscillation circuit 43 constitute a first frequency conversion circuit 44. The second intermediate frequency signal from the first mixing circuit 42 passes through a band-pass filter 45 having a predetermined bandwidth (approximately 6 MHz), and is then amplified by a second intermediate frequency amplifier 46 to a predetermined level. Is mixed with the oscillation signal from the second local oscillation circuit 48 and frequency-converted into a third intermediate frequency signal. Therefore, the second mixing circuit 47 and the second local oscillation circuit 48 constitute a second frequency conversion circuit 49.
[0005]
Here, the frequency of the third intermediate frequency signal differs for each program to be transmitted, and the second local oscillation circuit 48 adjusts to one of the frequencies of the respective channels set between approximately 50 MHz and 1 GHz. Oscillation frequency is set. Then, the third intermediate frequency signal from the second mixing circuit 47 is given a predetermined gain by the third intermediate frequency amplifier circuits 50 and 51, and then is derived through a band-pass filter 52 and an output amplifier circuit 53. In a mixing circuit (not shown), the signal is mixed with a third intermediate frequency signal similarly derived from another transmission circuit diagram and sent to a cable (not shown).
[0006]
[Problems to be solved by the invention]
In such a configuration, the first intermediate frequency signal input to the first mixing circuit 42 is output to a subsequent circuit, that is, the first mixing circuit 42, the second intermediate frequency amplifying circuit 46, and the second mixing circuit 46. Each time frequency conversion or amplification is performed by the circuit 47, the third intermediate frequency amplifier circuits 50 and 51, the output amplifier circuit 53, or the like, the intermodulation distortion and the C / N ratio deteriorate. The degree of the deterioration depends on the characteristic distortion characteristic and C / N ratio of each circuit.
[0007]
In addition, the intermodulation and the C / N ratio show characteristic changes opposite to each other. For example, the conversion gain of the first mixing circuit 42 or the second mixing circuit 47 or the gain of each of the amplification circuits 46, 50, 51, 53, etc. Is increased, the signal level is increased and the C / N ratio is improved, but the intermodulation distortion is deteriorated, and it is difficult to balance the two characteristics.
[0008]
Accordingly, the present invention provides a television signal transmission circuit that can easily balance the intermodulation distortion and the C / N ratio.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a television signal transmission circuit of the present invention includes an intermediate frequency circuit that outputs an intermediate frequency signal including a video intermediate frequency signal and an audio intermediate frequency signal, and performs frequency conversion on the intermediate frequency signal. A plurality of frequency conversion circuits that output as television signals, a resistance attenuation circuit is provided between the intermediate frequency circuit and the first-stage frequency conversion circuit, and the resistance attenuation circuit is inserted in series in a signal path. A series resistor, and a π-type resistance attenuation circuit including two shunt resistors connected between one end of the series resistor and ground and between the other end of the series resistor and ground, respectively. The attenuation is changed by changing the resistance value of the resistor or the shunt resistor.
[0010]
Further, the television signal transmission circuit of the present invention, a connection point between the series resistor and the shunt resistor, one end is connected and provided with a second series resistor inserted in series in a signal path, A variable resistor having an intermediate tap was used as the shunt resistor, and the other end of the second series resistor was connected to the intermediate tap of the variable resistor.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a television signal transmission circuit according to the present invention will be described with reference to FIGS. FIG. 1 shows a part of a block configuration of a television signal transmitting circuit according to the present invention. The television signal transmitting circuit is provided for each channel for transmitting a program to be transmitted. For example, the intermediate frequency circuit 1 is provided with a modulator or the like. The intermediate frequency circuit 1 modulates a video intermediate frequency carrier (45.75 MHz in the United States) with a video signal V of a program to be transmitted. The intermediate frequency circuit 1 outputs a video intermediate frequency signal. In addition, the audio signal S is also conveyed by a predetermined process at a position of an audio intermediate frequency signal that is 4.5 MHz away from the video intermediate frequency signal (41.25 MHz). Note that the intermediate frequency signal including the video intermediate frequency signal and the audio intermediate frequency signal output from the intermediate frequency circuit 1 is referred to as a first intermediate frequency signal here for convenience.
[0012]
The first intermediate frequency signal from the intermediate frequency circuit 1 is input to the first mixing circuit 3 via the attenuation circuit 2, and in the first mixing circuit 3, the oscillation signal from the first local oscillation circuit 4 is output. Is converted to a second intermediate frequency signal of about 1.3 GHz by mixing with the second intermediate frequency signal. Therefore, the first mixing circuit 3 and the first local oscillation circuit 4 constitute the first frequency conversion circuit 5 which is the foremost frequency conversion circuit. Note that a resistance attenuation circuit using a resistor or a diode attenuation circuit using a pin diode can be used as the attenuation circuit 2. Here, a resistance attenuation circuit is used, and the attenuation amount is changed. What is made possible (variable attenuation circuit) is used.
[0013]
The second intermediate frequency signal from the first mixing circuit 3 is passed through a band-pass filter 6 having a predetermined bandwidth (approximately 6 MHz), and then amplified by a second intermediate frequency amplifier circuit 7 to a predetermined level. The signal is input to a second mixing circuit 8 of the next stage provided in series with one mixing circuit 3 and mixed with an oscillation signal from a second local oscillation circuit 9 in the second mixing circuit 8 to form a third signal. Is converted to an intermediate frequency signal of Therefore, the second mixing circuit 8 and the second local oscillation circuit 9 constitute a second frequency conversion circuit 10 which is a second-stage frequency conversion circuit.
[0014]
The third intermediate frequency signal is transmitted as a television signal to a subscriber of the CATV system via a cable (not shown). The frequency varies for each program to be transmitted and ranges from approximately 50 MHz to 1 GHz. the oscillation frequency of the second local oscillator 9 as Conform is set to one of the frequencies of the respective channels that are set between. The third intermediate frequency signal output from the second mixing circuit 8 is given a predetermined gain by the third intermediate frequency amplifier circuits 11 and 12, and then passes through the band-pass filter 13 and the output amplifier circuit 14. In a mixing circuit (not shown) which is derived and mixed with a third intermediate frequency signal (television signal) similarly derived from another television transmission circuit, the mixed signal is sent to a cable (not shown).
[0015]
As described above, in the television signal transmission circuit of the present invention, the attenuation circuit 2 is provided between the intermediate frequency circuit 1 and the first frequency conversion circuit 5, and the first frequency conversion circuit is provided by the attenuation circuit 2. 5, the level of the first intermediate frequency signal input to the first mixing circuit 3 constituting the first mixing circuit 3 can be reduced. It is possible to reduce the generated intermodulation distortion. Therefore, when the C / N ratio of the television signal transmitting circuit is sufficiently good, the intermodulation distortion is reduced by setting the attenuation of the attenuating circuit 2 large, and the C / N ratio and the intermodulation distortion are reduced. It can be balanced to meet the standard.
[0016]
On the other hand, when the intermodulation distortion of the television signal transmission circuit is sufficiently good (small), the C / N ratio is increased by setting the attenuation amount of the attenuation circuit 2 small, and similarly, the C / N ratio is increased. The ratio and the intermodulation distortion can be balanced so as to satisfy the standard.
[0017]
In addition, since the attenuation circuit 2 uses a variable attenuation circuit whose attenuation can be changed, by adjusting the attenuation, the C / N ratio and the mutual ratio can be adjusted for each television signal transmission circuit corresponding to each program. Modulation distortion can be balanced. Further, since a resistance attenuation circuit is used as the attenuation circuit 2, no distortion occurs in the resistance attenuation circuit, and therefore, the intermodulation distortion of the entire television signal transmission circuit can be reduced.
[0018]
Then, the attenuation circuit 2 is connected to the first frequency conversion circuit 5 which is the foremost stage of the first frequency conversion circuit 5 and the second frequency conversion circuit 10 connected in series with the intermediate frequency circuit 1. Between the first mixing circuit 3 and the subsequent circuits constituting the first frequency conversion circuit 5, that is, the second intermediate frequency amplification circuit 7, the second mixing circuit 8, and the third intermediate frequency amplification The total intermodulation distortion and the C / N ratio generated in each of the circuits 11 and 12 and the output amplifier circuit 14 can be balanced at once.
[0019]
Here, a specific circuit of the attenuation circuit 2 provided between the intermediate frequency circuit 1 and the first stage frequency conversion circuit 5, specifically, between the intermediate frequency circuit 1 and the first mixing circuit 3 is shown. As shown in FIG. The attenuation circuit 2 shown in FIG. 2 is a variable attenuation circuit configured using a resistor, and includes a series resistor 21 inserted in series in a signal path, a variable resistor 22 and a fixed resistor 23 connected in series, A shunt resistor 24 connected between one end of the series resistor 21 and the ground and shunting a part of the signal to be passed to the series resistor 21 to the ground, and connected between the other end of the series resistor 21 and the ground; There is a π-type attenuation circuit 26 including a second shunt resistor 25 that shunts a part of the signal flowing out of the series resistor 21 to the ground. Here, a variable resistor having an intermediate tap T is used as the variable resistor 22.
[0020]
Further, the attenuating circuit 2 has a second end connected to a connection point between the series resistance 21 and the shunt resistance 24, that is, a connection point between the series resistance 21 and the variable resistance 22, and inserted in series in a signal path. It has a series resistor 27. The other end of the second series resistor 27 is connected to the intermediate tap T of the variable resistor 22, the other end of the second series resistor 27 is used as an input terminal, and the other end of the series resistor 21 is connected to the second shunt. The connection point with the resistor 25 is used as an output terminal.
[0021]
In the attenuation circuit 2 shown in FIG. 2, the amount of attenuation changes by changing the position of the intermediate tap T of the variable resistor 22 . That is, when the intermediate tap T of the variable resistor 22 is located on the signal path side, that is, on the series resistor 21 side, both ends of the second series resistor 27 are short-circuited and the shunt resistor 24 composed of the variable resistor 22 and the fixed resistor 23 is connected. , The amount of attenuation is minimized. Conversely, when the intermediate tap T of the variable resistor 22 is located on the fixed resistor 23 side, the variable resistor 22 is connected in parallel to the second series resistor 27, and the shunt resistor 24 becomes only the fixed resistor 23 and the attenuation Is maximized.
[0022]
Then, the direction in which the resistance value of the entire shunt resistor 24 including the variable resistor 22 and the fixed resistor 23 is increased and the direction in which the resistance value of the combined resistor in which the second series resistor 27 and the variable resistor 22 are connected in parallel are increased and decreased. Are opposite to each other, regardless of the change in the position of the intermediate tap T of the variable resistor 22, that is, the change in the amount of attenuation, the input impedance of the attenuating circuit 2 must have a small change width as shown in FIG. Can be. Therefore, the matching between the output impedance of the intermediate frequency circuit 1 and the input impedance of the first mixing circuit 3 can be maintained. The input impedance in FIG. 3 shows a change depending on the position of the intermediate tap T of the variable resistor 22 when a 50-ohm load is connected to the output terminal of the attenuation circuit 2 in FIG. The intermediate tap T is located on the series resistor 21 side, and 100% of the horizontal axis is when the intermediate tap T is located on the fixed resistor 23 side. In this attenuation circuit, the series resistor 21 is 12 ohms, the second series resistor 27 is 43 ohms, the variable resistor 22 is 100 ohms, the fixed resistor 23 is 150 ohms, and the second shunt is used. Resistor 25 has a resistance of 200 ohms.
[0023]
The damping circuit shown in FIG. 4 has a third shunt resistor composed of a second variable resistor 28 and a second fixed resistor 29 connected in series instead of the second shunt resistor 25 of the damping circuit shown in FIG. A π-type attenuating circuit 31 using the shunt resistor 30 is connected. One end is connected to a connection point between the second variable resistor 28 constituting the third shunt resistor 30 and the other end of the series resistor 21. A third series resistor 32 inserted in series in the path. Then, the other end of the third series resistor 32 is connected to the intermediate tap T of the second variable resistor 28, and the other end of the third series resistor 32 is used as an output terminal of this attenuation circuit.
[0024]
In the attenuation circuit shown in FIG. 4, the amount of attenuation is changed by simultaneously changing the positions of the intermediate taps T of the variable resistor 22 and the second variable resistor 28 in the same direction. Since the resistance value of the third shunt resistor 30 can be changed on the output terminal side by the second variable resistor 28, further attenuation can be obtained and the change in input impedance can be reduced. it can.
[0025]
In the resistance attenuation circuit shown in FIG. 5, a series resistor 33 inserted in series in a signal path is composed of a third fixed resistor 34 and a third variable resistor 35 connected in series at one end. A fourth shunt resistor 36 and a fifth shunt resistor 37 are connected to the other ends of the resistor 34 and the third variable resistor 35, respectively, to form a π-type attenuation circuit 38. The other ends of the third fixed resistor 34 and the third variable resistor 35 are used as an input terminal and an output terminal, respectively, and the other end of the third variable resistor 35 is connected to an intermediate tap T of the third variable resistor 35. These are connected, and the configuration is simplified as an attenuation circuit. Then, the intermediate tap T of the third variable resistor 35 is changed to change the amount of attenuation.
[0026]
【The invention's effect】
As described above, the television signal transmission circuit of the present invention is provided with a resistance attenuation circuit between the intermediate frequency circuit and the first-stage frequency conversion circuit, and the resistance attenuation circuit includes a series resistor inserted in series in a signal path. And a π-type resistor attenuation circuit consisting of two shunt resistors connected between one end of this series resistor and ground, and between the other end of the series resistor and ground, respectively. since so as to vary the amount of attenuation by changing the resistance value, the resistance attenuation circuit itself without generating distortion, reduce the level of the intermediate-frequency signal to be input to the mixing circuit constituting the frequency conversion circuit at the first stage Therefore, it is possible to reduce the intermodulation distortion generated in the mixing circuit and each circuit connected to the subsequent stage of the mixing circuit. Therefore, when the C / N ratio of the television signal transmitting circuit is sufficiently good, the intermodulation distortion is reduced by setting the attenuation of the attenuating circuit large, and the C / N ratio and the intermodulation distortion are set to the standard. Can be balanced. On the other hand, when the intermodulation distortion of the television signal transmitting circuit is sufficiently good (small), the C / N ratio is increased by setting the attenuation of the attenuating circuit small, and similarly, the C / N ratio is increased. And intermodulation distortion can be balanced so as to satisfy the standard. Further, matching between the output impedance of the intermediate frequency circuit and the input impedance of the mixing circuit can be maintained.
[0027]
Further, the television signal transmission circuit of the present invention is provided with a second series resistor, one end of which is connected and inserted in series in a signal path, at a connection point between the series resistor and the shunt resistor. Since a variable resistor having an intermediate tap is used, and the other end of the second resistor is connected to the intermediate tap of the variable resistor, a change in impedance can be further reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of a television signal transmission circuit according to the present invention.
FIG. 2 is a circuit diagram of an attenuation circuit used in a television signal transmission circuit according to the present invention.
FIG. 3 is an impedance characteristic diagram of an attenuation circuit used in a television signal transmission circuit according to the present invention.
FIG. 4 is another circuit diagram of the attenuation circuit used in the television signal transmission circuit of the present invention.
FIG. 5 is another circuit diagram of the attenuation circuit used in the television signal transmission circuit of the present invention.
FIG. 6 is a block diagram of a conventional television signal transmission circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intermediate frequency circuit 2 Attenuation circuit 3 First mixing circuit 4 First local oscillation circuit 5 First frequency conversion circuit 6 Bandpass filter 7 Second intermediate frequency amplification circuit 8 Second mixing circuit 9 Second local oscillation Circuit 10 Second frequency conversion circuit 11 Third intermediate frequency amplifier circuit 12 Third intermediate frequency amplifier circuit 13 Band pass filter 14 Output amplifier circuit 21.33 Series resistor 22 Variable resistor 23 Fixed resistor 24 Shunt resistor 25 Second shunt resistor 26.31.38 π-type attenuation circuit 27 Second series resistor 28 Second variable resistor 29 Second fixed resistor 30 Third shunt resistor 32 Third series resistor 34 Third fixed resistor 35 Third variable Resistance 36 Fourth shunt resistance 37 Fifth shunt resistance

Claims (2)

映像中間周波信号と音声中間周波信号とを含む中間周波信号を出力する中間周波回路と、前記中間周波信号を周波数変換してテレビジョン信号として出力する複数の周波数変換回路とを有し、前記中間周波回路と最前段の周波数変換回路との間に抵抗減衰回路を設け、前記抵抗減衰回路を、信号経路に直列に挿入した直列抵抗と、前記直列抵抗の一端と接地との間、及び前記直列抵抗の他端と接地との間にそれぞれ接続された二つのシャント抵抗とからなるπ型抵抗減衰回路で構成し、前記直列抵抗または前記シャント抵抗の抵抗値を変えて減衰量を変化するようにしたことを特徴とするテレビジョン信号送信回路。An intermediate frequency circuit that outputs an intermediate frequency signal including a video intermediate frequency signal and an audio intermediate frequency signal; anda plurality of frequency conversion circuits that frequency-converts the intermediate frequency signal and outputs the converted signal as a television signal. A resistance attenuation circuit is provided between the frequency circuit and the front-end frequency conversion circuit, and the resistance attenuation circuit is connected between a series resistor inserted in series in a signal path, one end of the series resistor and ground, and the series resistor. A π-type resistor attenuation circuit composed of two shunt resistors connected between the other end of the resistor and the ground, respectively, so that the amount of attenuation is changed by changing the resistance value of the series resistor or the shunt resistor. television signal transmission circuit, characterized in that the. 前記直列抵抗と前記シャント抵抗との接続点に、一端が接続されるとともに信号経路に直列に挿入された第二の直列抵抗を設け、一方、前記シャント抵抗に、中間タップを有する可変抵抗を用い、前記第二の直列抵抗の他端と前記可変抵抗の前記中間タップとを接続したことを特徴とする請求項1記載のテレビジョン信号送信回路。 At a connection point between the series resistor and the shunt resistor, a second series resistor having one end connected thereto and inserted in series in a signal path is provided, while a variable resistor having an intermediate tap is used for the shunt resistor. 2. The television signal transmitting circuit according to claim 1 , wherein the other end of the second series resistor is connected to the intermediate tap of the variable resistor .
JP10984997A 1997-04-25 1997-04-25 Television signal transmission circuit Expired - Fee Related JP3600401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10984997A JP3600401B2 (en) 1997-04-25 1997-04-25 Television signal transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10984997A JP3600401B2 (en) 1997-04-25 1997-04-25 Television signal transmission circuit

Publications (2)

Publication Number Publication Date
JPH10304257A JPH10304257A (en) 1998-11-13
JP3600401B2 true JP3600401B2 (en) 2004-12-15

Family

ID=14520758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10984997A Expired - Fee Related JP3600401B2 (en) 1997-04-25 1997-04-25 Television signal transmission circuit

Country Status (1)

Country Link
JP (1) JP3600401B2 (en)

Also Published As

Publication number Publication date
JPH10304257A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US4612571A (en) Constant Z bandswitched input filter
US5933770A (en) Low distortion tuner-receiver with bridge-type diplexer
KR910000686B1 (en) Frequency converter
US6714261B1 (en) CATV tuner for high speed data communication utilizing a different frequency band
US7020186B2 (en) Multi-mode bi-directional communications device including a diplexer having switchable low pass filters
US20030022631A1 (en) Multi-mode bidirectional communications device including a diplexer having a switchable notch filter
US20230283242A1 (en) Amplifier device
JP3955232B2 (en) Radio frequency input interface device and composite device thereof
KR100466077B1 (en) Radio frequency modulator having c/l delay compensation function, and set-top-box using that
JP3600401B2 (en) Television signal transmission circuit
EP1250006B1 (en) Cable modem tuner
US6091301A (en) Flatness compensation of diplex filter roll-off using active amplifier peaking circuit
US7289566B2 (en) Cable modem tuner
US7787833B2 (en) Broadband transmitter
JP4248637B2 (en) Tuner for cable modem
JP3958007B2 (en) Signal processing device
JPH0454034A (en) Subcarrier multiplex optical transmission method and subcarrier multiplex optical transmitter
JP3411148B2 (en) Bidirectional frequency converter
JPH056937B2 (en)
JPH09182047A (en) Tuner for catv broadcast reception
US6118974A (en) CEBus node zero switching device
JP2001339265A (en) Waveform correcting circuit
JP2002232241A (en) Predistortion circuit
WO2002035716A2 (en) Method and apparatus for eliminating in-band ripple from band-pass filter responses
JP3061850B2 (en) Tuner circuit device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees