JP3598372B2 - Measurement method and apparatus for positioning satellite receiver bias - Google Patents

Measurement method and apparatus for positioning satellite receiver bias Download PDF

Info

Publication number
JP3598372B2
JP3598372B2 JP2001234490A JP2001234490A JP3598372B2 JP 3598372 B2 JP3598372 B2 JP 3598372B2 JP 2001234490 A JP2001234490 A JP 2001234490A JP 2001234490 A JP2001234490 A JP 2001234490A JP 3598372 B2 JP3598372 B2 JP 3598372B2
Authority
JP
Japan
Prior art keywords
satellite
positioning satellite
receiver
bias
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001234490A
Other languages
Japanese (ja)
Other versions
JP2003043128A (en
Inventor
亮三 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2001234490A priority Critical patent/JP3598372B2/en
Publication of JP2003043128A publication Critical patent/JP2003043128A/en
Application granted granted Critical
Publication of JP3598372B2 publication Critical patent/JP3598372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測位用衛星からの2周波搬送波位相を用いて、電離層の全電子数を推定する際に、測位用衛星受信機のバイアスを測定する方法、及び、その方法を実施する装置に関する。
【0002】
【従来の技術】
電離層や超高層大気の擾乱が、通信・放送システムや航空機の管制業務に与える影響等を予測するために、リアルタイムで日本全国の鉛直方向の電離層全電子数をコンタマップに表示することが必要とされている。
視線方向の電離層全電子数(STEC)は、測位用衛星からの2つの異なる周波数の搬送波位相と、測位用衛星と測位用衛星受信機との疑似距離から計算することができる。ただし、このSTECには衛星コードバイアス分および受信機バイアス分が含まれるため、真の鉛直方向の電離層全電子数(VTEC)を得るためには、STEC値から衛星コードバイアス分および受信機バイアス分を補正したのち、電離層の平面平板モデルや球殻モデル等によって定まる仰角に応じた補正係数を乗じる必要がある。
なお、特に断らない限り本明細書では、STECは、測位用衛星受信機によって測定される、衛星コードバイアス分および受信機バイアス分を含んだ見かけの視線方向の電離層全電子数とし、VTECは、衛星コードバイアス分および受信機バイアス分による影響のない真の鉛直方向の電離層全電子数とする。
一般には、衛星コードバイアスと受信機バイアスは分離して求めることができない。そのため、鉛直方向の電離層全電子数は、衛星コードバイアスと受信機バイアスの和を未知数とした連立一次方程式から最小2乗法で求めることとなる。
【0003】
しかし、この方法では、搬送波位相の観測時間間隔が短くなるほど、前記未知数の数が増加し、演算量が急激に膨大となるという問題点がある。
また、コンタマップを作成するためには、全国各地でのVTEC値が必要となるので、多数の測位用衛星受信機を設置する必要がある。そのため、受信機バイアスを受信データから受信機ごとに短時間に効率よく測定することが求められるが、従来の最小2乗法による方法では実現が困難である。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、上記従来技術が有していた問題を鑑みて、簡易な手段で、測位用衛星受信機ごとに受信機バイアスを少ない演算量で短時間に精度よく求める方法及び装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を達成するために、本発明の測位用衛星受信機バイアスの測定方法及び装置は、既知の衛星コードバイアスを活用することで、測位用衛星受信機の受信データのみを用いて、測位用衛星受信機バイアスを簡易に効率よく得ることを図る。
すなわち、測位用衛星からの周波数の異なる2つの搬送波を測位用衛星受信機によって受信し、その両搬送波位相と、測位用衛星と測位用衛星受信機との疑似距離から電離層全電子数を推定する方法において、STECからVTECを計算する際に必要な補正量として、予め測定しておいた測位用衛星の衛星コードバイアスを用いると共に、STECと、測位用衛星受信機から測位用衛星を仰ぐ仰角とから、所定の関係式を用いて測位用衛星受信機バイアスを求める。
【0006】
ここで、前記の所定関係式として、
Vij(t)+Ri・sinθij(t)=(Sij(t)−Bj)・sinθij(t)
(ただし、受信点がi、衛星がj、時刻がt、VTEC値がVij(t)、受信機バイアスがRi、受信点iから衛星jに対する仰角がθij(t)、STEC値がSij(t)、衛星コードバイアスがBj)
を用いてもよい。
【0007】
【発明の実施の形態】
以下に、本発明による受信機バイアスの測定手段を、図面を参照して説明する。ここでは、航法用衛星としてGPS衛星を挙げるが、GLONASS衛星など、地球側位システムに用いられる任意の衛星に利用できる。
図1に、GPS衛星とGPS受信機との関係を示す。簡単のため電離層を平面平板モデルで表している。
GPS受信機(2)は、外部通信機器を備え、予め測定、または入手したGPS衛星(1)の衛星コードバイアスを入力する入力手段を有する。また、GPS受信機(2)によって測定される、衛星コードバイアス分および受信機バイアス分を含んだ見かけの視線方向の電離層全電子数(STEC)と、GPS受信機(2)からGPS衛星(1)を仰ぐ仰角(θ)とから、所定の関係式を用いてGPS受信機バイアスを求める計算手段も備えている。
【0008】
GPS受信機(2)の受信点i(3)における受信機バイアスをRi(8)(受信点(3)を一端とした実線部分)、GPS衛星j(1)の衛星コードバイアスをBj(9)(衛星側を一端とした実線部分)とする。時刻tにおける真の鉛直方向の電離層全電子数(VTEC)Vij(t)(6)は、平面平板モデルで考えると、受信機(2)によって測定される、衛星コードバイアス分および受信機バイアス分を含んだ見かけの視線方向の電離層全電子数(STEC)Sij(t)((7)+(8)+(9))と受信点i(3)から衛星j(1)を仰ぎ見たときの仰角θij(t)とから、次のように求められる。

Figure 0003598372
衛星コードバイアスBjを既知とすれば、受信機バイアスによる影響を受けた見かけの鉛直方向の電離層全電子数(以下、見かけのVTECと呼ぶ)である(a)式の右辺の値が計算される。そのため、真のVTECであるVij(t)と見かけのVTECとの差はRi・sinθij(t)となり、これは、受信機バイアスRiを係数とした仰角特性いわゆるθ依存性をもつと言える。
【0009】
ここで、衛星コードバイアスBjは、ドイツDLR研究所によって公開されており、インターネット等を介して容易に入手することができる。
仮に衛星コードバイアスBjが入手できない場合であっても、日本国内外に設置されているGPS受信機のうちのいくつかを用いて、最小2乗法によって解くことで、衛星コードバイアスBjを得ることができる。
衛星コードバイアスBjは、各衛星ごとに地球上のどの受信点においても共通であるので、この値を他のGPS受信機に利用することができる。また、受信機バイアスに比べ、衛星コードバイアスBjの値は1年を通じてそれほど大きく変動することなくほぼ一定である。
【0010】
以上のようなことから、衛星コードバイアスBjを既知として、(a)式において、Sij(t)にBjを含ませてしまい、
Xij(t)=Sij(t)−Bj
とすると、(a)式は、
Vij(t)=(Xij(t)−Ri)・sinθij(t)……(b)
と変形される。少しだけ時間のずれた時刻t=t’においては、
Vij(t′)=(Xij(t′)−Ri)・sinθij(t′)……(c)
となり、を計算すると、
Figure 0003598372
となる。
【0011】
通常GPS衛星などの測位用衛星は静止衛星でなく地球周回衛星であるから、同じ衛星は地上からわずか2〜3時間程度しか見えない。すなわち、仰角θij(t)は、数分程度で大きく変化する。これに対して、電離層における全電子数は、太陽の上昇や下降などの活動に伴って増減する自然現象であるから、真の鉛直方向の電離層全電子数Vij(t)の変動はかなりゆっくりしたものになり、同一衛星が見えている数時間程度では、ほぼ一定とみなすことができる。
このような場合には、(d)式の左辺の値はほぼ0とみなすことができ、右辺第1項と第2項は計算することができるので、受信機バイアスRiを求めることができる。
【0012】
ただし、実際には、一日における真のVTECは、観測するGPS衛星の方位や時刻等によって様々に変化するため、tとt’がある程度離れてくると必ずしも(d)式の左辺の値を0とみなすことができるとは限らなくなる。しかし、ある一定の仰角θ(基準仰角)のときに求めた見かけのVTECと、任意の仰角θのときに求めた見かけのVTECとの差は、全GPS衛星について測定し平均すれば、方位や日変化による寄与は平均化のために小さくなる。従って、仰角の違いによる差のみが生じることとなり、受信点i(3)における受信機バイアスRi(8)が精度良く求められることになる。
【0013】
すなわち、各GPS衛星に対して、その衛星が仰角(θ)が高くなるような方向に飛行する場合と、仰角(θ)が低くなるような方向に飛行する場合とを区別することなく、仰角(θ)の値ごとに上記のような平均化処理を行って、仰角特性を計算する。
【0014】
仰角(θ)に関する補正係数は、電離層を平面平板モデルで考えた場合はsinθとなるが、球殻モデルで考えた場合は、
Figure 0003598372
(ただし、地球の半径がE、地上から受信機までの高さがh、地上から電離層まで の高さがH)
となり、平面平板モデルに比べて、やや複雑にはなるが、特に低仰角における電離層モデルとしてより実際に近くなる。
【0015】
このように、(a)式を用いると、既知である衛星コードバイアスとGPS受信機(2)の受信データのみを用いて、受信機ごとに受信機バイアスを測定することができる。
ほとんど平均値計算しか行われないため演算量が少なく、容易に短時間で受信機バイアスを求めることができるので、短時間でリアルタイムでのコンタマップの作成が可能である。また、受信機バイアスは、受信機のメーカや機種によって大きく異なる場合があるが、それでもほぼ正確に求めることが可能である。
【0016】
受信機バイアスの測定誤差を少なくするためには、なるべく多くの衛星について均等に観測データを収集することが好ましく、実際の測定においては、基準仰角(θ)は35°位に設定するのが好適である。
また、実際に仰角特性から受信機バイアスを算出するにあたっては、仰角(θ)の観測範囲は、約35°位から約65°位までが良いとされる。
あまり仰角(θ)が低すぎると、GPS衛星からの搬送波が地表や海面やビル等によって反射されたりして、マルチパスが生じること等により、正確なデータが得られにくい。
また、仰角(θ)が高くなるほど、観測できるGPS衛星の数が減ってくるため、得られる仰角特性は、その特定の衛星のみから強く影響を受けてしまい、各衛星を均等に観測して平均化することが困難になり、測定誤差が大きくなってしまう恐れがある。
【0017】
図2に、受信機バイアス測定装置における演算部の概要を示す。
図2で示されるように、演算部1では、GPS受信機から出力されるデータのうち、疑似距離C、Pおよび搬送波位相L、Lを用いて(受信機の機種によっては疑似距離Cの他にPを出力するものもあり、その場合はCの代わりにPを用いてもよい)、見かけの視線方向の全電子数(STEC)S(j,t)を計算する。ここで、jは衛星の番号を表し、tは時刻を表す(S(j,t)には衛星コードバイアス分および受信機バイアス分が含まれる)。次にソーティング部1では、時刻tに関わらず、jの値に応じて以降の処理を行うよう切替部1の制御を行う。
演算部2では、GPS受信機から出力されるデータのうち、航法メッセージからその衛星の仰角θ(j,t)を計算し、ソーティング部2では、この値に応じて以降の処理を行うよう切替部2の制御を行う。
演算部3では、θ(j,t)に対してf(θ(j,t))なる計算を行う。
各加算部では、初期値を0とし、加算部にデータが入力されるたびにその値を累積加算していく。
【0018】
各インクリメント部1では、初期値を0とし、データが入力されるたびに1ずつインクリメントしていく。
各インクリメント部2では、初期値を0とし、複数の入力のうちいずれかにデータが入力されるたびに1ずつインクリメントしていく。
各除算部では、2入力の除算を行う。
【0019】
図2において、P−P’より右側の処理は、主に平均値計算を行う部分であり、GPS受信機からのデータ出力が終了してから行えばよい。
最後に、カーブフィッティング計算部では、G(θ)−R・(f(θ)−f(θ))の値の2乗和が最小となるようなRを計算し、この値を受信機バイアスとして出力する。
【0020】
【発明の効果】
本発明の測位用衛星受信機バイアスの測定方法及び装置は、上述の構成を備えることで、次の効果を奏する。
請求項1に記載の方法または請求項3に記載の装置によると、予め測定しておいた測位用衛星の衛星コードバイアスを活用して、測位用衛星受信機によって測定される視線方向の電離層全電子数と、測位用衛星受信機から測位用衛星を仰ぐ仰角とから、所定の関係式を用いて計算するので、簡易な手段で、測位用衛星受信機ごとに受信機バイアスを少ない演算量で短時間に精度よく求めることができる。
航法用衛星システムの本来の用途である、2周波を用いた高精度測位のための利用においても、受信機バイアスを補正した場合、測定精度を向上させることができる。
また、測位用衛星受信機だけでなく、他の同様のシステム、例えばロシアによるGLONASS衛星を用いた全地域測位システム等でも同様に適用することができる。
【0021】
請求項2に記載の方法または請求項4に記載の装置によると、関係式
Figure 0003598372
(ただし、受信点がi、衛星がj、時刻がt、VTEC値がVij(t)、受信機バイアスがRi、受信点iから衛星jに対する仰角がθij(t)、STEC値がSij(t)、衛星コードバイアスがBj)
を用いて、受信機バイアスを求めるので、平均値計算が主なので、計算量が圧倒的に低減され、計算のために保持しておかなければならないデータ量自体も少なくすることができるので、装置内の内部メモリの量も大幅に低減できる。
また、異なるメーカや異なる機種であっても、ほぼ正確な受信機バイアスを求めることが容易である。
【図面の簡単な説明】
【図1】測位用衛星と測位用衛星受信機との関係を示す説明図
【図2】受信機バイアス測定装置における演算の概要を示す説明図
【符号の説明】
1 測位用衛星
2 測位用衛星受信機
3 受信点
4 電離層
5 地表
6 鉛直方向の電離層全電子数
7 視線方向の電離層全電子数
8 受信機バイアス
9 衛星コードバイアス
θ 仰角[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a bias of a positioning satellite receiver when estimating the total number of electrons in the ionosphere using a dual-frequency carrier phase from a positioning satellite, and an apparatus for implementing the method.
[0002]
[Prior art]
In order to predict the effects of ionospheric and upper atmosphere disturbances on communication and broadcasting systems and aircraft control operations, it is necessary to display the total number of vertical ionospheric electrons throughout Japan on a contour map in real time. Have been.
The line of sight ionospheric total electron count (STEC) can be calculated from the carrier phases of two different frequencies from the positioning satellite and the pseudorange between the positioning satellite and the positioning satellite receiver. However, since the STEC includes the satellite code bias component and the receiver bias component, in order to obtain the true vertical ionospheric total number of electrons (VTEC), the satellite code bias component and the receiver bias component are calculated from the STEC value. , It is necessary to multiply by a correction coefficient corresponding to the elevation angle determined by a flat plate model or spherical shell model of the ionosphere.
In this specification, unless otherwise specified, STEC is the total number of electrons in the ionosphere in the apparent line of sight including the satellite code bias component and the receiver bias component measured by the positioning satellite receiver, and VTEC is The total number of electrons in the true vertical ionosphere is unaffected by satellite code bias and receiver bias.
Generally, satellite code bias and receiver bias cannot be determined separately. Therefore, the total number of electrons in the vertical ionosphere is determined by the least squares method from a system of linear equations in which the sum of the satellite code bias and the receiver bias is unknown.
[0003]
However, this method has a problem that as the observation time interval of the carrier phase becomes shorter, the number of the unknowns increases, and the amount of calculation increases rapidly.
Further, in order to create a contour map, VTEC values in various parts of the country are required, so that it is necessary to install a large number of positioning satellite receivers. Therefore, it is required to efficiently measure the receiver bias for each receiver from the received data in a short time, but it is difficult to realize the bias by a conventional method using the least squares method.
[0004]
[Problems to be solved by the invention]
Accordingly, the present invention provides a method and an apparatus for easily obtaining a receiver bias for each positioning satellite receiver with a small amount of computation in a short time in view of the problems of the above-described conventional technology. The task is to
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method and an apparatus for measuring a positioning satellite receiver bias of the present invention utilize a known satellite code bias, and use only reception data of the positioning satellite receiver to perform positioning. The aim is to easily and efficiently obtain satellite receiver bias.
That is, two carrier waves having different frequencies from the positioning satellite are received by the positioning satellite receiver, and the total number of electrons in the ionosphere is estimated from both carrier phases and the pseudo distance between the positioning satellite and the positioning satellite receiver. In the method, the satellite code bias of the positioning satellite that has been measured in advance is used as the correction amount required when calculating the VTEC from the STEC, and the STEC and the elevation angle that the positioning satellite receiver looks up to the positioning satellite are used. Then, the positioning satellite receiver bias is obtained using a predetermined relational expression.
[0006]
Here, as the predetermined relational expression,
Vij (t) + Ri · sin θij (t) = (Sij (t) −Bj) · sin θij (t)
(However, the receiving point is i, the satellite is j, the time is t, the VTEC value is Vij (t), the receiver bias is Ri, the elevation angle from the receiving point i to the satellite j is θij (t), and the STEC value is Sij (t ), Satellite code bias is Bj)
May be used.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the means for measuring the receiver bias according to the present invention will be described with reference to the drawings. Here, a GPS satellite is mentioned as a navigation satellite, but the present invention can be used for any satellite used in the earth positioning system, such as a GLONASS satellite.
FIG. 1 shows the relationship between a GPS satellite and a GPS receiver. For simplicity, the ionosphere is represented by a flat plate model.
The GPS receiver (2) includes an external communication device and has input means for inputting a satellite code bias of a GPS satellite (1) measured or obtained in advance. Also, the apparent ionospheric total number of electrons (STEC) including the satellite code bias component and the receiver bias component measured by the GPS receiver (2), and the GPS satellite (1) from the GPS receiver (2). ) Is calculated from the elevation angle (θ) of the GPS receiver using a predetermined relational expression.
[0008]
The receiver bias at the receiving point i (3) of the GPS receiver (2) is Ri (8) (the solid line portion having the receiving point (3) as one end), and the satellite code bias of the GPS satellite j (1) is Bj (9). ) (Solid line with the satellite side at one end). The true vertical ionospheric total number of electrons (VTEC) Vij (t) (6) at time t is a satellite code bias component and a receiver bias component measured by the receiver (2), assuming a flat plate model. When looking at satellite j (1) from the receiving point i (3) and the total number of electrons in the ionosphere in the apparent line of sight (STEC) Sij (t) (7) + (8) + (9)) Is obtained as follows from the elevation angle θij (t).
Figure 0003598372
If the satellite code bias Bj is known, the value on the right side of equation (a), which is the apparent total number of electrons in the ionosphere in the vertical direction affected by the receiver bias (hereinafter, apparent VTEC), is calculated. . Therefore, the difference between the true VTEC, Vij (t), and the apparent VTEC is Ri · sin θij (t), which can be said to have an elevation angle characteristic with the receiver bias Ri as a coefficient, so-called θ dependence.
[0009]
Here, the satellite code bias Bj is published by the German DLR Institute and can be easily obtained via the Internet or the like.
Even if the satellite code bias Bj is not available, it is possible to obtain the satellite code bias Bj by solving by the least square method using some of the GPS receivers installed in Japan and overseas. it can.
Since the satellite code bias Bj is common at every receiving point on the earth for each satellite, this value can be used for other GPS receivers. Further, compared to the receiver bias, the value of the satellite code bias Bj is almost constant throughout the year without much change.
[0010]
From the above, assuming that the satellite code bias Bj is known, Bj is included in Sij (t) in equation (a),
Xij (t) = Sij (t) -Bj
Then, equation (a) becomes
Vij (t) = (Xij (t) −Ri) · sin θij (t) (b)
Is transformed. At time t = t ′, which is slightly delayed,
Vij (t ′) = (Xij (t ′) − Ri) · sin θij (t ′) (c)
And calculating
Figure 0003598372
It becomes.
[0011]
Usually, positioning satellites such as GPS satellites are not geostationary satellites but are orbiting earth satellites. Therefore, the same satellites can be seen from the ground for only a few hours. That is, the elevation angle θij (t) changes greatly in about several minutes. On the other hand, since the total number of electrons in the ionosphere is a natural phenomenon that increases and decreases with activities such as rising and falling of the sun, the fluctuation of the true vertical ionospheric total number of electrons Vij (t) is considerably slow. It can be considered almost constant in about several hours when the same satellite is visible.
In such a case, the value on the left side of the equation (d) can be regarded as almost 0, and the first and second terms on the right side can be calculated, so that the receiver bias Ri can be obtained.
[0012]
However, in practice, the true VTEC in one day changes variously depending on the azimuth and time of the GPS satellite to be observed, so that when t and t 'are separated to some extent, the value on the left side of the equation (d) is not necessarily changed. It cannot always be regarded as 0. However, the difference between the apparent VTEC obtained at a certain elevation angle θ 0 (reference elevation angle) and the apparent VTEC obtained at an arbitrary elevation angle θ is obtained by averaging all the GPS satellites. And the contribution of daily changes is reduced due to averaging. Therefore, only a difference due to the difference in the elevation angle occurs, and the receiver bias Ri (8) at the reception point i (3) can be accurately obtained.
[0013]
That is, for each GPS satellite, the elevation angle (θ) can be distinguished between the case where the satellite flies in a direction in which the elevation angle (θ) increases and the case in which the satellite flies in a direction in which the elevation angle (θ) decreases. The above-described averaging process is performed for each value of (θ) to calculate the elevation angle characteristics.
[0014]
The correction coefficient for the elevation angle (θ) is sin θ when the ionosphere is considered by a flat plate model, but when it is considered by a spherical shell model,
Figure 0003598372
(However, the radius of the earth is E, the height from the ground to the receiver is h, and the height from the ground to the ionosphere is H)
This is slightly more complicated than the flat plate model, but is actually closer to the ionospheric model especially at low elevation angles.
[0015]
As described above, by using the expression (a), the receiver bias can be measured for each receiver using only the known satellite code bias and the reception data of the GPS receiver (2).
Since almost only average value calculation is performed, the amount of calculation is small and the receiver bias can be easily obtained in a short time, so that a contour map can be created in a short time in real time. Also, the receiver bias may vary greatly depending on the manufacturer and model of the receiver, but it can still be obtained almost accurately.
[0016]
In order to reduce the measurement error of the receiver bias, it is preferable to collect observation data evenly from as many satellites as possible. In actual measurement, the reference elevation angle (θ 0 ) is set to about 35 °. It is suitable.
Also, in actually calculating the receiver bias from the elevation angle characteristics, it is considered that the observation range of the elevation angle (θ) is good from about 35 ° to about 65 °.
If the elevation angle (θ) is too low, a carrier wave from a GPS satellite is reflected by the ground surface, the sea surface, a building, or the like, and multipath is generated, so that it is difficult to obtain accurate data.
Also, as the elevation angle (θ) increases, the number of GPS satellites that can be observed decreases, so that the obtained elevation characteristics are strongly affected only by that specific satellite, and each satellite is observed evenly and averaged. It is difficult to make the measurement difficult, and the measurement error may increase.
[0017]
FIG. 2 shows an outline of a calculation unit in the receiver bias measurement device.
As shown in FIG. 2, the arithmetic unit 1 uses the pseudo distances C 1 and P 2 and the carrier wave phases L 1 and L 2 among the data output from the GPS receiver (the pseudo distance depends on the model of the receiver). distance There also addition to those that outputs P 1 C 1, the may be used P 1 instead of C 1 in this case), the total number of electrons apparent gaze direction (STEC) S (j, t ) calculate. Here, j represents the satellite number, and t represents the time (S (j, t) includes the satellite code bias and the receiver bias). Next, the sorting unit 1 controls the switching unit 1 to perform the subsequent processing according to the value of j regardless of the time t.
The arithmetic unit 2 calculates the elevation angle θ (j, t) of the satellite from the navigation message among the data output from the GPS receiver, and the sorting unit 2 switches to perform the subsequent processing according to this value. The control of the unit 2 is performed.
The calculation unit 3 calculates f (θ (j, t)) with respect to θ (j, t).
Each adder sets the initial value to 0 and accumulates the value each time data is input to the adder.
[0018]
Each increment unit 1 sets an initial value to 0 and increments by 1 each time data is input.
Each increment unit 2 sets an initial value to 0 and increments by one each time data is input to any of a plurality of inputs.
Each division unit divides two inputs.
[0019]
In FIG. 2, the processing on the right side of PP ′ is mainly a part for calculating the average value, and may be performed after the data output from the GPS receiver is completed.
Finally, the curve fitting calculation unit calculates R such that the sum of squares of the value of G (θ n ) −R · (f (θ n ) −f (θ 0 )) is minimized. Output as receiver bias.
[0020]
【The invention's effect】
The measuring method and device of the positioning satellite receiver bias of the present invention have the following effects by having the above-described configuration.
According to the method according to the first aspect or the apparatus according to the third aspect, the entire ionosphere in the line-of-sight direction measured by the positioning satellite receiver is utilized by utilizing the satellite code bias of the positioning satellite measured in advance. It is calculated from the number of electrons and the elevation angle from the positioning satellite receiver to the positioning satellite by using a predetermined relational expression.Therefore, with simple means, the receiver bias can be reduced for each positioning satellite receiver with a small amount of calculation. It can be obtained accurately in a short time.
Even when the navigation system is used for high-accuracy positioning using two frequencies, which is an original application of the navigation satellite system, the measurement accuracy can be improved when the receiver bias is corrected.
Further, the present invention can be applied not only to the positioning satellite receiver but also to other similar systems, for example, an all-regional positioning system using GLONASS satellites by Russia and the like.
[0021]
According to a method according to claim 2 or an apparatus according to claim 4, the relational expression
Figure 0003598372
(However, the receiving point is i, the satellite is j, the time is t, the VTEC value is Vij (t), the receiver bias is Ri, the elevation angle from the receiving point i to the satellite j is θij (t), and the STEC value is Sij (t ), Satellite code bias is Bj)
Since the receiver bias is obtained by using, the average value calculation is mainly performed, so the amount of calculation is greatly reduced, and the amount of data itself that must be held for the calculation can be reduced. The amount of internal memory inside can also be greatly reduced.
Further, it is easy to obtain an almost accurate receiver bias even for different manufacturers and different models.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a relationship between a positioning satellite and a positioning satellite receiver. FIG. 2 is an explanatory diagram showing an outline of calculation in a receiver bias measuring device.
Reference Signs List 1 positioning satellite 2 positioning satellite receiver 3 reception point 4 ionosphere 5 ground surface 6 total number of ionosphere electrons in vertical direction 7 total number of ionosphere electrons in line of sight 8 receiver bias 9 satellite code bias θ elevation angle

Claims (4)

測位用衛星からの周波数の異なる2つの搬送波を測位用衛星受信機によって受信し、その両搬送波位相と、測位用衛星と測位用衛星受信機との疑似距離から電離層全電子数を推定する方法において、
測位用衛星受信機によって測定された見かけの視線方向の電離層全電子数(STEC)から真の鉛直方向の電離層全電子数(VTEC)を計算する際に必要な補正量として、
予め測定または入手した測位用衛星の衛星コードバイアスを用いると共に、
測位用衛星受信機によって測定される見かけの視線方向の電離層全電子数(STEC)と、測位用衛星受信機から測位用衛星を仰ぐ仰角とから、所定の関係式を用いて測位用衛星受信機バイアスを求める
ことを特徴とする測位用衛星受信機バイアス測定方法。
In a method of receiving two carrier waves having different frequencies from a positioning satellite by a positioning satellite receiver, and estimating the total number of electrons in the ionosphere from both carrier wave phases and a pseudorange between the positioning satellite and the positioning satellite receiver. ,
As a correction amount necessary for calculating a true vertical ionospheric total electron number (VTEC) from an apparent line- of- sight ionospheric total electron number (STEC) measured by a positioning satellite receiver ,
While using the satellite code bias of the positioning satellite measured or obtained in advance,
From the apparent ionospheric total number of electrons (STEC) measured by the positioning satellite receiver and the elevation angle at which the positioning satellite receiver faces the positioning satellite, the positioning satellite receiver is determined using a predetermined relational expression. A method for measuring a bias of a satellite receiver for positioning , comprising determining a bias.
前記の所定関係式が、
Vij(t)+Ri・sinθij(t)=(Sij(t)−Bj)・sinθij(t)
(ただし、受信点がi、衛星がj、時刻がt、VTEC値がVij(t)、受信機バイアスがRi、受信点iから衛星jに対する仰角がθij(t)、STEC値がSij(t)、衛星コードバイアスがBj)
である請求項1に記載の測位用衛星受信機バイアスの測定方法。
The predetermined relational expression is:
Vij (t) + Ri · sin θij (t) = (Sij (t) −Bj) · sin θij (t)
(However, the receiving point is i, the satellite is j, the time is t, the VTEC value is Vij (t), the receiver bias is Ri, the elevation angle from the receiving point i to the satellite j is θij (t), and the STEC value is Sij (t ), Satellite code bias is Bj)
The method of measuring a positioning satellite receiver bias according to claim 1, wherein:
測位用衛星からの周波数の異なる2つの搬送波を測位用衛星受信機によって受信し、その両搬送波位相と、測位用衛星と測位用衛星受信機との疑似距離から電離層全電子数を推定する装置において、
測位用衛星受信機によって測定された見かけの視線方向の電離層全電子数(STEC)から真の鉛直方向の電離層全電子数(VTEC)を計算する際に必要な補正量として、
予め測定または入手した測位用衛星の衛星コードバイアスを入力する入力手段と、測位用衛星受信機によって測定される見かけの視線方向の電離層全電子数(STEC)と、測位用衛星受信機から測位用衛星を仰ぐ仰角とから、所定の関係式を用いて測位用衛星受信機バイアスを求める計算手段を備えた
ことを特徴とする測位用衛星受信機バイアスの測定装置。
In a device for receiving two carriers having different frequencies from a positioning satellite by a positioning satellite receiver and estimating the total number of electrons in the ionosphere from both carrier wave phases and a pseudorange between the positioning satellite and the positioning satellite receiver. ,
As a correction amount necessary for calculating a true vertical ionospheric total electron number (VTEC) from an apparent line- of- sight ionospheric total electron number (STEC) measured by a positioning satellite receiver ,
Input means for inputting a satellite code bias of a positioning satellite measured or obtained in advance; an apparent ionospheric total number of electrons (STEC) measured by a positioning satellite receiver; An apparatus for measuring a positioning satellite receiver bias, comprising: calculating means for calculating a positioning satellite receiver bias using a predetermined relational expression from an elevation angle of a satellite.
前記の所定関係式が、
Vij(t)+Ri・sinθij(t)=(Sij(t)−Bj)・sinθij(t)
(ただし、受信点がi、衛星がj、時刻がt、VTEC値がVij(t)、受信機バイアスがRi、受信点iから衛星jに対する仰角がθij(t)、STEC値がSij(t)、衛星コードバイアスがBj)
である請求項3に記載の測位用衛星受信機バイアスの測定装置。
The predetermined relational expression is:
Vij (t) + Ri · sin θij (t) = (Sij (t) −Bj) · sin θij (t)
(However, the receiving point is i, the satellite is j, the time is t, the VTEC value is Vij (t), the receiver bias is Ri, the elevation angle from the receiving point i to the satellite j is θij (t), and the STEC value is Sij (t ), Satellite code bias is Bj)
4. The measuring device for positioning satellite receiver bias according to claim 3, wherein:
JP2001234490A 2001-08-02 2001-08-02 Measurement method and apparatus for positioning satellite receiver bias Expired - Lifetime JP3598372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234490A JP3598372B2 (en) 2001-08-02 2001-08-02 Measurement method and apparatus for positioning satellite receiver bias

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234490A JP3598372B2 (en) 2001-08-02 2001-08-02 Measurement method and apparatus for positioning satellite receiver bias

Publications (2)

Publication Number Publication Date
JP2003043128A JP2003043128A (en) 2003-02-13
JP3598372B2 true JP3598372B2 (en) 2004-12-08

Family

ID=19066092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234490A Expired - Lifetime JP3598372B2 (en) 2001-08-02 2001-08-02 Measurement method and apparatus for positioning satellite receiver bias

Country Status (1)

Country Link
JP (1) JP3598372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441795A (en) * 2019-08-13 2019-11-12 苏州时空复弦网络科技有限公司 A kind of regional ionosphere VTEC Precise modeling based on space-time structure information

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745144B2 (en) * 2006-06-14 2011-08-10 株式会社東芝 Ionosphere model correction method
JP4861226B2 (en) * 2007-03-29 2012-01-25 株式会社東芝 Inter-frequency bias estimation apparatus and inter-frequency bias estimation method
FR2914430B1 (en) * 2007-03-29 2011-03-04 Centre Nat Detudes Spatiales Cnes PROCESS FOR PROCESSING RADIONAVIGATION SIGNALS.
JP4922260B2 (en) * 2008-07-17 2012-04-25 株式会社東芝 Satellite bias and receiver bias estimation methods
US9091757B2 (en) * 2008-08-19 2015-07-28 Trimble Navigation Limited GNSS atmospheric estimation with federated ionospheric filter
CN106405589A (en) * 2016-06-24 2017-02-15 西安科技大学 Method and device for determining global ionized layer grid model
CN117055079B (en) * 2023-10-12 2023-12-22 中国科学院国家空间科学中心 Method and device for determining total electron content, electronic equipment and readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441795A (en) * 2019-08-13 2019-11-12 苏州时空复弦网络科技有限公司 A kind of regional ionosphere VTEC Precise modeling based on space-time structure information
CN110441795B (en) * 2019-08-13 2022-01-04 苏州时空复弦网络科技有限公司 Time-space structure information-based accurate modeling method for ionosphere VTEC (virtual volume control) in China area

Also Published As

Publication number Publication date
JP2003043128A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US10078140B2 (en) Navigation satellite system positioning involving the generation of advanced correction information
Zhang Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment
JP7153427B2 (en) POSITIONING METHOD AND POSITIONING DEVICE USING SATELLITE POSITIONING SYSTEM
US6407703B1 (en) Multi-platform geolocation method and system
CN108919634A (en) A kind of three non-non-combined observation Time Transmission system and method for difference of frequency of Beidou
Zheng et al. Multipath extraction and mitigation for high-rate multi-GNSS precise point positioning
US6356232B1 (en) High resolution ionospheric technique for regional area high-accuracy global positioning system applications
CN111505685B (en) Positioning method of multisystem combination RTK model based on correcting intersystem deviation
JP2010528320A (en) Reduction of distance-dependent error in real-time kinematic (RTK) positioning
US9389317B2 (en) Method and apparatus for determining position in a global navigation satellite system
US11209552B2 (en) Method and apparatus for improving the quality of position determination using GNSS data
US9391366B2 (en) Method and device for calibrating a receiver
US10830898B2 (en) Method and apparatus applicable to positioning in NLOS environment
JPWO2006121023A1 (en) Positioning device and positioning system
US6844847B2 (en) Method and device for instantaneous determination of orientation, based on satellite positioning signals
JP3598372B2 (en) Measurement method and apparatus for positioning satellite receiver bias
WO2016141030A1 (en) Gnss cooperative receiver system
EP3667369A1 (en) Positioning system for a land vehicle and method for computing high-precision gnss positions of a land vehicle
KR100899545B1 (en) All-in-view time transfer by use of code and carrier phase measurements of GNSS satellites
CN117289312A (en) Smart phone pseudo-range differential positioning and weighting method based on optimal satellite subset
KR100305714B1 (en) Development of DGPS positioning accuracy improvement system via local area ionospheric time delay model
JP2003500656A (en) Apparatus and method for determining receiver position
US20200386896A1 (en) Single-epoch pseudo-range positioning under varying ionosphere delays
US7259717B2 (en) Method and device for determining the relative position of two points
RU2364884C2 (en) Method for determination of angular orientation of object

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3598372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term