JP3597243B2 - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP3597243B2
JP3597243B2 JP1702495A JP1702495A JP3597243B2 JP 3597243 B2 JP3597243 B2 JP 3597243B2 JP 1702495 A JP1702495 A JP 1702495A JP 1702495 A JP1702495 A JP 1702495A JP 3597243 B2 JP3597243 B2 JP 3597243B2
Authority
JP
Japan
Prior art keywords
power
power supply
power storage
voltage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1702495A
Other languages
Japanese (ja)
Other versions
JPH08206642A (en
Inventor
仁史 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP1702495A priority Critical patent/JP3597243B2/en
Publication of JPH08206642A publication Critical patent/JPH08206642A/en
Application granted granted Critical
Publication of JP3597243B2 publication Critical patent/JP3597243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Making Beverages (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【産業上の利用分野】
本発明は浄水器に関し、特に、浄水器内の濾過材の交換時期を電気的に表示する機能を備えた浄水器に関する。
【0002】
【従来の技術】
従来、家庭用又は業務用の浄水器においては、内部の濾過材が交換時期になったときに電気的に表示するものが提供されている。このような浄水器には、浄水器での浄水量の積算値を継続的に計測し、その積算値から濾過材の交換時期を判断するために電子回路が設けられており、通常、その電源としては電灯線からの電力や乾電池又はボタン電池が用いられている。
【0003】
【発明が解決しようとする課題】
このような浄水器において、水道の蛇口から離れて設置される据置型の浄水器にあっては電灯線からの配線がそれほど支障にならないが、水道の蛇口に直に取付けられる蛇口直結型の浄水器では浄水器への電力配線及び耐電圧保護の面から電灯線からの給電が難しく、電源として主に小型電池が用いられる。しかし、電源として電池を用いた場合には定期的な電池交換を必要とするという煩わしさがある。また、電池交換を容易にすると同時に電池交換部分の耐水性を保障するために浄水器自体の構造が難しくなってしまう。
そこで本発明の目的は、濾過材の交換時期を電気的に表示する浄水器において、外部からの電力供給や電池交換を必要としない浄水器を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下のような形態を採用する。
本発明によれば、水路内の水流を動力にして生成した流量信号から浄水量を計測し、その浄水量の積算値が所定量になったとき、上記水路内に設けられた濾過材の交換時期を示す交換信号を生成する信号処理手段と、この交換信号に基づいて濾過材の交換時期を表示する表示手段と、複数の蓄電手段を有し、信号処理手段及び表示手段に電力を供給する電源手段と、電源手段の出力電圧を監視する電圧監視手段と、水路内の水流を動力にして発電する発電手段と、発電手段にて発電した電力を各蓄電手段に蓄える充電手段と、電源手段の出力電圧の大きさに従って蓄電手段どうしの接続形態を変更する電源制御手段とを備えて浄水器を構成する。
【0005】
尚、本発明に係る好ましい実施態様においては、電圧監視手段が電源手段の出力電圧を少なくとも2つの電圧値を用いて監視し、これら電圧値の内の高い方の電圧値を検出した場合には蓄電手段全体の蓄電容量を大きくするように蓄電手段どうしの接続形態を変更し、これら電圧値の内の低い方の電圧値を検出した場合には蓄電手段全体の蓄電容量を小さくするように接続形態を変更することが好ましい。
【0006】
また、電源制御手段が各蓄電手段どうしの接続形態を変えて蓄電手段全体の蓄電容量を大きくした後、電源手段の出力電圧が蓄電手段の飽和状態に相当する電圧になったときに各蓄電手段への充電動作を抑止することが好ましい。
また、信号処理手段内に積算値を格納するための記憶手段を設けた場合、電源制御手段が蓄電手段どうしの接続形態を変更して蓄電手段全体の蓄電容量を小さくした後、電源手段の出力電圧が所定電圧値に低下したとき、電源制御手段が電圧低下信号を信号処理手段に供給し、記憶手段に対して優先的に電源供給させることが好ましい。
【0007】
【作用】
上記構成によれば、浄水器の使用時、信号処理手段が浄水量の積算値を継続的に計測し、その積算値が所定量に達したときに交換信号が生成される。一方、浄水器内の水流を動力にして発電手段が電力を生成し、その電力が充電手段を通して各蓄電手段に蓄えられる。これにより発電手段で生成された電力及び各蓄電手段に蓄えられた電力が浄水器の電源として用いられる。その結果、上記交換信号が生成されたとき、この電源により濾過材の交換時期が表示手段で電気的に表示され得る。
【0008】
また、電圧監視手段が電源手段の出力電圧を監視し、その出力電圧に応じて電源制御手段が蓄電手段どうしの接続形態を変更するので、各蓄電手段の充放電により電源手段の出力電圧に変動が生じても電源手段からの出力電圧が常に適切な範囲に保証されると共に、各蓄電手段が効率的に充電され得る。例えば、蓄電手段どうしの接続形態毎に2つの出力電圧値を監視することで、その接続形態毎に適切な出力電圧範囲及び効率的な充電形態が実現され得る。
【0009】
更に、上記出力電圧範囲内の高い方の電圧値を監視することにより、蓄電手段の過充電を防止することができる。また、電源手段の出力電圧の低下に従って蓄電手段どうしの接続形態を変更しつつ所定の電圧値を監視し、その所定電圧値となったときに電圧低下信号を信号処理手段に与えて電力供給先を制限することにより、信号処理手段内で生成された積算値が記憶手段内で優先的に且つ長時間保存される。
【0010】
【実施例】
以下、本発明に係る浄水器の一実施例を図面と共に説明する。
図1は、本浄水器10内の各電気回路部の関係を概略的に示したものである。
本浄水器10は、浄水器内の水流を動力にして生成した起電力を複数の蓄電池に蓄えて各部に電力供給する電源部20と、電源部20からの出力電圧を監視し、その出力電圧値に基づいて蓄電池の接続形態及び充電電圧を変更する電源制御部30と、浄水器10内で処理される浄水量を継続的に計測して積算値を算出し、その積算値を基に浄水器内の濾過材の交換時期を判別する信号処理部40と、信号処理部40からの表示信号に基づいて濾過材が交換時期であることを表示する表示部50とを備えている。
【0011】
上記電源部20に設けられる各蓄電池21は、ニッケル・カドミウム蓄電池等、充電可能な二次電池の集合体であり、電源制御部30からの接続切替信号に基づいて蓄電池どうしの接続形態が変更される。これら蓄電池21に電力を蓄えるために、電源部20には浄水器内の水流を動力にして発電する水力発電部22と、蓄電池の各接続形態に応じた充電電圧で蓄電池を充電する充電部23とが設けられている。
【0012】
更に、充電部23には過充電防止回路24が設けられており、例えば電源部20の出力電圧が蓄電池の飽和状態に相当する電圧値になったとき、電源制御部30からの過充電防止信号に応答して蓄電池への充電電流を遮断する。また、電源制御部30は、電源部20の出力電圧が所定値以下に低下したときに電圧低下信号を信号処理部40に提供し、信号処理部40内で算出した積算値等のデータが長時間保存されるように電力供給先を制限させる。
【0013】
次に、図2を用いて上記各部の構成を説明する。
本浄水器10は、取水部11が水道の蛇口に直結される蛇口直結型の浄水器であり、「原水/浄水」切替レバー12が「浄水」側にあるときに水道水がフィルター13に送られ、水路14を通して浄水を提供する。
【0014】
電源部20の水力発電機22は、水路14に設けられた水車25と、水車25の回転軸に永久磁石が取付けられた回転子26と、鉄心及び巻線から構成され、回転子26が回転することで起電力を生成する固定子27とを備えている。
尚、本実施例においては、水力発電機22で生成された起電力が、一方では充電部23や各部に電源用として供給され、他方では浄水の流量信号aとして信号処理部40に供給されるように構成されているが、電源部20及び信号処理部40の各々が専用の水車を異なる位置に備えるようにしてもよい。
また、図2の点線で示されるように原水及び浄水の両方が流れる位置に水車を設けた場合には、「原水/浄水」切替レバー12に連動するスイッチ15を介して浄水時にだけ流量信号が信号処理部40に供給される。
【0015】
信号処理部40は、電源制御部30を含めてワンチップのマイクロコンピュータで実現することができる。信号処理部40には、水力発電機22から交番電圧で供給される流量信号aを矩形波に波形整形し、そのエッジをカウントすることで浄水量を計測する浄水量計測部41と、その浄水量の積算値を継続的に算出して濾過材の交換時期を判別する演算制御部42と、演算制御部42で実行するプログラムやその係数、並びに生成したデータを格納するROM及びRAMを備えた記憶部43とが設けられている。
【0016】
濾過材の交換時期は、使用される濾過材に対して予め設定されている総浄水量と上記算出した積算値とを比較して、その積算値が総浄水量を越えたとき、又は積算値が総浄水量に近づいたときに判別される。濾過材が交換時期であると判別した場合、演算制御部42は、表示信号bを生成して表示部50に供給し、浄水器表面に設けた発光ダイオード51を点滅又は点灯させる。
【0017】
本実施例において表示部50は、浄水器の外面に1個の発光ダイオードを耐水保護して設けているが、その他、液晶表示器を設けて常に現在の積算値を表示するようにしてもよい。また、複数個の発光ダイオードと、その近傍に2つスイッチとを設けて、一方のスイッチの操作時には現在の積算値を段階的に表示し、両方のスイッチの同時操作時には積算値をリセットするようにしてもよい。
【0018】
更に、濾過材の交換時期又は浄水量の積算値を表示するとき、上記流量信号aの存在を基に当該蛇口の使用状態を判別し、当該蛇口の使用時、つまり流量信号aが生成されているときには表示動作を行い、流量信号aが無くなり、蛇口の使用が終了したときには、流量信号消滅後、所定時間だけ表示するようにしてもよい。これにより蛇口近傍に人がいると予想されるときにだけ表示動作が行われ得るので蓄電池21の電力が節約され得る。
【0019】
次に、電源部20の水力発電機22で生成した起電力を蓄電池に充電するための構成について説明する。
図2において水力発電機22で生成された起電力は、充電部23に供給される。充電部23は、コンデンサ及びダイオード等からなる倍電圧充電回路により構成されており、且つ、蓄電池の各接続形態に応じて充電電圧及び充電電流が変更可能に構成されている。
【0020】
図3は、充電部23及び蓄電池21の構成例を示したものである。
充電部の充電回路230 は、複数段の整流回路で構成されており、その入力端子 C1, C2 に水力発電機22から起電力mが供給されることにより、充電用端子 C3, C4 間に起電力mの整数倍の充電用電圧m1m, m2m, m3m …mNmを提供する。充電用端子 C3, C4 に提供される各充電電圧mNm,及び充電用端子に至る各経路上の充電抵抗Rは、蓄電池の各接続形態に対応されており、電源制御部30からの接続切替信号cによりスイッチSが駆動されることで変更される。
【0021】
一方、蓄電池回路210 は、各蓄電池G間にスイッチXN,N,を介して構成されており、各スイッチの導通状態に応じて直列接続, 並列接続, 及び直並列接続の内のいずれかの形態に形成される。各蓄電池の接続形態も充電回路230 と同様、電源制御部30からの接続切替信号cにより対応のスイッチが駆動されることで決定される。例えば、蓄電池回路210 のスイッチX及びZが全て導通状態に駆動され、且つスイッチYが全て非導通状態に駆動された場合、蓄電池は並列接続に形成される。これと同時に充電回路230 ではスイッチSからSが全て非導通状態に駆動され、上記各蓄電池には起電力mの2倍の電圧m2mが印加される。
【0022】
このような蓄電池の接続形態及び充電電圧の接続切替は、電源制御部30内で例えば以下のように選択される。
電源制御部30は、通常、電源部20からの出力電圧を継続的に監視しており、浄水器10が長時間にわたり使用されないときには出力電圧の低下を補償し、反対に浄水器10の使用中は、各蓄電池を効率的に充電させたり過充電を防止する。そのために電源制御部30には電圧監視回路31が設けられており、複数の閾値を用いて適当な出力電圧範囲を規定し、出力電圧がその範囲から外れたときに蓄電池の接続形態及び充電電圧を適宜変更するようにしている。
【0023】
例えば、全ての蓄電池が十分に充電された後、しばらく浄水器10が使用されないときには、積算値表示等の通常的な電力消費により電源部20の出力電圧は次第に低下する。そして時間経過とともに電源部20の出力電圧が上記出力電圧範囲の下方値に達した場合には、電源制御部30が蓄電池回路210 及び充電回路230 に対して接続切替信号cを一括的に出力する。これにより蓄電池回路210 では蓄電池の接続形態が並列接続から直並列接続に変更され、また充電回路230 では充電電圧が高くされる。その結果、蓄電池全体の蓄電池容量は減少するが、電源部20からの出力電圧は高くなる。
【0024】
その後、浄水器の非使用状態が更に続き、電源部20からの出力電圧が再び上記電圧範囲の下方値まで低下した場合には、更なる接続切替信号cにより蓄電池の接続形態を直列接続に変更すると同時に、充電回路230 内の充電電圧を更に高い値に変更する。そして、その後も非使用状態が続き、例えば電源部20の出力電圧が上記電圧範囲内又は電圧範囲以下の所定値まで低下した場合には、電源制御部30が電圧低下信号dを信号処理部40に提供し、生成した浄水量の積算値の保存等、濾過材の交換表示のために最小限必要な電力だけが電源部20から各部に供給されるようにする。
【0025】
一方、浄水器10の使用中に蓄電池21が充電される場合には、電源部20の出力電圧が上記出力電圧範囲の上方値に達する毎に電源制御部30が接続切替信号を生成し、蓄電池の接続形態を直列接続, 直並列接続, 並列接続の順番で変更すると共に、その接続形態に応じて充電回路230 内の充電電圧を変更する。しかし、全体的な蓄電池容量が最大である並列接続にあるときに電源部20の出力電圧が上記電圧範囲の上方値を越えて蓄電池の飽和状態に相当する電圧になった場合には、電源制御部30が過電圧防止信号eを充電回路230 のスイッチSeに供給して各蓄電池への充電電流を抑止する。
【0026】
尚、上述の蓄電池の接続形態及び充電電圧等の変更条件及び手順は、例示的なものであり、使用する蓄電池の種類や個数, 並びに出力電圧の供給先である各部の許容電圧や消費電力等に基づいて適宜決定される。例えば蓄電池回路210 を6個の蓄電池で構成した場合には、直列接続, 並列接続の他に複数の直並列接続を実現することができ、各接続形態毎に最適な電圧範囲が設定され得る。
【0027】
また、上記積算値や各データの保存を更に保障するために、このような複数の蓄電池の他に別途リチウム電池を専用予備電源として蓄電池回路210 に設け、信号処理部40の動作が不可能となる前に予備電源に切替えるようにしてもよい。
更に、浄水器表面に太陽電池を設け、上記水力発電機22からの起電力に加え、太陽電池からの起電力も同時に蓄えるようにしても構わない。
【0028】
【発明の効果】
以上のように、本発明によれば、浄水器内の水流を動力として発電した電力を電源として利用するので、交換用の電池を含めて外部からの電力供給を必要とすることなく濾過材の交換表示を行うことができ、構造的にも簡単なコンパクトな浄水器を低コストで実現することができる。
しかも、浄水器内の電源部に複数の蓄電池を設け、電源部の出力電圧を継続的に監視して各蓄電池の接続形態及び充電電圧を変更するようにしているので、安定した電力供給が長時間保証され、浄水器の使用間隔が比較的長い場合でも対応することができる。
更に、本浄水器は、電池交換等の際に予想される感電事故や浄水器内部への水損が回避されるので、浄水器が取付けられる状況下での安全性をも提供することができる。
【図面の簡単な説明】
【図1】本発明に係る浄水器の電気回路構成を示したブロック図である。
【図2】図1に示した浄水器の各部の構成を示したブロック図である。
【図3】図2の充電回路及び蓄電池回路を示した回路図である。
【符号の説明】
10…浄水器
11…取水部
12…「原水/浄水」切替レバー
13…フィルター
14…水路
15…スイッチ
20…電源部
21…蓄電池集合体
22…発電部
23…充電部
24…過充電防止回路
25…水車
26…回転子
27…固定子
30…電源制御部
31…電圧監視回路
40…信号制御部
41…浄水量計測部
42…演算部
43…記憶部
50…表示部
51…発光ダイオード
[0001]
[Industrial applications]
The present invention relates to a water purifier, and more particularly, to a water purifier having a function of electrically indicating a replacement time of a filter in the water purifier.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in household or commercial water purifiers, there has been provided a water purifier for electrically displaying when a filter material inside is replaced. Such a water purifier is provided with an electronic circuit for continuously measuring the integrated value of the amount of purified water in the water purifier and judging the replacement time of the filter medium from the integrated value. For example, electric power from a power line, a dry battery or a button battery is used.
[0003]
[Problems to be solved by the invention]
In such a water purifier, in the case of a stationary water purifier installed away from a water tap, wiring from a power line does not hinder so much. It is difficult to supply power from a power line to the water purifier in terms of power wiring to the water purifier and withstand voltage protection, and small batteries are mainly used as a power source. However, when a battery is used as a power source, there is an annoyance that periodic battery replacement is required. In addition, the structure of the water purifier itself becomes difficult in order to facilitate battery replacement and at the same time ensure the water resistance of the battery replacement part.
Therefore, an object of the present invention is to provide a water purifier that does not require external power supply or battery replacement in a water purifier that electrically indicates the replacement time of a filter medium.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following modes.
According to the present invention, the amount of purified water is measured from a flow rate signal generated by using the water flow in the waterway as a power source, and when the integrated value of the purified water amount reaches a predetermined amount, replacement of the filtering material provided in the waterway is performed. A signal processing means for generating an exchange signal indicating a time; a display means for displaying a replacement time of the filter medium based on the exchange signal; and a plurality of power storage means, supplying power to the signal processing means and the display means. A power supply means, a voltage monitoring means for monitoring an output voltage of the power supply means, a power generation means for generating power by using a water flow in the water channel, a charging means for storing the power generated by the power generation means in each power storage means, and a power supply means And a power supply control means for changing a connection form between the power storage means according to the magnitude of the output voltage of the water purifier.
[0005]
In a preferred embodiment according to the present invention, the voltage monitoring means monitors the output voltage of the power supply means using at least two voltage values, and detects a higher one of these voltage values. The connection configuration between the power storage means is changed so as to increase the power storage capacity of the entire power storage means, and when the lower voltage value of these voltage values is detected, the connection is performed so as to reduce the power storage capacity of the entire power storage means. It is preferable to change the form.
[0006]
Further, after the power supply control means changes the connection form between the power storage means to increase the power storage capacity of the power storage means as a whole, when the output voltage of the power supply means reaches a voltage corresponding to the saturation state of the power storage means, It is preferable to suppress the charging operation to the battery.
In the case where a storage means for storing the integrated value is provided in the signal processing means, the power supply control means changes the connection form between the power storage means to reduce the power storage capacity of the whole power storage means, and then outputs the power of the power supply means. It is preferable that when the voltage drops to a predetermined voltage value, the power supply control means supplies a voltage reduction signal to the signal processing means to supply power to the storage means preferentially.
[0007]
[Action]
According to the above configuration, when the water purifier is used, the signal processing means continuously measures the integrated value of the purified water amount, and generates an exchange signal when the integrated value reaches a predetermined amount. On the other hand, the power generation means generates electric power using the water flow in the water purifier as power, and the electric power is stored in each power storage means through the charging means. Thereby, the electric power generated by the power generation means and the electric power stored in each power storage means are used as the power source of the water purifier. As a result, when the exchange signal is generated, the replacement time of the filter medium can be electrically displayed on the display means by the power supply.
[0008]
Further, the voltage monitoring means monitors the output voltage of the power supply means, and the power supply control means changes the connection form between the power storage means according to the output voltage. , The output voltage from the power supply means is always guaranteed in an appropriate range, and each power storage means can be charged efficiently. For example, by monitoring two output voltage values for each connection mode between power storage means, an appropriate output voltage range and an efficient charging mode can be realized for each connection mode.
[0009]
Further, by monitoring the higher voltage value in the output voltage range, overcharging of the power storage means can be prevented. In addition, a predetermined voltage value is monitored while changing the connection form between the power storage means according to the decrease in the output voltage of the power supply means, and when the predetermined voltage value is reached, a voltage reduction signal is given to the signal processing means to supply the power Is limited, the integrated value generated in the signal processing means is preferentially stored in the storage means for a long time.
[0010]
【Example】
Hereinafter, an embodiment of a water purifier according to the present invention will be described with reference to the drawings.
FIG. 1 schematically shows the relationship between the electric circuits in the water purifier 10.
The water purifier 10 monitors an output voltage from the power supply unit 20 and an output voltage from the power supply unit 20 for storing electromotive force generated by motive power of a water flow in the water purifier and supplying power to each unit by storing the electromotive force in the plurality of storage batteries. The power supply control unit 30 that changes the connection form and charging voltage of the storage battery based on the value, continuously measures the amount of purified water that is processed in the water purifier 10, calculates an integrated value, and purifies water based on the integrated value. The apparatus includes a signal processing unit 40 for determining a time for replacing the filter material in the vessel, and a display unit 50 for displaying that the filter material is to be replaced based on a display signal from the signal processing unit 40.
[0011]
Each storage battery 21 provided in the power supply unit 20 is an aggregate of rechargeable secondary batteries such as a nickel-cadmium storage battery, and the connection form between the storage batteries is changed based on a connection switching signal from the power supply control unit 30. You. In order to store electric power in these storage batteries 21, a power supply unit 20 includes a hydraulic power generation unit 22 that generates electric power using a water flow in a water purifier, and a charging unit 23 that charges the storage batteries with a charging voltage corresponding to each connection mode of the storage batteries. Are provided.
[0012]
Further, the charging section 23 is provided with an overcharge prevention circuit 24. For example, when the output voltage of the power supply section 20 reaches a voltage value corresponding to the saturation state of the storage battery, an overcharge prevention signal from the power supply control section 30 is provided. To shut off the charging current to the storage battery. In addition, the power supply control unit 30 provides a voltage reduction signal to the signal processing unit 40 when the output voltage of the power supply unit 20 falls below a predetermined value, and the data such as the integrated value calculated in the signal processing unit 40 is long. The power supply destination is restricted so that the time is saved.
[0013]
Next, the configuration of each of the above components will be described with reference to FIG.
The water purifier 10 is a faucet direct connection type water purifier in which the water intake unit 11 is directly connected to a tap of a tap. When the “raw water / purified water” switching lever 12 is on the “purified water” side, tap water is sent to the filter 13. And provide purified water through the water channel 14.
[0014]
The hydraulic power generator 22 of the power supply unit 20 includes a water turbine 25 provided in the water channel 14, a rotor 26 having a permanent magnet mounted on a rotating shaft of the water turbine 25, an iron core and windings, and the rotor 26 rotates. And a stator 27 that generates an electromotive force.
In this embodiment, the electromotive force generated by the hydroelectric generator 22 is supplied to the charging unit 23 and each unit for power supply on the one hand, and is supplied to the signal processing unit 40 as a purified water flow signal a on the other hand. Although configured as described above, each of the power supply unit 20 and the signal processing unit 40 may include a dedicated water turbine at a different position.
When a water wheel is provided at a position where both raw water and purified water flow as shown by the dotted line in FIG. 2, the flow signal is generated only at the time of water purification via the switch 15 linked to the “raw water / purified” switching lever 12. The signal is supplied to the signal processing unit 40.
[0015]
The signal processing unit 40 can be realized by a one-chip microcomputer including the power control unit 30. The signal processing unit 40 includes a water purification amount measurement unit 41 that shapes the flow signal a supplied from the hydroelectric generator 22 at an alternating voltage into a rectangular wave and measures the water purification amount by counting edges thereof, An arithmetic control unit 42 for continuously calculating the integrated value of the amount to determine the time to replace the filter medium, and a ROM and a RAM for storing the program executed by the arithmetic control unit 42, its coefficients, and the generated data. A storage unit 43 is provided.
[0016]
The replacement time of the filter medium is compared with the total water amount previously set for the filter medium to be used and the integrated value calculated above, and when the integrated value exceeds the total purified water amount, or the integrated value Is determined when approaches the total purified water amount. When it is determined that it is time to replace the filter material, the arithmetic and control unit 42 generates a display signal b and supplies the display signal b to the display unit 50, and causes the light emitting diode 51 provided on the surface of the water purifier to blink or light.
[0017]
In the present embodiment, the display unit 50 is provided with one light-emitting diode on the outer surface of the water purifier in a water-resistant manner. Alternatively, a liquid crystal display may be provided to always display the current integrated value. . Further, a plurality of light emitting diodes and two switches are provided in the vicinity thereof, so that when one switch is operated, the current integrated value is displayed in a stepwise manner, and when both switches are simultaneously operated, the integrated value is reset. It may be.
[0018]
Furthermore, when the filter material replacement time or the integrated value of the purified water amount is displayed, the use state of the faucet is determined based on the presence of the flow signal a, and when the faucet is used, that is, the flow signal a is generated. When the faucet is used and the flow signal a disappears and the use of the faucet ends, the display operation may be performed for a predetermined time after the flow signal disappears. Accordingly, the display operation can be performed only when it is expected that a person is near the faucet, so that the power of the storage battery 21 can be saved.
[0019]
Next, a configuration for charging the storage battery with the electromotive force generated by the hydroelectric generator 22 of the power supply unit 20 will be described.
In FIG. 2, the electromotive force generated by the hydroelectric generator 22 is supplied to the charging unit 23. The charging unit 23 is configured by a voltage doubler charging circuit including a capacitor, a diode, and the like, and is configured such that a charging voltage and a charging current can be changed according to each connection mode of the storage battery.
[0020]
FIG. 3 shows a configuration example of the charging unit 23 and the storage battery 21.
The charging circuit 230 of the charging section is composed of a plurality of stages of rectifier circuits. The electromotive force m is supplied from the hydroelectric generator 22 to the input terminals C1 and C2 of the charging circuit 230, thereby generating a voltage between the charging terminals C3 and C4. Provide charging voltages m 1m , m 2m , m 3m ... M Nm that are integral multiples of the power m. Charging resistor R N on each route to each charging voltage m Nm, and charging terminals are provided to the charging terminals C3, C4 is corresponding to the topology of the storage battery, the connection from the power control unit 30 This is changed by driving the switch SN by the switching signal c.
[0021]
On the other hand, the storage battery circuit 210, switch X N between the storage batteries G N, Y N, is configured through Z N, the series connection in accordance with the conduction state of each switch, connected in parallel, and of the series-parallel connection It is formed in any form. Similarly to the charging circuit 230, the connection mode of each storage battery is determined by driving the corresponding switch by the connection switching signal c from the power supply control unit 30. For example, if the switches X N and Z N of the storage battery circuit 210 are all driven to a conductive state and the switches Y N are all driven to a non-conductive state, the storage batteries are formed in a parallel connection. At the S N from the switch S 2 in the charging circuit 230 at the same time is driven all the non-conducting state, the above-described battery voltage twice m 2m of the electromotive force m is applied.
[0022]
The connection mode of the storage battery and the connection switching of the charging voltage are selected in the power supply control unit 30 as follows, for example.
Normally, the power supply control unit 30 continuously monitors the output voltage from the power supply unit 20, and compensates for a decrease in the output voltage when the water purifier 10 is not used for a long time. Can efficiently charge each storage battery and prevent overcharge. For this purpose, the power supply control unit 30 is provided with a voltage monitoring circuit 31 which defines an appropriate output voltage range using a plurality of thresholds, and when the output voltage is out of the range, the connection form of the storage battery and the charging voltage. Is changed as appropriate.
[0023]
For example, when the water purifier 10 is not used for a while after all the storage batteries are sufficiently charged, the output voltage of the power supply unit 20 gradually decreases due to normal power consumption such as an integrated value display. When the output voltage of the power supply unit 20 reaches the lower value of the output voltage range as time elapses, the power supply control unit 30 outputs the connection switching signal c to the storage battery circuit 210 and the charging circuit 230 collectively. . As a result, the connection form of the storage batteries is changed from parallel connection to series-parallel connection in the storage battery circuit 210, and the charging voltage is increased in the charging circuit 230. As a result, the storage battery capacity of the entire storage battery decreases, but the output voltage from the power supply unit 20 increases.
[0024]
Thereafter, when the non-use state of the water purifier continues further, and the output voltage from the power supply unit 20 decreases again to the lower value of the voltage range, the connection mode of the storage battery is changed to the serial connection by a further connection switching signal c. At the same time, the charging voltage in the charging circuit 230 is changed to a higher value. Then, the non-use state continues thereafter. For example, when the output voltage of the power supply unit 20 falls to a predetermined value within the above-mentioned voltage range or below the voltage range, the power supply control unit 30 sends the voltage drop signal d to the signal processing unit 40. And the power supply unit 20 supplies only the minimum power required for the display of replacement of the filter medium, such as storage of the integrated value of the generated purified water amount.
[0025]
On the other hand, when the storage battery 21 is charged while the water purifier 10 is in use, the power supply control unit 30 generates a connection switching signal each time the output voltage of the power supply unit 20 reaches an upper value of the output voltage range, and the storage battery 21 is charged. Are changed in the order of series connection, series-parallel connection, and parallel connection, and the charging voltage in the charging circuit 230 is changed according to the connection mode. However, when the output voltage of the power supply unit 20 exceeds the upper limit of the above voltage range and becomes a voltage corresponding to the saturation state of the storage battery when the overall storage capacity is in the parallel connection with the maximum capacity, the power supply control is performed. The unit 30 supplies the overvoltage prevention signal e to the switch Se of the charging circuit 230 to suppress the charging current to each storage battery.
[0026]
Note that the above-described conditions and procedures for changing the connection form of the storage battery and the charging voltage and the like are merely examples, and the type and number of storage batteries to be used, and the allowable voltage and power consumption of each unit to which the output voltage is supplied. Is appropriately determined based on For example, when the storage battery circuit 210 is composed of six storage batteries, a plurality of series-parallel connections can be realized in addition to a series connection and a parallel connection, and an optimum voltage range can be set for each connection mode.
[0027]
In addition, in order to further guarantee the storage of the integrated value and each data, a lithium battery is separately provided as a dedicated backup power source in addition to such a plurality of storage batteries in the storage battery circuit 210, and the operation of the signal processing unit 40 becomes impossible. The power supply may be switched to the standby power supply before the operation.
Further, a solar cell may be provided on the surface of the water purifier to store the electromotive force from the solar cell in addition to the electromotive force from the hydroelectric generator 22.
[0028]
【The invention's effect】
As described above, according to the present invention, the power generated by using the water flow in the water purifier as power is used as a power source, so that the filter material can be used without requiring external power supply including a replacement battery. An exchange display can be performed, and a compact water purifier that is structurally simple can be realized at low cost.
In addition, since a plurality of storage batteries are provided in the power supply unit in the water purifier and the output voltage of the power supply unit is continuously monitored to change the connection form and charging voltage of each storage battery, stable power supply is long. It guarantees time and can cope with the case where the interval of use of the water purifier is relatively long.
Further, the present water purifier can also provide safety in a situation where the water purifier is installed, because an electric shock accident and a water loss inside the water purifier which are expected at the time of battery replacement or the like are avoided. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing an electric circuit configuration of a water purifier according to the present invention.
FIG. 2 is a block diagram showing a configuration of each part of the water purifier shown in FIG.
FIG. 3 is a circuit diagram showing a charging circuit and a storage battery circuit of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Water purifier 11 ... Water intake part 12 ... "raw water / purified water" switching lever 13 ... Filter 14 ... Water channel 15 ... Switch 20 ... Power supply part 21 ... Storage battery assembly 22 ... Power generation part 23 ... Charging part 24 ... Overcharge prevention circuit 25 ... water turbine 26 ... rotor 27 ... stator 30 ... power control unit 31 ... voltage monitoring circuit 40 ... signal control unit 41 ... water purification amount measurement unit 42 ... calculation unit 43 ... storage unit 50 ... display unit 51 ... light emitting diode

Claims (6)

水路内の水流を動力にして生成される流量信号から浄水量を計測し、該浄水量の積算値が所定量になったとき、前記水路内に設けられた濾過材の交換時期を示す交換信号を生成する信号処理手段と、
前記交換信号に基づいて前記濾過材の交換時期を表示する表示手段と、
複数の蓄電手段を有し、前記信号処理手段及び表示手段に電力を供給する電源手段と、
前記電源手段からの出力電圧を監視する電圧監視手段と、
前記水路内の水流を動力にして発電する発電手段と、
前記発電した電力を前記各蓄電手段に蓄える充電手段と、
前記電源手段の出力電圧の大きさに従って前記各蓄電手段の接続形態を変える電源制御手段とを具備する浄水器であって、
前記電圧監視手段が、少なくとも2つの電圧値を用いて前記電源手段の出力電圧を監視し、前記電圧値の内の高い方の電圧値を検出した場合には、前記蓄電手段全体の蓄電容量を大きくするように前記各蓄電手段どうしの接続形態を変更し、前記電圧値の内の低い方の電圧値を検出した場合には、前記蓄電手段全体の蓄電容量を小さくするように前記蓄電手段どうしの接続形態を変更することを特徴とする浄水器
The amount of purified water is measured from a flow signal generated by using the water flow in the water channel as a power source, and when the integrated value of the purified water amount reaches a predetermined amount, an exchange signal indicating the time for replacing the filtering material provided in the water channel. Signal processing means for generating
Display means for displaying the replacement time of the filter medium based on the replacement signal,
A power supply unit having a plurality of power storage units and supplying power to the signal processing unit and the display unit;
Voltage monitoring means for monitoring the output voltage from the power supply means,
Power generating means for generating power by using the water flow in the water channel as a power,
Charging means for storing the generated power in each of the power storage means,
Power supply control means for changing the connection form of each power storage means according to the magnitude of the output voltage of the power supply means ,
The voltage monitoring means monitors an output voltage of the power supply means using at least two voltage values, and when detecting a higher voltage value of the voltage values, the storage capacity of the entire power storage means is determined. The connection form of the respective power storage means is changed so as to increase, and when the lower voltage value of the voltage values is detected, the power storage means are connected so as to reduce the power storage capacity of the entire power storage means. A water purifier characterized by changing a connection form .
前記電源制御手段が蓄電手段どうしの接続形態を変更して蓄電手段全体の蓄電容量を大きくした後で前記電源手段の出力電圧が前記蓄電手段の飽和状態に相当する電圧値に達したとき、前記電源制御手段が前記各蓄電手段への充電動作を抑止する請求項に記載の浄水器。When the output voltage of the power supply unit reaches a voltage value corresponding to a saturation state of the power storage unit after the power supply control unit changes the connection configuration between the power storage units and increases the storage capacity of the entire power storage unit, The water purifier according to claim 1 , wherein a power control unit suppresses a charging operation to each of the power storage units. 前記信号処理手段が前記積算値を格納するための記憶手段を備えており、前記電源制御手段が前記蓄電手段どうしの接続形態を変更して前記蓄電手段全体の蓄電容量を小さくした後で前記電源手段の出力電圧が所定電圧値になったとき、前記電源制御手段が電圧低下信号を前記信号処理手段に供給し、前記記憶手段に対して優先的に電源供給させる請求項1または2に記載の浄水器。The signal processing means includes storage means for storing the integrated value, and the power supply control means changes a connection mode between the power storage means to reduce the power storage capacity of the power storage means as a whole. 3. The power supply control unit according to claim 1, wherein when the output voltage of the unit becomes a predetermined voltage value, the power supply control unit supplies a voltage reduction signal to the signal processing unit to supply power to the storage unit preferentially. Water purifier. 水路内の水流を動力にして生成される流量信号から浄水量を計測し、該浄水量の積算値が所定量になったとき、前記水路内に設けられた濾過材の交換時期を示す交換信号を生成する信号処理手段と、
前記交換信号に基づいて前記濾過材の交換時期を表示する表示手段と、
複数の蓄電手段を有し、前記信号処理手段及び表示手段に電力を供給する電源手段と、
前記電源手段からの出力電圧を監視する電圧監視手段と、
前記水路内の水流を動力にして発電する発電手段と、
前記発電した電力を前記各蓄電手段に蓄える充電手段と、
前記電源手段の出力電圧の大きさに従って前記各蓄電手段の接続形態を変える電源制御手段とを具備する浄水器であって、
前記電源制御手段が蓄電手段どうしの接続形態を変更して蓄電手段全体の蓄電容量を大きくした後で前記電源手段の出力電圧が前記蓄電手段の飽和状態に相当する電圧値に達したとき、前記電源制御手段が前記各蓄電手段への充電動作を抑止することを特徴とする浄水器
The amount of purified water is measured from a flow signal generated by using the water flow in the water channel as a power source, and when the integrated value of the purified water amount reaches a predetermined amount, an exchange signal indicating the time for replacing the filtering material provided in the water channel. Signal processing means for generating
Display means for displaying the replacement time of the filter medium based on the replacement signal,
A power supply unit having a plurality of power storage units and supplying power to the signal processing unit and the display unit;
Voltage monitoring means for monitoring the output voltage from the power supply means,
Power generating means for generating power by using the water flow in the water channel as a power,
Charging means for storing the generated power in each of the power storage means,
Power supply control means for changing the connection form of each power storage means according to the magnitude of the output voltage of the power supply means ,
When the output voltage of the power supply unit reaches a voltage value corresponding to a saturation state of the power storage unit after the power supply control unit changes the connection mode between the power storage units to increase the storage capacity of the entire power storage unit, A water purifier, wherein a power control unit suppresses a charging operation to each of the power storage units .
前記信号処理手段が前記積算値を格納するための記憶手段を備えており、前記電源制御手段が前記蓄電手段どうしの接続形態を変更して前記蓄電手段全体の蓄電容量を小さくした後で前記電源手段の出力電圧が所定電圧値になったとき、前記電源制御手段が電圧低下信号を前記信号処理手段に供給し、前記記憶手段に対して優先的に電源供給させる請求項に記載の浄水器。The signal processing means includes storage means for storing the integrated value, and the power supply control means changes a connection mode between the power storage means to reduce the power storage capacity of the power storage means as a whole. 5. The water purifier according to claim 4 , wherein when the output voltage of the means has reached a predetermined voltage value, the power control means supplies a voltage reduction signal to the signal processing means to supply power to the storage means preferentially. . 水路内の水流を動力にして生成される流量信号から浄水量を計測し、該浄水量の積算値が所定量になったとき、前記水路内に設けられた濾過材の交換時期を示す交換信号を生成する信号処理手段と、
前記交換信号に基づいて前記濾過材の交換時期を表示する表示手段と、
複数の蓄電手段を有し、前記信号処理手段及び表示手段に電力を供給する電源手段と、
前記電源手段からの出力電圧を監視する電圧監視手段と、
前記水路内の水流を動力にして発電する発電手段と、
前記発電した電力を前記各蓄電手段に蓄える充電手段と、
前記電源手段の出力電圧の大きさに従って前記各蓄電手段の接続形態を変える電源制御手段とを具備する浄水器であって、
前記信号処理手段が前記積算値を格納するための記憶手段を備えており、前記電源制御手段が前記蓄電手段どうしの接続形態を変更して前記蓄電手段全体の蓄電容量を小さくした後で前記電源手段の出力電圧が所定電圧値になったとき、前記電源制御手段が電圧低下信号を前記信号処理手段に供給し、前記記憶手段に対して優先的に電源供給させることを特徴とする浄水器
A water purification amount is measured from a flow rate signal generated by using the water flow in the water channel as a power, and when the integrated value of the water purification amount becomes a predetermined amount, a replacement signal indicating a replacement time of a filtering material provided in the water channel. Signal processing means for generating
Display means for displaying the replacement time of the filter medium based on the replacement signal,
A power supply unit having a plurality of power storage units and supplying power to the signal processing unit and the display unit;
Voltage monitoring means for monitoring the output voltage from the power supply means,
Power generating means for generating power by using the water flow in the water channel as a power,
Charging means for storing the generated power in each of the power storage means,
Power supply control means for changing the connection mode of each of the power storage means according to the magnitude of the output voltage of the power supply means ,
The signal processing means includes storage means for storing the integrated value, and the power supply control means changes a connection mode between the power storage means to reduce the power storage capacity of the power storage means as a whole. The water purifier, wherein when the output voltage of the means has reached a predetermined voltage value, the power supply control means supplies a voltage reduction signal to the signal processing means to supply power to the storage means preferentially .
JP1702495A 1995-02-03 1995-02-03 Water purifier Expired - Lifetime JP3597243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1702495A JP3597243B2 (en) 1995-02-03 1995-02-03 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1702495A JP3597243B2 (en) 1995-02-03 1995-02-03 Water purifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004231529A Division JP2004330194A (en) 2004-08-06 2004-08-06 Water purifier

Publications (2)

Publication Number Publication Date
JPH08206642A JPH08206642A (en) 1996-08-13
JP3597243B2 true JP3597243B2 (en) 2004-12-02

Family

ID=11932435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1702495A Expired - Lifetime JP3597243B2 (en) 1995-02-03 1995-02-03 Water purifier

Country Status (1)

Country Link
JP (1) JP3597243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500944A (en) * 1998-01-21 2002-01-15 ザ・クロロックス・カンパニー Water filter with hydrant
US6885114B2 (en) * 1999-10-05 2005-04-26 Access Business Group International, Llc Miniature hydro-power generation system
KR100401276B1 (en) * 2001-02-12 2003-10-17 한솔정밀 주식회사 Method for informming filter exchange time in water purifier

Also Published As

Publication number Publication date
JPH08206642A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US8860250B2 (en) Portable power devices and methods of supplying power
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP5959561B2 (en) Multiple battery DC microgrid charging / discharging system connected in series
JP4385659B2 (en) Charging circuit and charging device using the same
EP1337025A2 (en) Battery charger with standby mode
JP2008048473A (en) Charger
US20150008747A1 (en) Portable Power Devices and Methods of Supplying Power
CN109334937B (en) Ship battery electric propulsion system and control method thereof
WO2011068133A1 (en) Charge/discharge system, power generation system, and charge/discharge controller
JPH11127546A (en) Photovoltaic power generating system
JP2000312445A (en) Power storage system
AU2006346382A1 (en) Electrical energy source
JP3597242B2 (en) Water purifier
JP3597243B2 (en) Water purifier
JP2003289629A (en) Voltage equalizer in capacitor and power storage system equipped with the device
JPH1169659A (en) Solar power generation and charging system
JP2007202241A (en) Power supply system, program for controlling power supply system, and recording medium stored with the program
JP2004330194A (en) Water purifier
JP3668271B2 (en) Water purifier
JP2004159405A (en) Uninterruptible power supply device
KR101550304B1 (en) Appratus for portable self-electric generation
JP2002315231A (en) Uninterruptible power source equipment
JPH08206641A (en) Water purifier
KR20190034069A (en) Power generating system and rotating electric machine assembly body used in the same, operating method
CN213425847U (en) Power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term