JP3594812B2 - Signal receiver - Google Patents

Signal receiver Download PDF

Info

Publication number
JP3594812B2
JP3594812B2 JP26961898A JP26961898A JP3594812B2 JP 3594812 B2 JP3594812 B2 JP 3594812B2 JP 26961898 A JP26961898 A JP 26961898A JP 26961898 A JP26961898 A JP 26961898A JP 3594812 B2 JP3594812 B2 JP 3594812B2
Authority
JP
Japan
Prior art keywords
signal
phase
signal receiving
frequency
local oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26961898A
Other languages
Japanese (ja)
Other versions
JP2000101464A (en
Inventor
幸夫 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP26961898A priority Critical patent/JP3594812B2/en
Publication of JP2000101464A publication Critical patent/JP2000101464A/en
Application granted granted Critical
Publication of JP3594812B2 publication Critical patent/JP3594812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Noise Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アレイアンテナの信号受信装置に係わり、特に、同一信号源から送信される電波をアレイアンテナのアンテナ素子毎に受信し、各受信信号をそれぞれ周波数変換して中間周波(IF)信号やベースバンド(BB)信号を発生する複数の信号受信部を備えた信号受信装置に関する。
【0002】
【従来の技術】
従来、信号電波の到来方向を検知する電波検知装置等においては、信号受信装置に、複数のアンテナ素子からなるアレイアンテナと、複数のアンテナ素子にそれぞれ接続された複数の信号受信部とを用いている。この電波検知装置は、アレイアンテナで同一信号源から送信される電波を、各複数のアンテナ素子と信号受信部とによって受信し、各受信信号を複数の信号受信部がそれぞれ周波数変換してIF信号やBB信号を発生させ、アンテナ素子毎に得られたBB信号を分析し、電波の到来方向を検知しているものである。
【0003】
ここで、図6は、既知の電波検知装置の信号受信装置の一例を示す概略構成図であって、BB信号を出力する複数の信号受信部に関する構成部分を示すブロック図である。
【0004】
図6に示すように、信号受信装置は、n(複数)本のアンテナ素子61乃至61を有するアレイアンテナ61と、第1の信号受信部乃至第nの信号受信部62乃至62と、第1の信号受信部乃至第nの信号受信部62乃至62に共通の局部発振器63と、信号分配器76とを備えている。
【0005】
第1の信号受信部62は、無線周波(RF)信号入力端子64と、RF帯域通過フィルタ65と、RF増幅器66と、周波数混合器67と、段間信号増幅器68と、低域通過フィルタ(LPF)69と、バッファ増幅器70と、BB信号出力端子71と、局部発振信号入力端子72とからなっている。第nの信号受信部62は、第1の信号受信部62と同じ構成のもので、RF信号入力端子64と、RF帯域通過フィルタ65と、RF増幅器66と、周波数混合器67と、段間信号増幅器68と、LPF69と、バッファ増幅器70と、BB信号出力端子71と、局部発振信号入力端子72とからなっている。この他に、図6において図示を省略した他の信号受信部62乃至62n−1 も、第1の信号受信部62や第nの信号受信部62と同じ構成のものである。
【0006】
局部発振器63は、電圧制御発振器(VCO)73と、位相同期ループ(PLL)74と、周波数安定化発振器75とからなっている。また、信号分配器76は、入力端が局部発振器63の出力端に接続され、複数の出力端が第1の信号受信部乃至第nの信号受信部62乃至62の対応する局部発振信号入力端子72乃至72にそれぞれ接続されている。
【0007】
この場合、前記既知の信号受信装置における第1の信号受信部乃至第nの信号受信部62乃至62は、図6の点線に示すように、第1の信号受信部乃至第nの信号受信部62乃至62の間にそれぞれ動作上干渉が生じないようにユニット化され、電気的に隔離されている。例えば、第1の信号受信部乃至第nの信号受信部62乃至62は、RF帯域通過フィルタ65乃至65、RF増幅器66乃至66、周波数混合器67乃至67、段間信号増幅器68乃至68、LPF69乃至69、バッファ増幅器70乃至70がそれぞれ対応する金属シャーシ内に収納され、RF信号入力端子64乃至64、BB信号出力端子71乃至71、局部発振信号入力端子72乃至72が金属シャーシから導出するように配置されている。
【0008】
前記構成による既知の信号受信装置は、次のように動作する。
【0009】
アレイアンテナ61は、n個のアンテナ素子61乃至61において同一信号源から送信される電波を捉え、それぞれ受信信号として第1の信号受信部乃至第nの信号受信部62乃至62の対応するRF信号入力端子64乃至64に供給される。
【0010】
また、局部発振器63においては、VCO73の発振信号fvco と周波数安定化発振器75の周波数安定化信号(参照信号)fref とがPLL74に供給される。PLL74は、内蔵のカウンタ(図示なし)により発振信号fvco と参照信号fref とのカウントを繰り返して信号周波数の分周を行い、それらのカウント値がそれぞれ所定の値に達する毎に信号レベルが反転するパルス状の分周信号Uvco とUref をそれぞれ発生する。そして、分周信号Uvco とUref との位相を比較し、それらの信号Uvco 、Uref の位相差に比例した制御電圧Vを発生し、VCO73に供給する。同時に、PLL74は、参照信号fref のカウントを行っている間中ハイレベルHになり、カウント値が所定の値に達するとその直後に瞬間的にローレベルLになるパルス状の信号を分周化参照信号fとして出力する。VCO73は、供給された制御電圧Vによって発振信号fvco の周波数が安定化される。VCO73の発振信号fvco は、信号分配器76において等電力のn個の局部発振信号に分配され、共通の局部発振信号として第1の信号受信部乃至第nの信号受信部62乃至62の局部発振信号入力端子72乃至72にそれぞれ供給される。
【0011】
この場合、VCO73の発振信号fvco は、受信信号と同じようなRF信号であるが、周波数安定化発振器75の参照信号fref は、発振信号fvco よりも相当に低い周波数のパルス状の信号であり、例えば、数MHz乃至数10MHz程度の低い周波数の信号を使用することができる。なお、周波数安定化発振器75には、周波数安定度の高い温度補償型水晶発振器等を用いている。
【0012】
第1の信号受信部62は、RF信号入力端子64に受信信号が供給されると、RF帯域通過フィルタ65で不要な周波数成分が除去され、RF増幅器66で所要レベルにまで増幅される。周波数混合器67において、増幅された受信信号と、局部発振信号入力端子72からバッファ増幅器70を介して供給された局部発振信号とが周波数混合され、段間信号増幅器68において、混合信号が増幅される。その後、LPF69において、増幅された混合信号の中のBB信号以外の不要な周波数成分が除去され、BB信号がBB信号出力端子71から出力される。
【0013】
また、他の第2の信号受信部乃至第nの信号受信部62乃至62においても、前述の第1の信号受信部62の動作と全く同様の動作が行われ、対応するBB信号出力端子71乃至71にそれぞれBB信号が出力される。
【0014】
この場合、局部発振器63が出力する局部発振信号は、前述のように受信信号と同様のRF信号であるので、局部発振信号の伝送には、RF信号の伝送に適したRF伝送線やRF信号の分配に適した信号分配器76を用いる必要がある。即ち、局部発振器63の出力端と信号分配器76の入力端との間、及び、信号分配器76の各出力端と第1の信号受信部乃至第nの信号受信部62乃至62の局部発振信号入力端子72乃至72との間は、それぞれRF伝送線を介して接続される。このような接続を行うことにより、第1の信号受信部乃至第nの信号受信部62乃至62には、局部発振信号入力端子72乃至72に局部発振器63から出力される局部発振信号が等電力で供給される。
【0015】
このとき、第1の信号受信部乃至第nの信号受信部62乃至62のBB信号出力端子71乃至71からそれぞれ出力されるBB信号には、n個のアンテナ素子61乃至61で捉えられた信号電波の到来位相成分(遅延時間成分)が含まれている。
【0016】
ところで、第1の信号受信部乃至第nの信号受信部62乃至62は、到来波の到来状態に基づく受信信号の振幅位相成分(これを前者の振幅位相成分という)と、第1の信号受信部乃至第nの信号受信部62乃至62のように信号受信装置内部の特性のバラツキに基づく振幅位相成分(これを後者の振幅位相成分という)とを含んだBB信号をBB信号出力端子71乃至71から出力する。この中の後者の振幅位相成分は、n個のアンテナ素子61乃至61間の相対的な特性の相違及び第1の信号受信部乃至第nの信号受信部62乃至62間の相対的な特性の相違に基づくものである。この他にも、後者の振幅位相成分は、信号分配器76の分配特性や、信号分配器76の各出力端と第1の信号受信部乃至第nの信号受信部62乃至62の局部発振信号入力端子72乃至72間に結線されるRF伝送線の相対的な特性の相違に基づくものである。このような相対的な特性の相違は、n個のアンテナ素子61乃至61の配置、第1の信号受信部乃至第nの信号受信部62乃至62構成、それらの接続状態の設定に基づく固有のものであるので、予め特性の相違を測定し、特性の相違を是正する校正データを準備することができる。そして、第1の信号受信部乃至第nの信号受信部62乃至62は、受信信号の到来時に、この校正データを用いてBB信号出力端子71乃至71からそれぞれ出力されるBB信号の振幅位相を相対補正することにより、各BB信号中の前者の振幅位相成分だけを抽出することができる。
【0017】
このようにして得られたBB信号の位相成分(時間成分)を探索すれば、信号電波の到来位相成分(遅延時間成分)を得ることができ、信号電波の到来方向の検知を行うことができる。
【0018】
【発明が解決しようとする課題】
前記既知の信号受信装置は、前述のように、局部発振信号の分配にRF信号用の信号分配器76を用い、かつ、局部発振器63の出力端と信号分配器76の入力端との間及び信号分配器76の各出力端と第1の信号受信部乃至第nの信号受信部62乃至62の各局部発振信号入力端子72乃至72と間にインピーダンス整合したRF伝送線を用いる必要がある。
【0019】
前記既知の信号受信装置に用いられるRF伝送線は、各局部発振信号入力端子72乃至72と各RF用信号分配器76の出力端との間を引き廻して接続した場合、局部発振信号の伝送損失が発生し、その位相雑音が増大する。そして、このような位相雑音を含んだ局部発振信号を用いてBB信号を得た場合は、BB信号中の信号成分が相対的に低下し、雑音信号成分が増大するので、信号電波の到来方向を正確に検知が容易に行えなくなるという問題がある。
【0020】
また、前記既知の信号受信装置に用いられる信号分配器76は、それぞれ、n個のアンテナ素子61乃至61の使用数や第1の信号受信部乃至第nの信号受信部62乃至62の使用数が増えた場合、その数が増えた分だけ構造が大型になり、高価になるという問題がある。
【0021】
本発明は、このような問題点を解決するもので、その目的は、同一信号源が送信した電波を複数の信号受信部でそれぞれ受信し、受信信号を利用可能な信号に変換する際に、複数の信号受信部に供給される局部発振信号の伝送損失を低減させることが可能な信号受信装置を提供することにある。
【0022】
【課題を解決するための手段】
前記目的を達成するために、本発明の信号受信装置は、各信号受信部が、位相同期ループによって位相制御された局部発振信号を発生する局部発振器と、受信信号と局部発振信号とを周波数混合する周波数変換器と、周波数変換器の出力混合信号から利用可能な信号を選択する周波数選択器とを備え、各信号受信部の中の1つを位相基準信号受信部に選択し、位相基準信号受信部が、自己の位相同期ループに得られた位相基準局部発振信号を自己の周波数変換器に供給して周波数混合を行い、位相基準信号受信部以外の各信号受信部が、自己の位相同期ループに得られた局部発振信号の位相を位相基準局部発振信号の位相に同期するように位相補正した補正局部発振信号を自己の周波数変換器に供給して周波数混合を行う手段を具備する。
【0023】
前記手段によれば、各信号受信部がそれぞれ位相同期ループと局部発振器とを備えているので、RF帯の局部発振信号を局部発振器から周波数変換器に供給する際に用いるRF伝送線の長さを極力短くすることができ、RF伝送線による局部発振信号の伝送損失を、既知の信号受信部のRF伝送線における伝送損失と比べて著しく低減することができる。
【0024】
この場合、各信号受信部で用いられる局部発振信号は、位相基準信号受信部が位相基準局部発振信号を、位相基準信号受信部以外の各信号受信部が位相基準局部発振信号に位相同期するように補正された補正局部発振信号を用いているので、全ての信号受信部の局部発振信号の周波数を一致させることができ、到来電波の受信時に各信号受信部が局部発振信号の周波数変動の影響を受けることがない。
【0025】
また、前記手段において、各信号受信部の位相同期ループに、RF信号よりも相当に低周波の周波数が安定化された参照信号を分配供給するような構成にすれば、参照信号を信号線の分岐によって分配することができ、既知の信号受信装置に用いられていたRF信号用の信号分配器が不要になり、しかも、参照信号の伝送にRF伝送線を用いる必要がなくなる。
【0026】
【発明の実施の形態】
本発明の実施の形態において、信号受信装置は、複数のアンテナ素子を有するアレイアンテナを用いて信号電波を受信し、受信信号をそれぞれ利用可能な信号に変換する複数の信号受信部を備えるものであって、各信号受信部は、少なくとも、位相同期ループによって位相制御された局部発振信号を発生する局部発振器と、受信信号と局部発振信号とを周波数混合する周波数変換器と、周波数変換器の出力混合信号から利用可能な信号を選択する周波数選択器とを備え、各信号受信部の中の1つを位相基準信号受信部に選択し、位相基準信号受信部は、自己の位相同期ループに得られた位相基準局部発振信号を自己の周波数変換器に供給して周波数混合を行い、位相基準信号受信部以外の各信号受信部は、それぞれ、自己の位相同期ループに得られた局部発振信号の位相を位相基準局部発振信号の位相に同期するように位相補正した補正局部発振信号を自己の周波数変換器に供給して周波数混合を行うものである。
【0027】
本発明の実施の形態の一具体例において、信号受信装置は、位相基準信号受信部以外の各信号受信部が局部発振信号を位相制御する位相同期ループに結合された位相比較器と信号数調整器とを備え、位相比較器が自己位相同期ループに得られた分周化参照信号と位相基準信号受信部の位相同期ループに得られた位相基準分周化参照信号とを位相比較して位相差信号を発生し、信号数調整器が各信号受信部に共通の周波数安定化発振器から供給された参照信号を位相差信号に対応して参照信号の信号数を調整し、この信号数調整参照信号を位相同期ループに供給するものである。
【0028】
本発明の実施の形態の一具体例の変形例において、信号受信装置は、位相基準信号受信部が位相基準局部発振信号を位相制御する位相同期ループに結合された位相比較器と信号数調整器とを備え、位相比較器及び信号数調整器が各信号受信部に共通の周波数安定化発振器から供給される参照信号を常時位相同期ループに供給するものである。
【0029】
これらの本発明の実施の形態において、信号受信装置は、同一の信号源から送信される電波を複数のアンテナ素子からなるアレイアンテナで受信し、受信信号をそれぞれベースバンド(BB)信号に変換する複数の信号受信部を有し、各信号受信部が、少なくとも、位相同期ループによって位相制御された局部発振信号を発生する局部発振器と、受信信号と局部発振信号とを周波数混合する周波数変換器と、周波数変換器の出力混合信号から利用可能な信号を選択する周波数選択器とを備え、各信号受信部の中の1つの信号受信部を位相基準信号受信部に選択し、位相基準信号受信部の周波数変換器が自己の位相同期ループで得られた位相基準局部発振信号を用いて周波数混合を行い、また、位相基準信号受信部以外の各信号受信部の周波数変換器が自己の位相同期ループで得られ局部発振信号の位相を位相基準局部発振信号の位相に同期するように位相補正した補正局部発振信号を用いて周波数混合を行っている。
【0030】
このため、各信号受信部の周波数変換器には、常時、位相基準信号受信部の周波数変換器に供給される位相基準局部発振信号の周波数と同じ周波数の局部発振信号が供給される。このとき、既知のこの種の信号受信装置で用いている校正データによって、各信号受信部からそれぞれ出力されるBB信号の振幅位相を相対的に補正すれば、各BB信号出力端子からそれぞれ出力されるBB信号は、電波の到来位相成分(遅延時間成分)を含むだけで、複数のアンテナ素子間の相対的な特性の相違や、複数の信号受信部の特性の相違に基づく振幅位相成分を含まないものになる。そして、この信号受信装置を電波検知装置に用いる場合、得られたBB信号の位相成分(時間成分)を探索することにより信号電波の到来位相成分(遅延時間成分)を求め、得られた信号電波の到来位相成分(遅延時間成分)から信号電波の到来方向を検知することができる。
【0031】
また、これらの本発明の実施の形態によれば、各信号受信部は、それぞれ位相同期ループと局部発振器とを備えているので、RF帯の局部発振信号を局部発振器から周波数変換器に供給する際に用いるRF伝送線の長さを極力短くすることができ、RF伝送線における局部発振信号の伝送損失を、既知の信号受信部のRF伝送線における伝送損失と比べて、著しく低減することができる。
【0032】
さらに、これらの本発明の実施の形態によれば、各信号受信部の位相同期ループにRF信号よりも相当に低周波の参照信号(周波数安定化信号)を分配供給するようにしているので、参照信号を信号線の分岐によって分配することができ、既知の信号受信装置に用いられていたRF信号用の信号分配器が不要になり、しかも、参照信号の伝送にRF伝送線を用いる必要がなくなる。
【0033】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
【0034】
図1は、本発明による信号受信装置の第1実施例の概略構成を示すもので、複数の信号受信部に関する構成部分を示すブロック図である。
【0035】
第1実施例の信号受信装置は、第nの信号受信部2を位相基準信号受信部に選択した例を示す。
【0036】
図1に示すように、第1実施例の信号受信装置は、n(複数)本のアンテナ素子1乃至1を有するアレイアンテナ1と、第1の信号受信部乃至第nの信号受信部2乃至2と、1個の周波数安定化発振器3と、1個の制御部(CPU)4とを備えている。
【0037】
そして、位相基準信号受信部に選択されない第1の信号受信部2は、無線周波(RF)信号入力端子5と、RF帯域通過フィルタ6と、RF増幅器7と、周波数混合器8と、段間信号増幅器9と、低域通過フィルタ(LPF)10と、ベースバンド(BB)信号出力端子11と、電圧制御発振器(VCO)12と、位相同期ループ(PLL)13と、位相比較器14と、アンドゲート(信号数調整器)15と、参照信号入力端子16と、分周化参照信号入力端子17と、クリア信号入力端子18とからなっている。
【0038】
また、位相基準信号受信部に選択されない第2の信号受信部乃至第n−1の信号受信部2乃至2n−1 (図1に図示されていない)も、第1の信号受信部2と同じ構成のものである。
【0039】
これに対し、位相基準信号受信部に選択された第nの信号受信部2は、RF信号入力端子5と、RF帯域通過フィルタ6と、RF増幅器7と、周波数混合器8と、段間信号増幅器9と、LPF10と、BB信号出力端子11と、VCO12と、PLL13と、参照信号入力端子16と、分周化参照信号出力端子19とからなっている。
【0040】
即ち、第nの信号受信部2は、位相比較器14乃至14n−1 及びアンドゲート15乃至15n−1 に対応する構成要素を具備していない点、及び、分周化参照信号入力端子17乃至17n−1 及びクリア信号入力端子18乃至18n−1 に対応する端子を具備していない点、それに、参照化分周信号出力端子19を別途具備している点において、第1の信号受信部乃至第n−1の信号受信部2乃至2n−1 の構成と異なっている。
【0041】
この場合、第1実施例の信号受信装置におけるn本のアンテナ素子1乃至1を有するアレイアンテナ1は、既知の信号受信装置におけるn本のアンテナ素子61乃至61を有するアレイアンテナ61と同じ構成のものであり、第1実施例の信号受信装置におけるRF帯域通過フィルタ6、RF増幅器7、周波数混合器8、段間信号増幅器9、LPF10は、それぞれ、既知の信号受信装置におけるRF帯域通過フィルタ65、RF増幅器66、周波数混合器67、段間信号増幅器68、LPF69と同じ構成のものであり、第1実施例の信号受信装置におけるRF帯域通過フィルタ6、RF増幅器7、周波数混合器8、段間信号増幅器9、LPF10は、それぞれ、RF帯域通過フィルタ65、RF増幅器66、周波数混合器67、段間信号増幅器68、LPF69と同じ構成のものである。
【0042】
ここで、第1実施例の信号受信装置においては、1個の周波数安定化発振器3の出力端から第1の信号受信部乃至第nの信号受信部2乃至2の参照信号入力端子16乃至16へは、数MHz乃至数10MHz程度の低い周波数のパルス状の周波数安定化信号が参照信号として分配供給される。このため、参照信号の分配供給には、RF伝送線やRF信号用の信号分配器を用いる必要がなく、例えば、汎用の信号線を分岐して接続すれば足りる。同様に、第1の信号受信部乃至第n−1の信号受信部2乃至2n−1 の分周化参照信号入力端子17乃至17n−1 と第nの信号受信部2の分周化参照信号出力端子19との間、及び、第1の信号受信部乃至第n−1の信号受信部2乃至2n−1 のクリア信号入力端子18乃至18n−1 と1個の制御部4の出力端との間においても、それぞれ汎用の信号線を分岐した接続になっている。
【0043】
この場合、第1実施例の信号受信装置における周波数安定化発振器3は、既知の信号受信装置における周波数安定化発振器75と同じ構成のものである。
【0044】
次に、図2は、図1に図示の第1実施例の信号受信装置に用いられる位相比較器14の構成の一例を示す回路図であり、図3は、図2に図示の位相比較器14の動作状態における信号波形図であって、図3に図示された信号▲1▼乃至▲9▼は図2に▲1▼乃至▲9▼として図示された箇所に得られる信号である。
【0045】
なお、第1実施例の信号受信装置においては、他の位相比較器14乃至14n−1 も位相比較器14と同じ構成のものであり、その動作も位相比較器14の動作と同じであるので、以下、位相比較器14に対する説明だけを行い、他の位相比較器14乃至14n−1 に対する説明は省略する。
【0046】
図2に示すように、位相比較器14は、第1インバータ20と、第2インバータ21と、負論理クリア端子付きの第1フリップフロップ(F/F)22と、負論理クリア端子付きの第2F/F23と、負論理クリア端子付きの第3F/F24と、負論理クリア端子付きの第4F/F25と、負論理イネーブル端子付きの2チャネルマルチプレクサ26と、自己分周化参照信号入力端子27と、外部分周化参照信号入力端子28と、位相差信号出力端子29と、負論理クリア信号入力端子30とからなっている。
【0047】
第1の信号受信部2において、位相比較器14の自己分周化参照信号入力端子27(E)には、PLL13の分周化参照信号(f)が供給され、外部分周化参照信号入力端子28(R)は分周化参照信号入力端子17に接続される。位相差信号出力端子29(G)はアンドゲート15の一方の入力端に接続される。アンドゲート15における他方の入力端は参照信号入力端子16に接続され、その出力はPLL13の参照信号(fref )として供給される。負論理クリア信号入力端子30はクリア信号入力端子18に接続される。
【0048】
ここで、前記構成による第1実施例の信号受信装置の動作を、図1乃至図3を用いて説明する。
【0049】
各アンテナ素子1乃至1は、同一の信号源から送信される電波を捉え、それぞれ第1の信号受信部乃至第nの信号受信部2乃至2の対応するRF信号入力端子5乃至5に受信信号として供給する。このとき、安定化周波数発振器3は、第1の信号受信部乃至第nの信号受信部2乃至2の参照信号入力端子16乃至16に周波数安定化信号を参照信号として供給する。このため、後述するように、第1の信号受信部乃至第nの信号受信部2乃至2の周波数混合器8乃至8には、それぞれ位相同期がとれた補正局部発振信号が供給される。
【0050】
第1の信号受信部2は、RF信号入力端子5に受信信号が供給されると、RF帯域通過フィルタ6で不要な周波数成分を除去し、RF増幅器7で所要レベルにまで増幅する。次いで、周波数混合器8で増幅した受信信号と補正局部発振信号とを周波数混合し、段間信号増幅器9で周波数混合信号を増幅する。その後、LPF10で周波数混合信号の中でBB信号以外の不要な周波数成分を除去し、得られたBB信号をBB信号出力端子11に供給する。
【0051】
また、他の信号受信部、即ち、第2の信号受信部乃至第nの信号受信部2乃至2においても、前述の第1の信号受信部2の受信信号に対する動作と全く同じ動作が行われ、対応するBB信号出力端子11乃至11にそれぞれBB信号が供給される。
【0052】
ところで、第1の信号受信部2乃至第nの信号受信部2において、位相同期のとれた補正局部発振信号は、次のように発生される。
【0053】
始めに、位相基準信号受信部に選択された第nの信号受信部2においては、周波数安定化発振器3からPLL13に供給する参照信号により、VCO12とPLL13とを含む位相制御ループが発生する位相基準局部発振信号の周波数が安定化され、周波数混合器8に供給される。
【0054】
このとき、PLL13には、VCO12の局部発振信号fvco と周波数安定化発振器3の参照信号fref とが供給される。PLL13は、内蔵のカウンタ(図示なし)によって発振信号fvco と参照信号fref とのカウントを繰り返し実行してそれらの信号の周波数を分周し、それらのカウント値がそれぞれ所定の値に達する毎に、信号レベルが反転するパルス状の分周信号Uvco とUref をそれぞれ発生する。そして、PLL13は、これらの分周信号Uvco とUref の位相を比較して位相差に比例した周波数制御電圧Vを発生し、VCO12に供給する。同時に、PLL13は、参照信号fref をカウントしている間中ハイレベルHであり、カウント値が所定の値に達するとその直後に瞬間的にローレベルLになるパルス状の信号を分周化参照信号fとして出力する。VCO12は、供給された周波数制御電圧Vによって局部発振信号fvco の周波数が安定化される。
【0055】
一方、位相基準信号受信部に選択されてない他の信号受信部、例えば、第1の信号受信部2においては、安定化周波数発振器3から参照信号入力端子16及びアンドゲート15を通してPLL13に供給される参照信号によって、VCO12とPLL13とを含む位相制御ループから発生される局部発振信号の周波数が安定化され、周波数混合器8に供給される。
【0056】
また、第2の信号受信部乃至第n−1の信号受信部2乃至2n−1 も、第1の信号受信部2と同様に、対応する位相制御ループから発生される局部発振信号が安定化され、対応する周波数混合器8乃至8n−1 に供給される。この場合、PLL13においては、PLL13とほぼ同じ動作が行われる。
【0057】
ところで、既知の信号受信装置は、既に説明したように、第1の信号受信ユニット乃至第nの信号受信ユニット62乃至62から出力される各BB信号の中に、各信号受信ユニット62乃至62内部の特性のバラツキに基づく振幅位相成分が含まれているため、到来電波の受信時に得られた各BB信号を事前に測定して得た校正データを用い、各BB信号の振幅位相成分を補正する必要があった。
【0058】
第1実施例の信号受信装置においても、校正データを用いて各BB信号の振幅位相成分を補正する必要があるが、校正データを取得する際と到来電波を受信する際において、各局部発振信号の位相の再現性が確保されっるようにしなければならない。このため、第1実施例の信号受信装置においては、位相基準信号受信部2以外の各信号受信部2乃至2n−1 の局部発振信号の位相を位相基準信号受信部2の局部発振信号の位相に同期させるものであって、そのために位相基準信号受信部2以外の各信号受信部2乃至2n−1 には、位相比較器14乃至14n−1 とアンドゲート15乃至15n−1 とが設けられている。
【0059】
ここで、各局部発振信号の位相同期をとるための動作を図3を併用して説明する。
【0060】
まず、時間t乃至tの期間、即ち、信号受信装置の動作開始直後であって全ての局部発振信号の位相が未だ位相同期していない期間にあっては、信号波形▲1▼に示すように、外部分周化参照信号入力端子28に第nの信号受信部2で得られた外部分周化参照信号が供給される。一方、信号波形▲3▼に示すように、自己分周化参照信号入力端子27に自己分周化参照信号が供給される。このとき、第2インバータ21は、信号波形▲2▼に示すように、外部分周化参照信号を第2負論理パルスに変換し、第1インバータ20は、信号波形▲4▼に示すように、自己分周化参照信号を第1負論理パルスに変換する。第2F/F23は、信号波形▲5▼に示すように、第2負論理パルスに応答して、その負論理出力端Qに第2方形波信号を出力し、第1F/F22は、信号波形▲6▼に示すように、第1負論理パルスに応答して、その負論理出力端Qに第1方形波信号を出力する。この場合、時間t乃至tの期間においては、信号波形▲1▼乃至▲4▼に示すように、外部分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相はいずれも同期していない。
【0061】
次に、時間tになると、制御部4は、信号波形▲8▼に示すように、クリア信号入力端子18及び負論理クリア信号入力端子30を介して第4F/F25の負論理クリア端子CLRに負極性のクリア信号を供給する。このとき、第4F/F25の正論理出力端子Qは、クリア状態になって負極性の信号を出力し、第3F/F24の遅延入力端子Dに加える。
【0062】
この後の時間t乃至tの期間は、時間t乃至tの期間に続いて、信号波形▲1▼乃至▲4▼に示すように、外部分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相がいずれも同期していない状態になっている。
【0063】
次いで、時間tになると、第3F/F24は、信号波形▲9▼に示すように、第1方形波信号(波形▲6▼)の立上り部に応答して正論理出力端子Qに負極性の信号を発生し、第5F/F26の負論理イネーブル端子ENに供給する。これによりマルチプレクサ26の出力(波形▲7▼)が制御可能な状態になる。
【0064】
この後の時間t乃至tの期間は、時間t乃至tの期間に続いて、信号波形▲1▼乃至▲4▼に示すように、分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相がいずれも同期していない状態になっている。
【0065】
続いて、時間tになると、信号波形▲7▼に示すように、マルチプレクサ26は、第1方形波信号(波形▲6▼)の立下り部に応答して出力端子Yに負極性の位相差信号を発生する。これと同時に、位相差信号は、位相差信号出力端子29と第4F/F25の入力端子に供給される。
【0066】
このとき、位相差信号は、図1に示すように、位相差信号出力端子29(G)からアンドゲート15の一方の入力端に供給される。アンドゲート15は、負極性の位相差信号が供給されている間、周波数安定化発振器3から参照信号入力端子16及びアンドゲート15を通してPLL13に供給される参照信号の伝送を停止する。
【0067】
この後の時間t乃至tの期間は、アンドゲート15に位相差信号が供給され、参照信号の伝送停止の期間であって、PLL13に参照信号が供給されないため、PLL13における参照信号の分周機能(カウンタによるパルスカウント)が停止されている。
【0068】
同時に、時間t乃至tの期間は、時間t乃至tの期間に続いて、信号波形▲1▼乃至▲4▼に示すように、外部分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相がいずれも同期していない状態が持続している。
【0069】
次に、時間tになると、信号波形▲7▼に示すように、マルチプレクサ26は、第2方形波信号(波形▲5▼)の立上り部に応答し、出力端子Yからの負極性の位相差信号の出力を停止する。
【0070】
この後の時間t乃至tの期間は、時間t乃至tの期間に続いて、信号波形▲1▼乃至▲4▼に示すように、外部分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相がいずれも同期していない状態が持続している。
【0071】
次いで、時間tになると、信号波形▲3▼、▲4▼の点線に示すように、本来、時間t乃至tの期間に参照信号が供給され、それにより自己分周化参照信号入力端子27に自己分周化参照信号が供給され、第1インバータ20から第1負論理パルスが出力されるタイミングであるが、アンドゲート15への負極性の位相差信号の供給による参照信号の伝送停止の期間に、PLL13における参照信号の分周機能が停止したことにより、自己分周化参照信号入力端子27に自己分周化参照信号が供給されない。このため、第1インバータ20からは第1負論理パルスが出力されず、信号波形▲6▼に示すように、第1F/F22の負論理出力端子Qから出力される第1方形波信号が立ち上らない。そして、時間tにおける各信号の状態は、時間t乃至tの期間においてもそのまま持続される。
【0072】
続いて、時間tになると、信号波形▲1▼乃至▲4▼に示すように、時間t乃至tの期間におけるPLL13の参照信号の分周機能が所定期間停止したことに基づいて、全ての局部発振信号の位相が同期した状態になる。
【0073】
そして、時間t以後の期間は、信号波形▲1▼乃至▲4▼に示すように、分周化参照信号と自己分周化参照信号との位相、第1負論理パルスと第2負論理パルスとの位相がそれぞれ同期した状態に持続される。これにより、PLL13とPLL13における参照信号の分周機能は全く同じになり、この状態に基づいて制御された場合、局部発振信号の分周機能も全く同様になる。即ち、局部発振器12と局部発振器12のそれぞれの局部発振信号の位相が同期するようになる。
【0074】
ところで、第1の信号受信部2の位相比較器14における前記動作は、第1の信号受信部2と第nの信号受信部2との間の局部発振信号の位相を同期させる場合の説明であるが、第2の信号受信部乃至第n−1の信号受信部2乃至2n−1 のいずれかと第nの信号受信部2との間の局部発振信号の位相についても、全く同様な動作経緯を経ることにより、同じように同期させることができる。
【0075】
第1実施例の信号受信装置によれば、複数の信号受信部2乃至2の中の1つの信号受信部2を位相基準信号受信部に選択し、選択した位相基準信号受信部2における周波数変換器8は、自己の位相同期ループから得られた位相基準局部発振信号を用いて周波数混合を行い、一方、位相基準信号受信部2以外の各信号受信部2乃至2n−1 における周波数変換器8乃至8n−1 は、自己の位相同期ループから出力される局部発振信号の位相を位相基準局部発振信号の位相に同期させるように位相補正した補正局部発振信号を用いて周波数混合を行うので、各信号受信部2乃至2n−1 における周波数変換器8乃至8においては、位相基準信号受信部となる信号受信部2の周波数変換器8に供給される局部発振信号の位相と同位相の局部発振信号を供給することができる。
【0076】
そして、前記動作経緯により、校正データ取得時と到来波受信時における局部発振信号の位相の再現性を確保することができ、取得した校正データを用いることにより得られた補正したBB信号を詳細分析すれば、信号電波の到来方向を正確に検知することができる。
【0077】
次に、図4は、本発明による信号受信装置の第2実施例の概略構成を示すもので、複数の信号受信部に関する構成部分を示すブロック図である。
【0078】
第2実施例の信号受信装置においても、第nの信号受信部2を位相基準信号受信部に選択した例を示す。
【0079】
この第2実施例と図1に図示の第1実施例との構成の違いは、下記の諸点を除けば、第2実施例と第1実施例との間に構成上の違いはない。
【0080】
即ち、位相基準信号受信部に選択されてない各信号受信部2乃至2n−1 については、第1実施例が位相比較器14乃至14n−1 をそれぞれ具備するのに対し、第2実施例が位相比較器14乃至14n−1 に類似した構成の位相比較器14’乃至14’n−1 をそれぞれ具備している点、及び、第2実施例が第1実施例で具備していない分周化参照信号出力端子19乃至19n−1 やプリセット信号出力端子31乃至31n−1 を具備している点である。
【0081】
また、位相基準信号受信部に選択されている第nの信号受信部2については、第1実施例が位相比較器やアンドゲートを具備していないのに対し、第2実施例が前記位相比較器14’乃至14’n−1 と同じ構成の位相比較器14’と、アンドゲート15乃至15n−1 と同じ構成のアンドゲート15とを具備している点、及び、第2実施例が第1実施例で具備していない分周化参照信号入力端子17、クリア信号入力端子18、プリセット信号出力端子31をそれぞれ具備している点である。
【0082】
この他に、これらの構成が変更されたことに伴って、図4に示されるように、伝送線及び接続線の接続状態が若干付加または変更されている点である。
【0083】
なお、図4において、図1に図示された構成要素と同じ構成要素については同じ符号を付け、それらの説明を省略している。
【0084】
また、図5は、図4に図示の第2実施例の信号受信装置に用いられる位相比較器14’の構成の一例を示す回路図である。
【0085】
この場合、第2実施例の信号受信装置においては、他の位相比較器14’乃至14’も位相比較器14’と同じ構成のものであり、その構成が同じであることから、その動作も位相比較器14’の動作と同じである。このため、以下の説明においては、位相比較器14’に対する説明だけを行い、他の位相比較器14’乃至14’に対する説明を省略する。
【0086】
ところで、位相比較器14’と図2に図示の位相比較器14との構成の違いは、第3F/F24、24’及び第4F/F25、25’に関して、位相比較器14がそれぞれ負論理クリア端子CLRを有する第3F/F24と第4F/F25とを具備しているのに対し、位相比較器14’がそれぞれ負論理クリア端子CLR及び負論理プリセット端子PRを有する第3F/F24’と第4F/F25’とを具備している点、位相比較器14が後述する負論理プリセット信号入力端子31を具備していないのに対し、位相比較器14’がプリセット信号出力端子31に接続された負論理プリセット信号入力端子31を具備している点、及び、プリセット信号出力端子31に負論理プリセット信号が供給され、負論理プリセット信号によって第3F/F24’と第4F/F25’の動作状態が制御されるように構成されている点だけであって、その他に、位相比較器14と位相比較器14’との間に構成上の違いはない。
【0087】
なお、図5においても、図2に図示された構成要素と同じ構成要素については同じ符号を付け、それらの説明を省略している。
【0088】
前記構成を有する第2実施例の信号受信装置の動作は、次の通りである。
【0089】
ただし、ここでは、説明を簡単にするために、第1実施例の信号受信装置の動作と異なる動作が行われる点だけについて説明する。
【0090】
位相基準信号受信部に選択されていない第1の信号受信部2においては、位相比較器14’のプリセット信号入力端子31に正極性プリセット信号を供給する。このような状態にした場合、位相比較器14’は、前述の位相比較器14で実行される動作と同じ動作が実行される。また、位相基準信号受信部に選択されていない第2の信号受信部乃至第n−1の信号受信部2乃至2n−1 においても、第1の信号受信部2で実行される動作と同じ動作が実行される。
【0091】
一方、位相基準信号受信部に選択されている第nの信号受信部2においては、位相比較器14’のクリア信号入力端子30に正極性クリア信号を供給した状態にし、プリセット信号入力端子31に負極性プリセット信号を供給する。このような状態にした場合、第3F/F24’の正論理出力端子Qから常時正極性信号が出力され、この正極性信号によって負論理イネーブル端子ENが制御されるマルチプレクサ26の出力端子Yからは常時正極性位相差信号が出力されるようになり、この正極性位相差信号が位相差信号出力端子29に供給される。そして、アンドゲート15においては、常時正極性位相差信号が供給されるので、周波数安定化パルス発振器3から供給された参照信号がアンドゲート15で伝送停止されることなしにPLL13に供給される。そして、このときの状態は、位相比較器14及びアンドゲート15が省略されている状態に等価になあるので、第2実施例の第nの信号受信部2では、前記第1実施例の第nの信号受信部2で実行される動作と同じ動作が実行される。
【0092】
このように、第2実施例の信号受信装置によれば、複数の信号受信部2乃至2の中の1つの信号受信部2を位相基準信号受信部に選択し、選択した位相基準信号受信部2における周波数変換器は、自己の位相同期ループから得られた位相基準局部発振信号を用いて周波数混合を行い、一方、位相基準信号受信部2以外の各信号受信部2乃至2n−1 における周波数変換器においては、自己の位相同期ループから出力される局部発振信号の位相を位相基準局部発振信号の位相に同期させるように位相補正した補正局部発振信号を用いて周波数混合を行っているので、各信号受信部2乃至2における周波数変換器は、位相基準信号受信部2の周波数変換器に供給される局部発振信号の位相と同位相の局部発振信号が供給され、全ての局部発振信号の周波数が一致する。
【0093】
これにより、校正データ取得時と到来波受信時における局部発振信号の位相の再現性が確保され、取得された校正データによりBB信号を補正した後に、詳細に分析すれば、信号電波の到来方向を正確に検知することができる。
【0094】
また、第2実施例の信号受信装置によれば、位相基準信号受信部とそれ以外の信号受信部の構成が同じであることから、位相基準信号受信部とそれ以外の信号受信部を区別して製造する必要がなくなり、製造プロセスが簡素化される。
【0095】
なお、第1実施例及び第2実施例において、複数の信号受信部2乃至2は、いずれもユニット化されたものであってもよく、ユニット化されていないものであってもよい。
【0096】
また、第1実施例及び第2実施例においては、複数の信号受信部2乃至2がそれぞれ1つの周波数変換段8乃至8を用いた1回の周波数変換によってBB信号を得るようにした例を示しているが、本発明による信号受信装置は、複数の信号受信部2乃至2にそれぞれ1つの周波数変換器8乃至8だけを用いた場合に限られず、それぞれ2つまたはそれ以上の周波数変換器を用い、受信信号を一旦中間周波数に変換した後、2回目またはそれ以上の回数の周波数変換によって、BB信号を得るようにしてもよい。
【0097】
さらに、第1実施例及び第2実施例においては、複数の信号受信部2乃至2の中の第nの信号受信部2を位相基準信号受信部に選択した例を示しているが、本発明において位相基準信号受信部に選択される信号受信部は、第nの信号受信部2である場合に限られず、第nの信号受信部2以外の他のいずれか1つの信号受信部2乃至2n−1 を選択するようにしてもよい。
【0098】
【発明の効果】
以上のように、本発明によれば、信号受信装置は、複数の信号受信部がそれぞれ位相同期ループと局部発振器とを備えているので、RF帯の局部発振信号を局部発振器から周波数変換器に供給する際のRF伝送線の長さを極力短くすることができ、RF伝送線における局部発振信号の伝送損失を、既知の信号受信部のRF伝送線の伝送損失と比べて、著しく低減することができるという効果がある。
【0099】
この場合、各信号受信部で用いられる局部発振信号には、位相基準信号受信部が位相基準局部発振信号、位相基準信号受信部以外の各信号受信部が位相基準局部発振信号に同位相になるように補正された補正局部発振信号を用いるので、全部の信号受信部の局部発振信号の周波数が一致し、局部発振信号の周波数変動または位相変動による影響を受けることがないという効果がある。
【0100】
また、各信号受信部の位相同期ループにRF信号よりもかなり低周波の周波数安定化信号を分配供給するようにしているので、周波数安定化信号を信号線分岐によって分配することができ、既知の信号受信装置に用いられていたRF用信号分配器が不要になり、かつ、周波数安定化信号の伝送にRF伝送線を用いる必要がないという効果がある。
【図面の簡単な説明】
【図1】本発明による信号受信装置の第1実施例の概略構成を示すブロック図である。
【図2】図1に示された信号受信装置に用いられる位相比較器の構成の一例を示す回路図である。
【図3】図2に図示された位相比較器の動作状態を示す信号波形図である。
【図4】本発明による信号受信装置の第2実施例の概略構成を示すブロック図である。
【図5】図3に示された信号受信装置に用いられる位相比較器の構成の一例を示す回路図である。
【図6】既知の信号受信装置の概略構成の一例を示すブロック図である。
【符号の説明】
1 アレイアンテナ
乃至1 アンテナ素子
乃至2 信号受信部
3 周波数安定化発振器
4 制御部
乃至5 無線周波(RF)信号入力端子
乃至6 RF帯域通過フィルタ
乃至7 RF増幅器
乃至8 周波数混合器
乃至9 段間信号増幅器
10乃至10 ローパスフィルタ(LPF)
11乃至11 ベースバンド(BB)信号出力端子
12乃至12 電圧制御発振器(VCO)
13乃至13 位相同期ループ(PLL)
14乃至14n−1 、14’乃至14’ 位相比較器
15乃至15 アンドゲート
16乃至16 参照信号入力端子
17乃至17 分周化参照信号入力端子
18乃至18 クリア信号入力端子
19乃至19 分周化参照信号出力端子
20 第1インバータ
21 第2インバータ
22 第1フリップフロップ(F/F)
23 第2フリップフロップ(F/F)
24、24’ 第3フリップフロップ(F/F)
25、25’ 第4フリップフロップ(F/F)
26 2チャネルマルチプレクサ
27 自己分周化参照信号入力端子
28 外部分周化参照信号入力端子
29 位相差信号出力端子
30 クリア信号入力端子
31乃至31 プリセット信号入力端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a signal receiving device for an array antenna, and more particularly, to a radio wave transmitted from the same signal source for each antenna element of the array antenna, and converting each received signal to an intermediate frequency (IF) signal or the like. The present invention relates to a signal receiving device including a plurality of signal receiving units that generate a baseband (BB) signal.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a radio wave detecting device or the like that detects an arrival direction of a signal radio wave, a signal receiving device uses an array antenna including a plurality of antenna elements and a plurality of signal receiving units respectively connected to the plurality of antenna elements. I have. In this radio wave detection device, radio waves transmitted from the same signal source by an array antenna are received by each of a plurality of antenna elements and a signal receiving unit, and each of the received signals is frequency-converted by each of a plurality of signal receiving units to produce an IF signal. And BB signals are generated, the BB signals obtained for each antenna element are analyzed, and the arrival direction of the radio wave is detected.
[0003]
Here, FIG. 6 is a schematic configuration diagram illustrating an example of a signal reception device of a known radio wave detection device, and is a block diagram illustrating components related to a plurality of signal reception units that output BB signals.
[0004]
As shown in FIG. 6, the signal receiving apparatus includes n (plural) antenna elements 61. 1 To 61 n Array antenna 61 having a first signal receiving unit to an n-th signal receiving unit 62 1 To 62 n And the first to n-th signal receiving units 62 to 62 1 To 62 n And a common local oscillator 63 and a signal distributor 76.
[0005]
First signal receiving unit 62 1 Is a radio frequency (RF) signal input terminal 64 1 And the RF bandpass filter 65 1 And the RF amplifier 66 1 And the frequency mixer 67 1 And the interstage signal amplifier 68 1 And a low-pass filter (LPF) 69 1 And the buffer amplifier 70 1 And the BB signal output terminal 71 1 And the local oscillation signal input terminal 72 1 It consists of N-th signal receiving unit 62 n Is a first signal receiving unit 62 1 With the same configuration as the RF signal input terminal 64 n And the RF bandpass filter 65 n And the RF amplifier 66 n And the frequency mixer 67 n And the interstage signal amplifier 68 n And LPF69 n And the buffer amplifier 70 n And the BB signal output terminal 71 n And the local oscillation signal input terminal 72 n It consists of In addition, another signal receiving unit 62 not shown in FIG. 2 To 62 n-1 Also, the first signal receiving unit 62 1 And the n-th signal receiving unit 62 n It has the same configuration as.
[0006]
The local oscillator 63 includes a voltage controlled oscillator (VCO) 73, a phase locked loop (PLL) 74, and a frequency stabilizing oscillator 75. The signal distributor 76 has an input terminal connected to the output terminal of the local oscillator 63, and a plurality of output terminals connected to the first to n-th signal receiving units 62 to 62. 1 To 62 n Corresponding local oscillation signal input terminal 72 1 To 72 n Connected to each other.
[0007]
In this case, the first to n-th signal receiving units 62 in the known signal receiving device are used. 1 To 62 n Are, as indicated by the dotted line in FIG. 1 To 62 n And are electrically isolated so that no operational interference occurs between them. For example, the first to n-th signal receiving units 62 to 62 1 To 62 n Is an RF bandpass filter 65 1 To 65 n , RF amplifier 66 1 To 66 n , Frequency mixer 67 1 To 67 n , Interstage signal amplifier 68 1 To 68 n , LPF69 1 To 69 n , Buffer amplifier 70 1 To 70 n Are housed in the corresponding metal chassis, and the RF signal input terminals 64 1 Through 64 n , BB signal output terminal 71 1 To 71 n , Local oscillation signal input terminal 72 1 To 72 n Are arranged to extend from the metal chassis.
[0008]
The known signal receiving device having the above configuration operates as follows.
[0009]
The array antenna 61 includes n antenna elements 61 1 To 61 n , The radio waves transmitted from the same signal source are captured, and the first to n-th signal receiving units 62 to 62 are respectively received signals. 1 To 62 n Corresponding RF signal input terminal 64 1 Through 64 n Supplied to
[0010]
In the local oscillator 63, the oscillation signal f of the VCO 73 vco And a frequency stabilized signal (reference signal) f of the frequency stabilized oscillator 75 ref Are supplied to the PLL 74. The PLL 74 uses an internal counter (not shown) to generate an oscillation signal f. vco And the reference signal f ref The frequency division of the signal frequency is performed by repeating the counting with the pulse signal, and the signal level is inverted each time the count value reaches a predetermined value. vco And U ref Respectively occur. And the divided signal U vco And U ref And their signals U vco , U ref Control voltage V proportional to the phase difference of c And supplies it to the VCO 73. At the same time, the PLL 74 outputs the reference signal f ref Becomes high level during the counting operation, and when the count value reaches a predetermined value, immediately after that, the pulse-like signal that becomes low level L instantaneously is divided into the frequency-divided reference signal f. o Is output as The VCO 73 controls the supplied control voltage V c Oscillation signal f vco Is stabilized. The oscillation signal f of the VCO 73 vco Are divided into n equal-power local oscillation signals in the signal distributor 76, and are shared by the first to n-th signal receiving units 62 to 62 as common local oscillation signals. 1 To 62 n Local oscillation signal input terminal 72 1 To 72 n Respectively.
[0011]
In this case, the oscillation signal f of the VCO 73 vco Is an RF signal similar to the received signal, but the reference signal f of the frequency-stabilized oscillator 75 ref Is the oscillation signal f vco It is a pulse-like signal having a considerably lower frequency than that of the first embodiment. For example, a low-frequency signal of several MHz to several tens of MHz can be used. In addition, as the frequency stabilized oscillator 75, a temperature-compensated crystal oscillator or the like having high frequency stability is used.
[0012]
First signal receiving unit 62 1 Is the RF signal input terminal 64 1 Is supplied to the RF band-pass filter 65 1 Unnecessary frequency components are removed by the RF amplifier 66. 1 And is amplified to the required level. Frequency mixer 67 1 , The amplified received signal and the local oscillation signal input terminal 72 1 From buffer amplifier 70 1 Is mixed with the local oscillation signal supplied through the 1 In, the mixed signal is amplified. After that, LPF69 1 In the above, unnecessary frequency components other than the BB signal in the amplified mixed signal are removed, and the BB signal is output to the BB signal output terminal 71. 1 Output from
[0013]
Further, the other second to n-th signal receiving units 62 2 To 62 n Also in the first signal receiving unit 62 1 Is performed in the same manner as the operation of the corresponding BB signal output terminal 71. 2 To 71 n Output a BB signal.
[0014]
In this case, since the local oscillation signal output from the local oscillator 63 is the same RF signal as the reception signal as described above, the transmission of the local oscillation signal includes an RF transmission line or an RF signal suitable for transmitting the RF signal. It is necessary to use a signal distributor 76 suitable for the distribution of signals. That is, between the output terminal of the local oscillator 63 and the input terminal of the signal distributor 76, and each output terminal of the signal distributor 76 and the first to n-th signal receiving units 62. 1 To 62 n Local oscillation signal input terminal 72 1 To 72 n And are connected via RF transmission lines. By making such a connection, the first to n-th signal receiving units 62 to 62 1 To 62 n Has a local oscillation signal input terminal 72 1 To 72 n The local oscillation signal output from the local oscillator 63 is supplied with equal power.
[0015]
At this time, the first through n-th signal receiving units 62 1 To 62 n BB signal output terminal 71 1 To 71 n BB signals respectively output from the n antenna elements 61 1 To 61 n Arriving phase component (delay time component) of the signal radio wave captured by the above.
[0016]
By the way, the first to n-th signal receiving units 62 to 62 1 To 62 n Are the amplitude and phase components of the received signal based on the arrival state of the arriving wave (this is referred to as the former amplitude and phase component) and the first to n-th signal reception units 62 to 62. 1 To 62 n A BB signal including an amplitude / phase component based on variations in characteristics inside the signal receiving device (this is referred to as the latter amplitude / phase component) as shown in FIG. 1 To 71 n Output from The latter amplitude / phase component among the n antenna elements 61 1 To 61 n Relative characteristic difference between the first to nth signal receiving units 62 to 62 1 To 62 n This is based on the difference in relative characteristics between the two. In addition, the latter amplitude and phase components are determined by the distribution characteristics of the signal distributor 76, the output terminals of the signal distributor 76 and the first to n-th signal receiving units 62 to 62. 1 To 62 n Local oscillation signal input terminal 72 1 To 72 n This is based on the difference in the relative characteristics of the RF transmission lines connected therebetween. Such a difference in relative characteristics is caused by n antenna elements 61 1 To 61 n , The first to n-th signal receiving units 62 to 62 1 To 62 n Since it is unique based on the configuration and the setting of their connection state, it is possible to measure the difference in characteristics in advance and prepare calibration data for correcting the difference in characteristics. Then, the first to n-th signal receiving units 62 1 To 62 n When the received signal arrives, the BB signal output terminal 71 1 To 71 n By relative correcting the amplitude and phase of the BB signals respectively output from the BB signals, only the former amplitude and phase components in each BB signal can be extracted.
[0017]
If the phase component (time component) of the BB signal thus obtained is searched, the arrival phase component (delay time component) of the signal radio wave can be obtained, and the direction of arrival of the signal radio wave can be detected. .
[0018]
[Problems to be solved by the invention]
As described above, the known signal receiving apparatus uses the signal distributor 76 for the RF signal for distributing the local oscillation signal, and between the output terminal of the local oscillator 63 and the input terminal of the signal distributor 76. Each output terminal of the signal distributor 76 and the first to n-th signal receiving units 62 to 62 1 To 62 n Local oscillation signal input terminal 72 1 To 72 n It is necessary to use an RF transmission line whose impedance is matched between the RF transmission line.
[0019]
The RF transmission line used in the known signal receiving apparatus has a local oscillation signal input terminal 72. 1 To 72 n When the connection between the RF signal distributor 76 and the output terminal of each RF signal distributor 76 is routed, a transmission loss of the local oscillation signal occurs, and the phase noise increases. When a BB signal is obtained by using a local oscillation signal including such phase noise, the signal component in the BB signal relatively decreases and the noise signal component increases. However, there is a problem that it is not easy to detect accurately.
[0020]
Each of the signal distributors 76 used in the known signal receiving device includes n antenna elements 61. 1 To 61 n And the first to n-th signal receiving units 62 to 62 1 To 62 n When the number of used is increased, there is a problem that the structure becomes large and the cost becomes high by the increased number.
[0021]
The present invention is to solve such problems, the purpose is to receive the radio wave transmitted by the same signal source in each of a plurality of signal receiving unit, when converting the received signal to a usable signal, An object of the present invention is to provide a signal receiving device capable of reducing transmission loss of a local oscillation signal supplied to a plurality of signal receiving units.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, a signal receiving apparatus according to the present invention is configured such that each of the signal receiving units generates a local oscillation signal whose phase is controlled by a phase locked loop, and a frequency mixing of the received signal and the local oscillation signal. And a frequency selector for selecting an available signal from the output mixed signal of the frequency converter. One of the signal receiving units is selected as a phase reference signal receiving unit, and the phase reference signal is selected. The receiving section supplies the phase reference local oscillation signal obtained in its own phase locked loop to its own frequency converter to perform frequency mixing, and each signal receiving section other than the phase reference signal receiving section executes its own phase locked loop. There is provided means for supplying a corrected local oscillation signal obtained by phase-correcting the phase of the local oscillation signal obtained in the loop so as to be synchronized with the phase of the phase reference local oscillation signal to its own frequency converter to perform frequency mixing.
[0023]
According to the above-mentioned means, since each of the signal receiving units includes the phase locked loop and the local oscillator, the length of the RF transmission line used when supplying the local oscillation signal in the RF band from the local oscillator to the frequency converter is provided. Can be reduced as much as possible, and the transmission loss of the local oscillation signal due to the RF transmission line can be significantly reduced as compared with the transmission loss of the known signal receiving unit in the RF transmission line.
[0024]
In this case, the local oscillation signal used in each signal receiving section is such that the phase reference signal receiving section performs phase synchronization with the phase reference local oscillation signal, and each signal receiving section other than the phase reference signal receiving section performs phase synchronization with the phase reference local oscillation signal. Since the corrected local oscillation signal is used, the frequencies of the local oscillation signals of all the signal receiving units can be matched, and each signal receiving unit is affected by the frequency fluctuation of the local oscillation signal when receiving an incoming radio wave. I do not receive.
[0025]
Further, in the above-mentioned means, if a configuration is adopted in which the reference signal whose frequency is considerably lower than that of the RF signal is distributed and supplied to the phase locked loop of each signal receiving unit, the reference signal is transmitted to the signal line. Since the signal can be distributed by branching, the signal distributor for the RF signal used in the known signal receiving apparatus becomes unnecessary, and further, it is not necessary to use the RF transmission line for transmitting the reference signal.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
In an embodiment of the present invention, a signal receiving device includes a plurality of signal receiving units that receive signal radio waves using an array antenna having a plurality of antenna elements and convert received signals into usable signals. Each signal receiving unit includes at least a local oscillator that generates a local oscillation signal phase-controlled by a phase locked loop, a frequency converter that mixes the frequency of the received signal and the local oscillation signal, and an output of the frequency converter. A frequency selector for selecting an available signal from the mixed signal, wherein one of the signal receiving units is selected as a phase reference signal receiving unit, and the phase reference signal receiving unit obtains the signal in its own phase locked loop. The received phase reference local oscillation signal is supplied to its own frequency converter to perform frequency mixing, and each signal receiver other than the phase reference signal receiver receives its own phase locked loop. The phase of the obtained local oscillation signal and performs frequency mixing by supplying a correction local oscillation signal phase-corrected in its frequency converter so as to synchronize with the phase of the phase reference local oscillator signal.
[0027]
In one specific example of the embodiment of the present invention, the signal receiving device includes a phase comparator coupled to a phase locked loop in which each signal receiving unit other than the phase reference signal receiving unit controls the phase of the local oscillation signal, and a signal number adjustment. A phase comparator compares the phase of the frequency-divided reference signal obtained in the self-phase locked loop with the phase-reference frequency-divided reference signal obtained in the phase locked loop of the phase reference signal receiving section. A phase difference signal is generated, and a signal number adjuster adjusts the number of reference signals corresponding to the phase difference signal with respect to the reference signal supplied from the frequency stabilizing oscillator common to each signal receiving unit, and this signal number adjustment reference The signal is supplied to the phase locked loop.
[0028]
In a modification of the specific example of the embodiment of the present invention, the signal receiving apparatus includes a phase comparator and a signal number adjuster in which a phase reference signal receiving unit is coupled to a phase locked loop that controls a phase of a phase reference local oscillation signal. Wherein the phase comparator and the signal number adjuster always supply the reference signal supplied from the frequency stabilizing oscillator common to each signal receiving section to the phase locked loop.
[0029]
In these embodiments of the present invention, the signal receiving apparatus receives a radio wave transmitted from the same signal source by an array antenna including a plurality of antenna elements, and converts each of the received signals into a baseband (BB) signal. Having a plurality of signal receiving units, each signal receiving unit, at least, a local oscillator that generates a local oscillation signal phase-controlled by a phase locked loop, and a frequency converter that frequency-mixes the received signal and the local oscillation signal A frequency selector for selecting an available signal from the output mixed signal of the frequency converter, selecting one of the signal receiving units as a phase reference signal receiving unit, and selecting a phase reference signal receiving unit. The frequency converter performs frequency mixing using the phase reference local oscillation signal obtained by its own phase locked loop, and the frequency of each signal receiving unit other than the phase reference signal receiving unit Exchanger is performing the frequency mixing using the corrected local oscillation signal phase-corrected so as to synchronize the phase of the resulting local oscillation signal by its own phase-locked loop with the phase of the phase reference local oscillator signal.
[0030]
For this reason, a local oscillation signal having the same frequency as the frequency of the phase reference local oscillation signal supplied to the frequency converter of the phase reference signal receiving unit is always supplied to the frequency converter of each signal receiving unit. At this time, if the amplitude and phase of the BB signals output from the respective signal receiving units are relatively corrected by the calibration data used in the known signal receiving apparatus of this type, the output signals are output from the respective BB signal output terminals. The BB signal includes only the arrival phase component (delay time component) of a radio wave and is based on a difference in relative characteristics between a plurality of antenna elements and a difference in characteristics between a plurality of signal receiving units. amplitude The phase component is not included. When this signal receiving device is used for a radio wave detecting device, the arrival phase component (delay time component) of the signal radio wave is obtained by searching for the phase component (time component) of the obtained BB signal. The arrival direction of the signal wave can be detected from the arrival phase component (delay time component).
[0031]
Further, according to these embodiments of the present invention, since each signal receiving unit includes the phase locked loop and the local oscillator, the local oscillation signal in the RF band is supplied from the local oscillator to the frequency converter. In this case, the length of the RF transmission line used can be reduced as much as possible, and the transmission loss of the local oscillation signal in the RF transmission line can be significantly reduced as compared with the transmission loss in the RF transmission line of the known signal receiving unit. it can.
[0032]
Furthermore, according to these embodiments of the present invention, a reference signal (frequency stabilizing signal) having a considerably lower frequency than the RF signal is distributed and supplied to the phase locked loop of each signal receiving unit. The reference signal can be distributed by branching the signal line, which eliminates the need for a signal distributor for RF signals used in known signal receiving devices, and necessitates the use of an RF transmission line for transmitting the reference signal. Disappears.
[0033]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034]
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of a signal receiving apparatus according to the present invention, and showing constituent parts related to a plurality of signal receiving units.
[0035]
The signal receiving apparatus according to the first embodiment includes an n-th signal receiving unit 2 n Is an example in which is selected as the phase reference signal receiving unit.
[0036]
As shown in FIG. 1, the signal receiving apparatus of the first embodiment includes n (plural) antenna elements 1. 1 Or 1 n Array antenna 1 having a first signal receiving unit to an n-th signal receiving unit 2 1 Or 2 n And one frequency stabilizing oscillator 3 and one control unit (CPU) 4.
[0037]
Then, the first signal receiving unit 2 not selected as the phase reference signal receiving unit 1 Is a radio frequency (RF) signal input terminal 5 1 And an RF bandpass filter 6 1 And RF amplifier 7 1 And the frequency mixer 8 1 And the interstage signal amplifier 9 1 And a low-pass filter (LPF) 10 1 And a baseband (BB) signal output terminal 11 1 And a voltage controlled oscillator (VCO) 12 1 And a phase locked loop (PLL) 13 1 And the phase comparator 14 1 And AND gate (signal number adjuster) 15 1 And the reference signal input terminal 16 1 And the frequency-divided reference signal input terminal 17 1 And the clear signal input terminal 18 1 It consists of
[0038]
Further, the second to (n−1) th signal receiving units 2 not selected as the phase reference signal receiving unit 2 Or 2 n-1 1 (not shown in FIG. 1) 1 It has the same configuration as.
[0039]
On the other hand, the n-th signal receiving unit 2 selected as the phase reference signal receiving unit n Is the RF signal input terminal 5 n And an RF bandpass filter 6 n And RF amplifier 7 n And the frequency mixer 8 n And the interstage signal amplifier 9 n And LPF10 n And the BB signal output terminal 11 n And VCO12 n And PLL13 n And the reference signal input terminal 16 n And a frequency-divided reference signal output terminal 19 n It consists of
[0040]
That is, the n-th signal receiving unit 2 n Is the phase comparator 14 1 To 14 n-1 And AND gate 15 1 To 15 n-1 And the frequency-divided reference signal input terminal 17 1 To 17 n-1 And clear signal input terminal 18 1 To 18 n-1 And a reference frequency-divided signal output terminal 19 n In that the first to (n−1) th signal receiving units 2 1 Or 2 n-1 Configuration is different.
[0041]
In this case, the n antenna elements 1 in the signal receiving device of the first embodiment 1 Or 1 n Array antenna 1 having n antenna elements 61 in a known signal receiving apparatus. 1 To 61 n Having the same configuration as the array antenna 61 having the RF bandpass filter 6 in the signal receiving apparatus of the first embodiment. 1 , RF amplifier 7 1 , Frequency mixer 8 1 , Interstage signal amplifier 9 1 , LPF10 1 Are the RF bandpass filters 65 in the known signal receiving device, respectively. 1 , RF amplifier 66 1 , Frequency mixer 67 1 , Interstage signal amplifier 68 1 , LPF69 1 And the RF bandpass filter 6 in the signal receiving device of the first embodiment. n , RF amplifier 7 n , Frequency mixer 8 n , Interstage signal amplifier 9 n , LPF10 n Are respectively RF bandpass filters 65 n , RF amplifier 66 n , Frequency mixer 67 n , Interstage signal amplifier 68 n , LPF69 n It has the same configuration as.
[0042]
Here, in the signal receiving device of the first embodiment, the first signal receiving unit to the n-th signal receiving unit 2 are output from the output terminal of one frequency-stabilized oscillator 3. 1 Or 2 n Reference signal input terminal 16 1 To 16 n , A pulse-shaped frequency stabilizing signal having a low frequency of about several MHz to several tens MHz is distributed and supplied as a reference signal. Therefore, it is not necessary to use an RF transmission line or a signal distributor for RF signals to distribute and supply the reference signal. For example, it is sufficient to branch and connect a general-purpose signal line. Similarly, the first to (n−1) th signal receiving units 2 1 Or 2 n-1 Frequency dividing reference signal input terminal 17 1 To 17 n-1 And the n-th signal receiving unit 2 n Frequency dividing reference signal output terminal 19 n And the first to (n−1) th signal receiving units 2 1 Or 2 n-1 Clear signal input terminal 18 1 To 18 n-1 Also, between the output terminal of one control unit 4 and the general-purpose signal line are connected.
[0043]
In this case, the frequency stabilized oscillator 3 in the signal receiving device of the first embodiment has the same configuration as the frequency stabilized oscillator 75 in the known signal receiving device.
[0044]
Next, FIG. 2 shows a phase comparator 14 used in the signal receiving apparatus of the first embodiment shown in FIG. 1 FIG. 3 is a circuit diagram showing an example of the configuration of the phase comparator 14 shown in FIG. 1 FIG. 3 is a signal waveform diagram in the operating state of FIG. 3, and signals (1) to (9) shown in FIG. 3 are signals obtained at points (1) to (9) shown in FIG.
[0045]
In the signal receiving device of the first embodiment, another phase comparator 14 2 To 14 n-1 Also phase comparator 14 1 And the operation thereof is the same as that of the phase comparator 14. 1 Since the operation is the same as that of 1 , The other phase comparators 14 2 To 14 n-1 The description for is omitted.
[0046]
As shown in FIG. 1 Are a first inverter 20, a second inverter 21, a first flip-flop (F / F) 22 with a negative logic clear terminal, a second F / F 23 with a negative logic clear terminal, and a A third F / F 24, a fourth F / F 25 with a negative logic clear terminal, a two-channel multiplexer 26 with a negative logic enable terminal, a self-divided reference signal input terminal 27, and an externally divided reference signal input terminal 28 And a phase difference signal output terminal 29 and a negative logic clear signal input terminal 30.
[0047]
First signal receiving unit 2 1 , The self-frequency-divided reference signal input terminal 27 (E) of the phase comparator 14 is connected to the PLL 13 1 Divided reference signal (f o ) Is supplied, and the externally-divided reference signal input terminal 28 (R) is connected to the divided reference signal input terminal 17. 1 Connected to. The phase difference signal output terminal 29 (G) is connected to the AND gate 15 1 Connected to one of the input terminals. AND gate 15 1 The other input terminal of the reference signal input terminal 16 1 And its output is connected to the PLL 13 1 Reference signal (f ref ). Negative logic clear signal input terminal 3 0 is Clear signal input terminal 18 1 Connected to.
[0048]
Here, the operation of the signal receiving apparatus according to the first embodiment having the above configuration will be described with reference to FIGS.
[0049]
Each antenna element 1 1 Or 1 n Captures radio waves transmitted from the same signal source, and receives signals from a first signal receiving unit to an n-th signal receiving unit 2 respectively. 1 Or 2 n Corresponding RF signal input terminal 5 1 To 5 n As a received signal. At this time, the stabilized frequency oscillator 3 includes the first signal receiving unit to the n-th signal receiving unit 2. 1 Or 2 n Reference signal input terminal 16 1 To 16 n Is supplied with a frequency stabilization signal as a reference signal. For this reason, as described later, the first to n-th signal receiving units 2 1 Or 2 n Frequency mixer 8 1 To 8 n Are supplied with corrected local oscillation signals, each of which is phase-synchronized.
[0050]
First signal receiving unit 2 1 Is the RF signal input terminal 5 1 Is supplied to the RF bandpass filter 6. 1 Removes unnecessary frequency components with the RF amplifier 7 1 To amplify to the required level. Next, the frequency mixer 8 1 The frequency of the received signal and the corrected local oscillation signal amplified by 1 Amplifies the frequency mixing signal. Then, LPF10 1 And removes unnecessary frequency components other than the BB signal in the frequency mixed signal, and outputs the obtained BB signal to a BB signal output terminal 11. 1 To supply.
[0051]
Further, other signal receiving units, that is, the second to n-th signal receiving units 2 2 Or 2 n Also in the first signal receiving unit 2 1 Is performed in exactly the same manner as the operation for the received signal, and the corresponding BB signal output terminal 11 2 To 11 n Is supplied with a BB signal.
[0052]
By the way, the first signal receiving unit 2 1 To the n-th signal receiving unit 2 n In the above, the corrected local oscillation signal with phase synchronization is generated as follows.
[0053]
First, the n-th signal receiving unit 2 selected as the phase reference signal receiving unit n , The frequency stabilized oscillator 3 to the PLL 13 n To the VCO 12 n And PLL13 n The frequency of the phase reference local oscillation signal generated by the phase control loop including n Supplied to
[0054]
At this time, the PLL 13 n Has a VCO12 n Local oscillation signal f vco And the reference signal f of the frequency-stabilized oscillator 3 ref Are supplied. PLL13 n Is an oscillation signal f by a built-in counter (not shown). vco And the reference signal f ref Is repeated to divide the frequency of these signals, and each time the count value reaches a predetermined value, a pulse-like frequency-divided signal U whose signal level is inverted. vco And U ref Respectively occur. And PLL13 n Are these divided signals U vco And U ref And the frequency control voltage V proportional to the phase difference. c And VCO12 n To supply. At the same time, PLL13 n Is the reference signal f ref Is high level during the counting of pulses, and immediately after the count value reaches a predetermined value, the pulse-shaped signal that becomes low level L instantaneously is divided into the frequency-divided reference signal f. o Is output as VCO12 n Is the supplied frequency control voltage V c The local oscillation signal f vco Is stabilized.
[0055]
On the other hand, other signal receiving units not selected as the phase reference signal receiving unit, for example, the first signal receiving unit 2 1 , The reference frequency input terminal 16 1 And AND gate 15 1 Through PLL13 1 The VCO 12 1 And PLL13 1 The frequency of the local oscillation signal generated from the phase control loop including 1 Supplied to
[0056]
Further, the second to (n−1) th signal receiving units 2 2 Or 2 n-1 Also the first signal receiving unit 2 1 Similarly, the local oscillation signal generated from the corresponding phase control loop is stabilized, and the corresponding frequency mixer 8 2 To 8 n-1 Supplied to In this case, the PLL 13 1 In the PLL13 n Almost the same operation is performed.
[0057]
By the way, as already described, the known signal receiving devices include the first signal receiving unit to the n-th signal receiving unit 62. 1 To 62 n Each signal receiving unit 62 is included in each BB signal output from 1 To 62 n Since amplitude and phase components based on variations in internal characteristics are included, the amplitude and phase components of each BB signal are corrected using calibration data obtained by measuring each BB signal obtained when receiving an incoming radio wave in advance. I needed to.
[0058]
Also in the signal receiving apparatus of the first embodiment, it is necessary to correct the amplitude and phase components of each BB signal using the calibration data. However, when the calibration data is obtained and when the incoming radio wave is received, each local oscillation signal is corrected. The reproducibility of the phase must be ensured. For this reason, in the signal receiving device of the first embodiment, the phase reference signal receiving unit 2 n Signal receiving unit 2 other than 1 Or 2 n-1 The phase of the local oscillation signal of n To synchronize with the phase of the local oscillation signal of n Signal receiving unit 2 other than 1 Or 2 n-1 Has a phase comparator 14 1 To 14 n-1 And AND gate 15 1 To 15 n-1 Are provided.
[0059]
Here, an operation for achieving phase synchronization of each local oscillation signal will be described with reference to FIG.
[0060]
First, time t 0 Or t 1 , That is, immediately after the start of the operation of the signal receiving apparatus and the phases of all the local oscillation signals are not yet phase-synchronized, as shown in the signal waveform (1), The n-th signal receiving unit 2 is connected to the signal input terminal 28. n Is supplied. On the other hand, the self-divided reference signal is supplied to the self-divided reference signal input terminal 27 as shown by the signal waveform (3). At this time, the second inverter 21 converts the outer partial reference signal into a second negative logic pulse as shown by a signal waveform {circle around (2)}, and the first inverter 20 outputs a signal as shown by a signal waveform {circle around (4)}. , Converts the self-divided reference signal into a first negative logic pulse. The second F / F 23 outputs a second square wave signal to its negative logic output terminal Q in response to the second negative logic pulse, as shown in the signal waveform (5), and the first F / F 22 outputs the signal waveform. As shown in (6), in response to the first negative logic pulse, the first square wave signal is output to the negative logic output terminal Q. In this case, the time t 0 Or t 1 In the period of (1), as shown in the signal waveforms (1) to (4), the phases of the externally-divided reference signal and the self-divided reference signal, the phases of the first negative logic pulse and the second negative logic pulse, Are not synchronized.
[0061]
Next, time t 1 , The control unit 4 sets the clear signal input terminal 18 as shown in the signal waveform (8). 1 A negative clear signal is supplied to the negative logic clear terminal CLR of the fourth F / F 25 via the negative logic clear signal input terminal 30. At this time, the positive logic output terminal Q of the fourth F / F 25 is in a clear state and outputs a signal of negative polarity, which is applied to the delay input terminal D of the third F / F 24.
[0062]
Time t after this 1 Or t 2 Is the time t 0 Or t 1 After the period of (1), as shown in the signal waveforms (1) to (4), the phases of the externally-divided reference signal and the self-divided reference signal, Both phases are out of synchronization.
[0063]
Then, time t 2 Then, the third F / F 24 generates a negative polarity signal at the positive logic output terminal Q in response to the rising edge of the first square wave signal (waveform (6)) as shown in the signal waveform (9). , The negative logic enable terminal EN of the fifth F / F 26. As a result, the output (waveform {circle around (7)}) of the multiplexer 26 becomes controllable.
[0064]
Time t after this 2 Or t 3 Is the time t 1 Or t 2 , The phases of the frequency-divided reference signal and the self-frequency-divided reference signal, and the phases of the first negative logic pulse and the second negative logic pulse, as shown in signal waveforms (1) to (4). Are not synchronized.
[0065]
Subsequently, time t 3 , The multiplexer 26 generates a negative phase difference signal at the output terminal Y in response to the falling edge of the first square wave signal (waveform <6>), as shown by the signal waveform <7>. At the same time, the phase difference signal is supplied to the phase difference signal output terminal 29 and the input terminal of the fourth F / F 25.
[0066]
At this time, the phase difference signal is supplied from the phase difference signal output terminal 29 (G) to the AND gate 15 as shown in FIG. 1 Is supplied to one input terminal. AND gate 15 1 Is supplied from the frequency stabilizing oscillator 3 to the reference signal input terminal 16 while the negative phase difference signal is supplied. 1 And AND gate 15 1 Through PLL13 1 The transmission of the reference signal supplied to is stopped.
[0067]
Time t after this 3 Or t 4 Period is AND gate 15 1 The phase difference signal is supplied to the PLL 13 during a period during which the transmission of the reference signal is stopped. 1 Is not supplied to the PLL 13 1 , The frequency division function of the reference signal (pulse counting by the counter) is stopped.
[0068]
At the same time, time t 3 Or t 4 Is the time t 2 Or t 3 After the period of (1), as shown in the signal waveforms (1) to (4), the phases of the externally-divided reference signal and the self-divided reference signal, The state in which none of the phases are synchronized persists.
[0069]
Next, time t 4 , The multiplexer 26 stops outputting the negative phase difference signal from the output terminal Y in response to the rising edge of the second square wave signal (waveform {circle around (5)}), as indicated by the signal waveform {circle around (7)}. I do.
[0070]
Time t after this 4 Or t 5 Is the time t 3 Or t 4 After the period of (1), as shown in the signal waveforms (1) to (4), the phases of the externally-divided reference signal and the self-divided reference signal, The state in which none of the phases are synchronized persists.
[0071]
Then, time t 5 , The signal waveforms {circle around (3)} and {circle around (4)} originally represent the time t. 4 Or t 5 , The self-divided reference signal is supplied to the self-divided reference signal input terminal 27, and the first inverter 20 outputs the first negative logic pulse. AND gate 15 1 During the period when the transmission of the reference signal is stopped due to the supply of the negative phase difference signal to the 1 , The self-frequency-divided reference signal is not supplied to the self-frequency-divided reference signal input terminal 27. Therefore, the first inverter 20 does not output the first negative logic pulse, and the first square wave signal output from the negative logic output terminal Q of the first F / F 22 rises as shown in the signal waveform (6). I don't go up. And time t 5 State of each signal at time t 5 Or t 6 It is continued as it is during the period.
[0072]
Subsequently, time t 6 , As shown in signal waveforms (1) to (4), time t 3 Or t 4 PLL13 in the period of 1 , The phases of all the local oscillation signals are synchronized based on the fact that the frequency division function of the reference signal is stopped for a predetermined period.
[0073]
And time t 6 In the subsequent periods, as shown in signal waveforms (1) to (4), the phases of the divided reference signal and the self-divided reference signal, and the phases of the first negative logic pulse and the second negative logic pulse are changed. Each is kept synchronized. Thereby, the PLL 13 1 And PLL13 n In this case, the frequency division function of the reference signal is exactly the same, and when controlled based on this state, the frequency division function of the local oscillation signal is exactly the same. That is, the local oscillator 12 1 And local oscillator 12 n Are synchronized with each other in phase.
[0074]
By the way, the first signal receiving unit 2 1 Phase comparator 14 1 In the first signal receiving unit 2 1 And the n-th signal receiving unit 2 n Is described in the case where the phase of the local oscillation signal is synchronized between the second signal receiving unit and the (n−1) th signal receiving unit 2. 2 Or 2 n-1 And the n-th signal receiving unit 2 n The phase of the local oscillation signal between them can be similarly synchronized by undergoing exactly the same process.
[0075]
According to the signal receiving device of the first embodiment, the plurality of signal receiving units 2 1 Or 2 n One of the signal receiving units 2 n Is selected as the phase reference signal receiving unit, and the selected phase reference signal receiving unit 2 is selected. n Frequency converter 8 at n Performs frequency mixing using the phase reference local oscillation signal obtained from its own phase-locked loop. n Signal receiving unit 2 other than 1 Or 2 n-1 Frequency converter 8 at 1 To 8 n-1 Performs frequency mixing using a corrected local oscillation signal whose phase has been corrected so that the phase of the local oscillation signal output from its own phase-locked loop is synchronized with the phase of the phase reference local oscillation signal. 1 Or 2 n-1 Frequency converter 8 at 1 To 8 n , A signal receiving unit 2 serving as a phase reference signal receiving unit n Frequency converter 8 n , A local oscillation signal having the same phase as the phase of the local oscillation signal supplied to the local oscillation signal can be supplied.
[0076]
Then, the reproducibility of the phase of the local oscillation signal at the time of acquiring the calibration data and at the time of arriving wave reception can be ensured by the operation history, and the corrected BB signal obtained by using the acquired calibration data is analyzed in detail. Then, the arrival direction of the signal radio wave can be accurately detected.
[0077]
Next, FIG. 4 shows a schematic configuration of a second embodiment of the signal receiving apparatus according to the present invention, and is a block diagram showing components related to a plurality of signal receiving units.
[0078]
Also in the signal receiving apparatus of the second embodiment, the n-th signal receiving unit 2 n Is an example in which is selected as the phase reference signal receiving unit.
[0079]
The difference between the configuration of the second embodiment and the first embodiment shown in FIG. 1 is the same as that of the first embodiment except for the following points.
[0080]
That is, each signal receiving unit 2 not selected as the phase reference signal receiving unit 1 Or 2 n-1 In the first embodiment, the phase comparator 14 1 To 14 n-1 Whereas the second embodiment has a phase comparator 14 1 To 14 n-1 Phase comparator 14 'having a configuration similar to 1 To 14 ' n-1 And a frequency-divided reference signal output terminal 19 that the second embodiment does not have in the first embodiment. 1 To 19 n-1 And preset signal output terminal 31 1 To 31 n-1 Is provided.
[0081]
Also, the n-th signal receiving unit 2 selected as the phase reference signal receiving unit n As for the first embodiment, the first embodiment does not include a phase comparator and an AND gate, whereas the second embodiment employs the phase comparator 14 ′. 1 To 14 ' n-1 Phase comparator 14 'having the same configuration as n And AND gate 15 1 To 15 n-1 AND gate 15 with the same configuration as n And the frequency-divided reference signal input terminal 17 which the second embodiment does not have in the first embodiment. n , Clear signal input terminal 18 n , Preset signal output terminal 31 n Respectively.
[0082]
In addition, as shown in FIG. 4, the connection states of the transmission lines and the connection lines are slightly added or changed in accordance with the change of these configurations.
[0083]
In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
[0084]
FIG. 5 shows a phase comparator 14 'used in the signal receiving apparatus of the second embodiment shown in FIG. 1 FIG. 3 is a circuit diagram showing an example of the configuration of FIG.
[0085]
In this case, in the signal receiving device of the second embodiment, another phase comparator 14 'is used. 2 To 14 ' n Also phase comparator 14 ' 1 And the operation is also the same as that of the phase comparator 14 '. 1 Operation is the same as For this reason, in the following description, the phase comparator 14 ' 1 And only the other phase comparators 14 ' 2 To 14 ' n The description of is omitted.
[0086]
By the way, the phase comparator 14 ' 1 And the phase comparator 14 shown in FIG. 1 The difference between the first and second F / Fs 24 and 24 'and the fourth F / Fs 25 and 25' is that the phase comparator 14 1 Has a third F / F 24 and a fourth F / F 25 each having a negative logic clear terminal CLR, whereas the phase comparator 14 ' 1 Are provided with a third F / F 24 'and a fourth F / F 25' having a negative logic clear terminal CLR and a negative logic preset terminal PR, respectively. 1 Does not include a negative logic preset signal input terminal 31 described later, whereas the phase comparator 14 ' 1 Is the preset signal output terminal 31 1 A negative logic preset signal input terminal 31 connected to the 1 , A negative logic preset signal is supplied to the phase comparator, and the operation state of the third F / F 24 ′ and the fourth F / F 25 ′ is controlled by the negative logic preset signal. 14 1 And phase comparator 14 ' 1 There is no structural difference between
[0087]
In FIG. 5, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
[0088]
The operation of the signal receiving apparatus according to the second embodiment having the above-described configuration is as follows.
[0089]
However, here, for simplicity of description, only the operation different from the operation of the signal receiving device of the first embodiment will be described.
[0090]
First signal receiver 2 not selected as phase reference signal receiver 1 In the phase comparator 14 ' 1 The positive polarity preset signal is supplied to the preset signal input terminal 31 of FIG. In such a state, the phase comparator 14 ' 1 Is the phase comparator 14 1 The same operation as the operation performed in is performed. Further, the second to (n−1) th signal receiving units 2 not selected as the phase reference signal receiving unit 2 Or 2 n-1 Also in the first signal receiving unit 2 1 The same operation as the operation performed in is performed.
[0091]
On the other hand, the n-th signal receiving unit 2 selected as the phase reference signal receiving unit n In the phase comparator 14 ' n , A positive polarity clear signal is supplied to the clear signal input terminal 30, and a negative polarity preset signal is supplied to the preset signal input terminal 31. In such a state, a positive polarity signal is always output from the positive logic output terminal Q of the third F / F 24 ', and the negative logic enable terminal EN is controlled by the positive polarity signal from the output terminal Y of the multiplexer 26. The positive phase difference signal is always output, and the positive phase difference signal is supplied to the phase difference signal output terminal 29. And AND gate 15 n , The positive phase difference signal is always supplied, so that the reference signal supplied from the frequency stabilizing pulse n Is supplied to the PLL 13 without being stopped. The state at this time is determined by the phase comparator 14 n And AND gate 15 n Is equivalent to the state in which the n-th signal receiving unit 2 of the second embodiment is omitted. n Now, the n-th signal receiving unit 2 of the first embodiment is described. n The same operation as the operation performed in is performed.
[0092]
As described above, according to the signal receiving device of the second embodiment, the plurality of signal receiving units 2 1 Or 2 n One of the signal receiving units 2 n Is selected as the phase reference signal receiving unit, and the selected phase reference signal receiving unit 2 is selected. n Performs frequency mixing using the phase reference local oscillation signal obtained from its own phase-locked loop, and on the other hand, n Signal receiving unit 2 other than 1 Or 2 n-1 The frequency converter performs frequency mixing using a corrected local oscillation signal whose phase has been corrected so that the phase of the local oscillation signal output from its own phase locked loop is synchronized with the phase of the phase reference local oscillation signal. Therefore, each signal receiving unit 2 1 Or 2 n Is a phase reference signal receiving unit 2 n The local oscillation signal having the same phase as the local oscillation signal supplied to the frequency converter is supplied, and the frequencies of all the local oscillation signals match.
[0093]
As a result, the reproducibility of the phase of the local oscillation signal at the time of acquiring the calibration data and at the time of receiving the arriving wave is ensured. If the BB signal is corrected by the acquired calibration data and then analyzed in detail, the arrival direction of the signal wave can be determined. It can be detected accurately.
[0094]
Further, according to the signal receiving apparatus of the second embodiment, since the configuration of the phase reference signal receiving section and the other signal receiving sections are the same, the phase reference signal receiving section and the other signal receiving sections are distinguished. There is no need to manufacture and the manufacturing process is simplified.
[0095]
In the first and second embodiments, a plurality of signal receiving units 2 are used. 1 Or 2 n May be either unitized or non-unitized.
[0096]
In the first embodiment and the second embodiment, a plurality of signal receiving units 2 are used. 1 Or 2 n Are respectively one frequency conversion stage 8 1 To 8 n Although the example in which the BB signal is obtained by one-time frequency conversion using is described, the signal receiving apparatus according to the present invention includes a plurality of signal receiving units 2. 1 Or 2 n One frequency converter 8 each 1 To 8 n The BB signal is obtained by performing frequency conversion twice or more times, and then converting the received signal to the intermediate frequency once using two or more frequency converters. It may be.
[0097]
Further, in the first embodiment and the second embodiment, a plurality of signal receiving units 2 1 Or 2 n N-th signal receiving unit 2 in n Is selected as the phase reference signal receiving unit, the signal receiving unit selected as the phase reference signal receiving unit in the present invention is the n-th signal receiving unit 2 n The n-th signal receiving unit 2 is not limited to n Any one of the signal receiving units 2 other than 1 Or 2 n-1 May be selected.
[0098]
【The invention's effect】
As described above, according to the present invention, in the signal receiving device, since the plurality of signal receiving units each include the phase locked loop and the local oscillator, the local oscillation signal in the RF band is converted from the local oscillator to the frequency converter. The length of the RF transmission line at the time of supply can be made as short as possible, and the transmission loss of the local oscillation signal on the RF transmission line is significantly reduced as compared with the transmission loss of the RF transmission line of the known signal receiving unit. There is an effect that can be.
[0099]
In this case, in the local oscillation signal used in each signal receiving unit, the phase reference signal receiving unit is in phase with the phase reference local oscillation signal, and each signal receiving unit other than the phase reference signal receiving unit is in phase with the phase reference local oscillation signal. Since the corrected local oscillation signal corrected as described above is used, the frequencies of the local oscillation signals of all the signal receiving units match, and there is an effect that the local oscillation signal is not affected by the frequency variation or the phase variation.
[0100]
In addition, since the frequency stabilizing signal having a considerably lower frequency than the RF signal is distributed and supplied to the phase locked loop of each signal receiving unit, the frequency stabilizing signal can be distributed by the signal line branch. There is an effect that the RF signal distributor used in the signal receiving device becomes unnecessary, and that it is not necessary to use an RF transmission line for transmitting the frequency stabilized signal.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of a signal receiving apparatus according to the present invention.
FIG. 2 is a circuit diagram showing an example of a configuration of a phase comparator used in the signal receiving device shown in FIG.
FIG. 3 is a signal waveform diagram illustrating an operation state of the phase comparator illustrated in FIG. 2;
FIG. 4 is a block diagram showing a schematic configuration of a second embodiment of the signal receiving apparatus according to the present invention.
5 is a circuit diagram showing an example of a configuration of a phase comparator used in the signal receiving device shown in FIG.
FIG. 6 is a block diagram illustrating an example of a schematic configuration of a known signal receiving device.
[Explanation of symbols]
1 Array antenna
1 1 Or 1 n Antenna element
2 1 Or 2 n Signal receiver
3 Frequency stabilized oscillator
4 control unit
5 1 To 5 n Radio frequency (RF) signal input terminal
6 1 To 6 n RF bandpass filter
7 1 To 7 n RF amplifier
8 1 To 8 n Frequency mixer
9 1 To 9 n Interstage signal amplifier
10 1 To 10 n Low-pass filter (LPF)
11 1 To 11 n Baseband (BB) signal output terminal
12 1 To 12 n Voltage controlled oscillator (VCO)
13 1 Thirteen to thirteen n Phase locked loop (PLL)
14 1 To 14 n-1 , 14 ' 1 To 14 ' n Phase comparator
Fifteen 1 To 15 n And gate
16 1 To 16 n Reference signal input terminal
17 1 To 17 n Divided reference signal input terminal
18 1 To 18 n Clear signal input terminal
19 1 To 19 n Divided reference signal output pin
20 1st inverter
21 Second inverter
22 First flip-flop (F / F)
23 Second flip-flop (F / F)
24, 24 'third flip-flop (F / F)
25, 25 'Fourth flip-flop (F / F)
26 2-channel multiplexer
27 Self-divided reference signal input terminal
28 External frequency division reference signal input terminal
29 Phase difference signal output terminal
30 Clear signal input terminal
31 1 To 31 n Preset signal input terminal

Claims (3)

複数のアンテナ素子を有するアレイアンテナを用いて信号電波を受信し、受信信号をそれぞれ利用可能な信号に変換する複数の信号受信部を備える信号受信装置であって、前記各信号受信部は、少なくとも、位相同期ループによって位相制御された局部発振信号を発生する局部発振器と、前記受信信号と前記局部発振信号とを周波数混合する周波数変換器と、前記周波数変換器の出力混合信号から前記利用可能な信号を選択する周波数選択器とを備え、前記各信号受信部の中の1つを位相基準信号受信部に選択し、前記位相基準信号受信部は、自己の位相同期ループに得られた位相基準局部発振信号を自己の周波数変換器に供給して周波数混合を行い、前記位相基準信号受信部以外の前記各信号受信部は、それぞれ、自己の位相同期ループに得られた局部発振信号の位相を前記位相基準局部発振信号の位相に同期するように位相補正した補正局部発振信号を自己の周波数変換器に供給して周波数混合を行うことを特徴とする信号受信装置。A signal receiving apparatus that receives a signal radio wave using an array antenna having a plurality of antenna elements and includes a plurality of signal receiving units that convert received signals into usable signals, wherein each of the signal receiving units is at least A local oscillator that generates a local oscillation signal phase-controlled by a phase-locked loop, a frequency converter that frequency-mixes the received signal and the local oscillation signal, and the available signal from an output mixed signal of the frequency converter. A frequency selector for selecting a signal, wherein one of the signal receiving sections is selected as a phase reference signal receiving section, and the phase reference signal receiving section selects a phase reference obtained in its own phase locked loop. The local oscillation signal is supplied to its own frequency converter to perform frequency mixing, and each of the signal receiving units other than the phase reference signal receiving unit has its own phase locked loop. A signal receiving apparatus for supplying a corrected local oscillation signal, which is phase-corrected so that the phase of the obtained local oscillation signal is synchronized with the phase of the phase reference local oscillation signal, to its own frequency converter to perform frequency mixing. . 前記位相基準信号受信部以外の前記各信号受信部は、前記局部発振信号を位相制御する位相同期ループに結合された位相比較器と信号数調整器とを備え、前記位相比較器は、自己位相同期ループに得られた分周化参照信号と前記位相基準信号受信部の位相同期ループに得られた位相基準分周化参照信号とを位相比較して位相差信号を発生し、前記信号数調整器は、前記各信号受信部に共通の周波数安定化発振器から供給された参照信号について、その参照信号数を前記位相差信号に対応させて調整し、信号数を調整した参照信号を前記位相同期ループに供給することを特徴とする請求項1に記載の信号受信装置。Each of the signal receiving units other than the phase reference signal receiving unit includes a phase comparator and a signal number adjuster coupled to a phase locked loop that controls the phase of the local oscillation signal, and the phase comparator has a self-phase A phase difference signal is generated by comparing the phase of the frequency-divided reference signal obtained in the locked loop with the phase-reference frequency-divided reference signal obtained in the phase locked loop of the phase reference signal receiving unit, and the number of signals is adjusted. The device adjusts the number of reference signals corresponding to the phase difference signal with respect to the reference signal supplied from the frequency stabilizing oscillator common to the respective signal receiving units, and adjusts the reference signal having the adjusted number of signals to the phase synchronization. The signal receiving device according to claim 1, wherein the signal is supplied to a loop. 前記位相基準信号受信部は、前記位相基準局部発振信号を位相制御する位相同期ループに結合された位相比較器と信号数調整器とを備え、前記位相比較器及び前記信号数調整器は、前記各信号受信部に共通の周波数安定化発振器から供給される参照信号を常時前記位相同期ループに供給することを特徴とする請求項1に記載の信号受信装置。The phase reference signal receiving unit includes a phase comparator and a signal number adjuster coupled to a phase locked loop that controls the phase of the phase reference local oscillation signal, and the phase comparator and the signal number adjuster are 2. The signal receiving apparatus according to claim 1, wherein a reference signal supplied from a common frequency stabilizing oscillator to each signal receiving unit is always supplied to the phase locked loop.
JP26961898A 1998-09-24 1998-09-24 Signal receiver Expired - Fee Related JP3594812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26961898A JP3594812B2 (en) 1998-09-24 1998-09-24 Signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26961898A JP3594812B2 (en) 1998-09-24 1998-09-24 Signal receiver

Publications (2)

Publication Number Publication Date
JP2000101464A JP2000101464A (en) 2000-04-07
JP3594812B2 true JP3594812B2 (en) 2004-12-02

Family

ID=17474868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26961898A Expired - Fee Related JP3594812B2 (en) 1998-09-24 1998-09-24 Signal receiver

Country Status (1)

Country Link
JP (1) JP3594812B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629996A (en) * 2009-08-18 2010-01-20 上海华测导航技术有限公司 Radio frequency structure for realizing function of switching dual-band GPS satellite signal into base band signal
JP7083644B2 (en) * 2018-01-05 2022-06-13 日本電波工業株式会社 Clock switching device
CN112312535A (en) * 2019-07-31 2021-02-02 中兴通讯股份有限公司 Base station multichannel phase synchronization device and method and base station

Also Published As

Publication number Publication date
JP2000101464A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
EP3611540B1 (en) Apparatus and methods for synchronization of radar chips
CN1937420B (en) Radio frequency tuner
KR100470008B1 (en) Receiver circuit
US9091724B2 (en) Synthesizer having adjustable, stable and reproducible phase and frequency
MX2010013967A (en) Method for testing radio frequency (rf) receiver to provide power correction data.
CN108449084B (en) Method and system for multi-channel phase automatic correction of digital BPM (Business Process management) sampling data
US6895229B2 (en) Receiver arrangement for receiving frequency-modulated radio signals and methods of adapting and testing a receiving branch of the receiver arrangement
US7502435B2 (en) Two-point modulator arrangement and use thereof in a transmission arrangement and in a reception arrangement
CN111245472A (en) Radio frequency transceiver chip, and synchronization system and method for radio frequency transceiver chip
US20060233112A1 (en) Controllable frequency divider circuit, transmitter/receiver with a controllable frequency divider circuit, and a method for carrying out a loop-back test
JP3594812B2 (en) Signal receiver
JP3072509B2 (en) Timing control circuit of PAM communication device
US6256485B1 (en) Wideband radio receiver
EP0913031A1 (en) Method and system for tuning resonance modules
CN115001491B (en) Synchronous sampling method and device for multiple ADC sampling clock arrays
US6816559B1 (en) FSK modulation transceiver
JP6466200B2 (en) Receiving device and adjusting method of receiving device
US6753811B2 (en) System for phase trimming of feeder cables to an antenna system by a transmission pilot tone
CA1182177A (en) Apparatus for testing microwave radios having a 35 mhz if using test equipment designed for 70 mhz if
KR100760733B1 (en) Tuning arrangement
JPS63155848A (en) Signal power detecting circuit
KR102069424B1 (en) I/q imbalance calibration apparatus, method and transmitter system using the same
US10778201B1 (en) System and method of creating periodic pulse sequences with defined absolute phase
JPH11101867A (en) Reception apparatus
JPH09326752A (en) Mobile communication terminal equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees