JP3583114B2 - Ultrasonic flow velocity measuring device - Google Patents

Ultrasonic flow velocity measuring device Download PDF

Info

Publication number
JP3583114B2
JP3583114B2 JP2002105889A JP2002105889A JP3583114B2 JP 3583114 B2 JP3583114 B2 JP 3583114B2 JP 2002105889 A JP2002105889 A JP 2002105889A JP 2002105889 A JP2002105889 A JP 2002105889A JP 3583114 B2 JP3583114 B2 JP 3583114B2
Authority
JP
Japan
Prior art keywords
ultrasonic
flow velocity
velocity measuring
point
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105889A
Other languages
Japanese (ja)
Other versions
JP2003302415A (en
Inventor
明夫 河野
英司 中村
年史 松田
哲也 保田
茂行 伊藤
真司 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2002105889A priority Critical patent/JP3583114B2/en
Publication of JP2003302415A publication Critical patent/JP2003302415A/en
Application granted granted Critical
Publication of JP3583114B2 publication Critical patent/JP3583114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超音波を利用してガスその他の流体の流速を測定する超音波流速測定装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、ガスその他の流体の流量を求めるに際し、まず流体の流速を連続的ないし定期的に測定し、これに基いて流量を演算することが行われている。そして、このような流体の流速測定方法の一つとして、超音波を利用した方法が知られている。
【0003】
かかる超音波流速測定方法の原理を、図5にて説明すると次のとおりである。図5において、(1)は内部をガス等の流体が流れる超音波流速測定管である。この超音波流速測定管(1)内には、流れ方向の上流側及び下流側に、互いに所定距離を隔てて対向する態様で円筒状の超音波振動子(2)(3)が配置されている。この超音波振動子(2)(3)は、駆動パルス発生回路(6)からの駆動パルスにより駆動されて振動し、超音波を発生送信する一方、送信されてきた超音波を受信するもので、その超音波振動子(3)(2)が振動したときの受信波が受信増幅回路(6)から出力されるものとなされている。
【0004】
そして、上流側の超音波振動子(2)から流れに対して順方向に送信された超音波が下流側の超音波振動子(3)で受波されるまでの伝搬時間と、下流側の超音波振動子(3)から流れに対して逆方向に送信された超音波が上流側の超音波振動子(2)で受信されるまでの伝搬時間との差は、流速に関係することから、この超音波の伝搬時間差をクロック波を利用する等して求めることにより流体の流速を測定するものとなされている。
【0005】
なお、図5において、(8)は各超音波振動子(2)(3)と駆動パルス発生回路(6)及び受信増幅回路(7)の接続を切り替える切替回路であり、まず駆動パルス発生回路(4)と上流側の超音波振動子(2)、下流側の超音波振動子(3)と受信増幅回路(7)を接続して、上流側から下流側への伝搬時間を測定したのち、該切替回路(8)の作動により駆動パルス発生回路(6)と下流側の超音波振動子(3)、上流側の超音波振動子(2)と受信増幅回路(7)とが接続されるように切替えて、下流側から上流側への伝搬時間を測定するものとなされている。
【0006】
しかしながら、上述のように超音波振動子(2)(3)を対向する態様で配置するものだと、超音波振動子(2)(3)から垂直に送信される直進超音波だけは対向する超音波振動子(3)(2)にそのまま同位相で受信されるが、直進超音波以外の大部分の超音波は流速測定管の内面で1回以上反射したあと、対向する超音波振動子(3)(2)にばらばらな位相で受信される。このため受信増幅回路(7)から出力される受信波は、全体として振幅が小さく、流体の流速を精度良く測定することができないという問題があった。
【0007】
この発明は、上述の問題に鑑みてなされたものであって、受信波の振幅を増大させることができ、ひいては流体の流速を精度良く測定することが可能な超音波流速測定装置の提供を目的とする。
【0008】
【課題を解決するための手段】
この発明は、上記目的を達成するために、流速測定管(1)を流れる計測流体の上流側と下流側にそれぞれ超音波振動子(2)(3)が配置され、前記各超音波振動子(2)(3)から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定するものとなされている超音波流速測定装置において、
前記流速測定管(1)の上流側と下流側にそれぞれ超音波反射部(4)(5)が前記超音波振動子(2)(3)に対応するように設けられ、
前記超音波反射部(4)(5)は、反射面の任意の点Qの法線aが、その点Qと対応する超音波振動子(2)(3)の放射面の点P及び点Pの後方に位置する仮想放射点Rとを結んだ線と、流速測定管(1)の軸線cとがなす角を二等分するように形成されていることを特徴とする。
【0009】
これによれば、送信側の超音波振動子から送信された大部分の超音波は、送信側の超音波反射部において流速測定管の軸線方向に平行となるように反射し、流速測定管内を軸線方向に平行に通過したあと、受信側の超音波反射部において受信側の超音波振動子に受信されるように反射する。
【0010】
このため、送信側の超音波振動子から送信された大部分の超音波が同一位相で受信側の超音波振動子に受信されるので、受信波の振幅を増大させることができ、ひいては流体の流速を精度良く測定することが可能となる。また、送信側の超音波振動子から送信された大部分の超音波は、流速測定管内を断面一杯に軸線方向に平行に通過し得るので、流体が小流量で流速測定管内のいずれかの箇所に偏って流れている場合であっても流体の流速を精度良く測定することができる。
【0011】
また、前記超音波反射部は、その反射面の少なくとも一部において下式[1]の条件を満たすように形成されるのが好ましい。
【0012】
m=−{γx/(G−y)+√[1+(γx/(G−y))]・・・[1]
O:超音波振動子(2)(3)の軸線dと流速測定管(1)の軸線cとの交点
(x、y):交点Oを原点とする超音波反射部材(4)(5)の反射面上の位置
m:超音波反射部材(4)(5)の反射面上の位置(x、y)における傾き
r:超音波振動子(2)(3)の放射面の直径
b:流速測定管(1)のy方向の長さ
γ:1−r/b
G:原点Oから超音波振動子(2)(3)の放射面までのy方向の距離
これによれば、上述のような効果を奏する超音波反射部を簡単かつ確実に形成することができる。
【0013】
【発明の実施の形態】
次に、この発明の一実施形態について図面を参照しつつ説明する。
【0014】
図1は、この発明の実施形態に係る超音波流速測定装置を上方から見た断面図、図2は前記超音波流速測定装置を側方から見た図(図1のI−I線矢視断面図)である。
【0015】
図1および図2において、(1)は流体が流れるコ字形状の流速測定管、(1a)は流速測定管(1)の屈曲部に設けれた収容部、(1b)は流速測定管(1)の下部水平部に設けられた流速測定部、(2)(3)は収容部(1a)に設けられた超音波振動子、(4)(5)は同じく収容部(1a)において各超音波振動子(2)(3)に対応する位置にそれぞれ設けられた金属製等の超音波反射部材である。
【0016】
また、(6)は超音波振動子(2)(3)に印可する駆動パルスを発生する駆動パルス回路、(7)は超音波振動子(2)(3)に受信された超音波に基づいて受信波を出力する受信増幅回路、(8)は超音波振動子(2)(3)と駆動パルス発生回路(6)および受信増幅回路(7)との接続を切り替える切替回路であり、これらは図5に示したものと同一なので、同一符合を付してその説明を省略する。
【0017】
なお、この実施形態では、図1に示すように、流速測定管(1)の流速測定部(1b)の軸線方向をx方向、超音波振動子(2)(3)の軸線方向をy方向とする。また、図2に示すように、前記x方向およびy方向のいずにも垂直な方向をz方向とする。
【0018】
前記流速測定管(1)は、横断面矩形状に形成されており、図2に示すように、流速測定管(1)の上流側の端部(図2の左側の端部)から流入した流体が、そのまま流速測定部(1a)を通過し、その通過している間に流速が測定されたあと、流速測定部(1a)の下流側の端部(図2の右側の端部)から流出するようになっている。
【0019】
前記超音波反射部材(4)(5)は、図1に示すように、その反射面が互いに向き合う態様でxy方向に湾曲に形成されている。具体的には、前記超音波反射部材(4)(5)は、図3に示すように、その反射面の任意の点Qの法線aが、その点Qと対応する超音波振動子(2)(3)の放射面の点Pとを結んだ線bと、流速測定管(1)の軸線c(あるいは軸線cの平行線c’)とがなす角(θ+θ)を二等分するように形成されている。
【0020】
しかして、送信側の超音波振動子(2)(3)から送信された超音波は、xy方向において、送信側の超音波反射部(4)(5)において流速測定管(1)の軸線方向に平行となるように反射し、流速測定管(1)の流速測定部(1b)内を軸線方向に平行に通過したあと、受信側の超音波反射部(5)(4)において後述する仮想放射点Rに収束するように反射し、受信側の超音波振動子(3)(2)に受信される。
【0021】
特に、この実施形態では、前記超音波反射部材(4)(5)は、その反射面が下式[1]の条件を満たすような形状に形成されている。
【0022】
m=−{γx/(G−y)+√[1+(γx/(G−y))]・・・[1]
O:超音波振動子(2)(3)の軸線dと流速測定管(1)の軸線cとの交点
(x、y):交点Oを原点とする反射面上の位置(座標)
m:反射面上の位置(x、y)における傾き
r:超音波振動子(2)(3)の放射面の直径
b:流速測定管(1)のy方向の長さ
γ:1−r/b
G:原点Oから超音波振動子(2)(3)の放射面までのy方向の距離
前記超音波反射部材(4)(5)をこのような形状に形成するのは以下の理由による。なお、説明の便宜上、超音波反射部材(4)について説明する。
【0023】
まず、図3において、
P:超音波の送信点(受信点)
Q:送信点Pに対応する反射点
R:仮想放射点
O:超音波振動子(2)の軸線dと流速測定管(1)の軸線cとの交点
(x、y):交点Oを原点とする反射面上の位置
G:原点Oから超音波振動子(2)の放射面までのy方向の距離
r:超音波振動子(2)の放射面の直径
b:流速測定管(1)のy方向の長さ
θ1:Q点の法線aと直線bとがなす角度
θ2:Q点の法線aと流速測定管(1)の平行軸線c’とがなす角度
xp:超音波振動子(2)の軸線dから送信点Pまでの距離
とすると、
線分PQ(直線b)について、
tan(θ+θ)=(G−y)/(x−xp)…[2]
となる。
また、Q点の法線の条件は、
tanθ=dx/dy…[3]
となる。
また、xとxpは比例的に対応しているとみなすと、
x/b=xp/r…[4]
となり、γ(ガンマ)=1−r/bとすると、
x−xp
=x−xr/b
=x(1−r/b)
=xγ…[5]
となる。
ここで、θ1=θ2=θ(∵反射条件)、dx/dy=1/mとすると、上式[2]の左式は、
tan(θ1+θ2)
=tan(2θ)
=2tanθ/(1−tanθ)
=2m/(1−m)…[6]
となる。
一方、上式[5]により上式[2]の右式は、
(G−y)/(x−xp)=(G−y)/xγ…[7]
となる。
従って、上式[6][7]により、
2m/(1−m)=(G−y)/xγ
∴m+2mxγ/(G−y)−1=0…[8]
上式[8]をmについて解くと、
m=−{γx/(G−y)±√[1+(γx/(G−y))]…[9]
となる。m<0だから、
m=−{γx/(G−y)+√[1+(γx/(G−y))]…[1]
と上式[1]が導き出される。
そして、上式[1]により
y=∫mdx…[10]
として、超音波反射部材(4)の反射面のxy方向の形状を求めることができる。
【0024】
なお、他方の超音波反射部材(5)についても上述と同様にしてxy方向の形状を求めることができる。
【0025】
また、前記超音波反射部材(4)(5)は、図2に示すように、その反射面がxz方向において円弧状に形成されている。この円弧は、図4に示すように、超音波反射部材(4)(5)の反射面から仮想放射点Rまでの2倍の距離にある点R’を中心とする円弧である。前記超音波反射部材(4)(5)をこのように形成するのは、円弧の直径の1/2の距離にある放射点から放射された超音波は、該円弧において軸線方向cに平行に反射する一方、軸線方向cに平行に入射してきた超音波は、該円弧において仮想放射点Rに収束するように反射するという性質を利用するためである。
【0026】
しかして、送信側の超音波振動子(2)(3)から送信された超音波は、xz方向において、送信側の超音波反射部(4)(5)において流速測定管(1)の軸線方向に平行となるように反射し、流速測定管(1)の流速測定部(1b)内を軸線方向に平行に通過したあと、受信側の超音波反射部(5)(4)において仮想放射点Rに収束するように反射し、受信側の超音波振動子に受信される。
【0027】
次に、図1および図2に示す超音波流速測定装置を用いた超音波流速測定方法について説明する。
【0028】
まず、切替回路(8)の作動により、駆動パルス発生回路(6)と上流側の超音波振動子(2)、下流側の超音波振動子(3)と受信増幅回路(7)とが接続さるようにした上で、駆動パルス発生回路(6)で駆動パルスを発生させて超音波振動子(2)に印加すると、超音波振動子(2)から超音波が放射状に送信される。
【0029】
この上流側の超音波振動子(2)から送信された超音波は、上流側の超音波反射部材(4)の反射面において、互いに流速測定管(1)の軸線方向に平行となるように反射し、そのまま流速測定管(1)の流速測定部(1b)内を軸線方向に平行に通過する。この実施形態では、超音波反射部材(4)(5)の反射面をxy方向およびxz方向について上述のような湾曲または円弧状に形成しているので、超音波反射部材(4)(5)で反射した超音波は流速測定部(1b)の断面一杯に通過することができる。なお、図2の円形の一点鎖線は、反射部材(4)(5)の反射面における実際の反射領域(円内)を示す。
【0030】
そして、その流速測定部(1b)内を軸線方向に平行に通過してきた超音波は、下流側の超音波反射部材(5)の反射面において、下流側の超音波振動子(3)に収束するように反射して、そのまま同位相で超音波振動子(3)に受信される。
【0031】
受信増幅回路(7)では、下流側の超音波振動子(3)に受信された超音波に対応する受信波が出力される。このときの受信波は、超音波の大部分が同位相で受信されることから、その振幅が増大したものとなる。
【0032】
あとは、受信増幅回路(7)から出力される受信波に基づいて、上流側の超音波振動子(2)より超音波が送信された時から下流側の超音波振動子(3)にその超音波が受信される時までの順方向の伝搬時間を求める。
【0033】
次に、切替回路(8)の作動により駆動パルス発生回路(6)と下流側の超音波振動子(3)、上流側の超音波振動子(2)と受信増幅回路(7)とが接続されるように切り替えた上で、駆動パルス発生回路(6)で駆動パルスを発生させて超音波振動子(3)に印加すると、超音波振動子(3)から超音波が放射状に送信される。
【0034】
超音波振動子(3)から送信された超音波の大部分は、上述の超音波振動子(2)から送信された超音波の経路と逆の経路を辿って超音波振動子(2)に受信される。
【0035】
あとは、上述と同様にして、受信増幅回路(7)から出力される受信波に基づいて、下流側の超音波振動子(3)より超音波が送信された時から下流側の超音波振動子(2)にその超音波が受信される時までの逆方向の伝搬時間を求める。
【0036】
しかして、前記超音波の順方向および逆方向の伝搬時間との差に基づいて流体の流速を求め、さらに必要に応じて流体の流量を求める。
【0037】
このように、送信側の超音波振動子(2)(3)から送信された超音波の大部分が同一位相で受信側の超音波振動子(3)(2)に受信されるので、受信波の振幅を増大させることができ、ひいては流体の流速を精度良く測定することが可能となる。
【0038】
また、送信側の超音波振動子(2)(3)から送信された超音波の大部分は、流速測定管(1)内を断面一杯に軸線方向に平行に通過し得るので、流体が小流量で流速測定管内のいずれかの箇所に偏って流れている場合であっても流体の流速を精度良く測定することができる。
【0039】
なお、この実施形態では、超音波反射部は、流速測定管(1)と別体の超音波反射部材(4)(5)としたが、流速測定管(1)の内面に直接形成するものとしてもよい。
【0040】
また、超音波反射部材(4)(5)は、その反射面全体がxy方向に上述のような湾曲形状に形成されるものとしたが、反射面の一部のみがxy方向に上述のような湾曲形状に形成されるものとしてもよい。
【0041】
また、超音波反射部材(4)(5)は、その反射面がxz方向において円弧状に形成されるものとしたが、反射面の一部のみがxz方向において円弧状に形成されるものとしてもよいし、反射面全体がxz方向において円弧以外のその他の形状に形成されるものとしてもよい。
【0042】
また、超音波振動子(2)(3)および超音波反射部材(4)(5)の配置態様は上述のものに限定されるものでなく、その他の配置態様であってもよい。要は、超音波振動子(2)(3)から送信された超音波が一方の超音波反射部材(4)(5)で反射したあと、さらに他方の超音波反射部材(5)(4)で反射して超音波振動子(3)(2)に受信されるような配置態様であればよい。
【0043】
【発明の効果】
請求項1に係る発明によれば、送送信側の超音波振動子から送信された大部分の超音波が同一位相で受信側の超音波振動子に受信されるので、受信波の振幅を増大させることができ、ひいては流体の流速を精度良く測定することが可能となる。また、送信側の超音波振動子から送信された大部分の超音波は、流速測定管内を断面一杯に軸線方向に平行に通過し得るので、流体が小流量で流速測定管内のいずれかの箇所に偏って流れている場合であっても流体の流速を精度良く測定することができる。
【0044】
請求項2に係る発明によれば、上述のような効果を奏する超音波反射部を簡単かつ確実に形成することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る超音波流速測定装置の上方断面図である。
【図2】図1の超音波流速測定装置のI−I線矢視断面図である。
【図3】超音波反射部材における超音波のxy方向の反射の状態を示す図である。
【図4】超音波反射部材における超音波のxz方向の反射の状態を示す図である。
【図5】従来の超音波流速測定装置の構成概略図である。
【符号の説明】
1・・・流速測定管
2、3・・・超音波振動子
4、5・・・超音波反射部材
6・・・駆動パルス発生回路
7・・・受信増幅回路
8・・・切替回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flow velocity measuring device that measures the flow velocity of a gas or other fluid using ultrasonic waves.
[0002]
2. Description of the Related Art
2. Description of the Related Art Conventionally, when determining the flow rate of a gas or other fluid, the flow rate of the fluid is continuously or periodically measured, and the flow rate is calculated based on the measured flow rate. As one of such fluid flow velocity measuring methods, a method using ultrasonic waves is known.
[0003]
The principle of such an ultrasonic flow velocity measuring method will be described with reference to FIG. In FIG. 5, (1) is an ultrasonic flow velocity measuring tube through which a fluid such as gas flows. In the ultrasonic flow velocity measuring tube (1), cylindrical ultrasonic vibrators (2) and (3) are arranged on the upstream side and the downstream side in the flow direction so as to face each other with a predetermined distance therebetween. I have. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a driving pulse generating circuit (6), vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The reception wave when the ultrasonic transducers (3) and (2) vibrate is output from the reception amplification circuit (6).
[0004]
The propagation time until the ultrasonic wave transmitted from the upstream ultrasonic transducer (2) in the forward direction with respect to the flow is received by the downstream ultrasonic transducer (3) is determined. The difference from the propagation time until the ultrasonic wave transmitted from the ultrasonic transducer (3) in the opposite direction to the flow is received by the upstream ultrasonic transducer (2) is related to the flow velocity. The flow velocity of the fluid is measured by obtaining the difference between the propagation times of the ultrasonic waves by using a clock wave or the like.
[0005]
In FIG. 5, reference numeral (8) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3) and the drive pulse generation circuit (6) and the reception amplification circuit (7). (4) is connected to the ultrasonic transducer (2) on the upstream side, the ultrasonic transducer (3) on the downstream side and the receiving amplifier circuit (7), and the propagation time from the upstream side to the downstream side is measured. By the operation of the switching circuit (8), the drive pulse generating circuit (6) is connected to the downstream ultrasonic oscillator (3), and the upstream ultrasonic oscillator (2) is connected to the receiving amplifier circuit (7). And the propagation time from the downstream side to the upstream side is measured.
[0006]
However, when the ultrasonic vibrators (2) and (3) are arranged in an opposed manner as described above, only the straight ultrasonic waves transmitted vertically from the ultrasonic vibrators (2) and (3) are opposed. The ultrasonic transducers (3) and (2) are received in the same phase as they are, but most of the ultrasonic waves other than the straight ultrasonic waves are reflected at least once on the inner surface of the flow velocity measuring tube, and are then opposed to each other. (3) The signals are received in phases different from those in (2). Therefore, there is a problem that the amplitude of the received wave output from the reception amplifier circuit (7) is small as a whole, and the flow velocity of the fluid cannot be measured accurately.
[0007]
The present invention has been made in view of the above-described problems, and has as its object to provide an ultrasonic flow velocity measuring device that can increase the amplitude of a received wave and can accurately measure the flow velocity of a fluid. And
[0008]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above object, ultrasonic vibrators (2) and (3) are arranged on an upstream side and a downstream side of a measurement fluid flowing through a flow velocity measuring pipe (1), respectively. (2) The ultrasonic wave generated and transmitted mutually from (3), the transmitted ultrasonic waves are mutually received, and the flow velocity is measured based on the difference between the propagation times of the ultrasonic waves. In the flow velocity measuring device,
Ultrasonic reflectors (4) and (5) are provided on the upstream and downstream sides of the flow velocity measuring tube (1), respectively, so as to correspond to the ultrasonic transducers (2) and (3),
The ultrasonic reflectors (4) and (5) are arranged such that the normal line a of an arbitrary point Q on the reflection surface corresponds to the point Q and corresponds to the point P and the point on the radiation surface of the ultrasonic transducer (2) (3). An angle formed between a line connecting the virtual radiation point R located behind P and the axis c of the flow velocity measuring tube (1) is bisected.
[0009]
According to this, most of the ultrasonic waves transmitted from the ultrasonic transducer on the transmitting side are reflected by the ultrasonic reflecting portion on the transmitting side so as to be parallel to the axial direction of the flow velocity measuring pipe, and pass through the flow measuring pipe. After passing in parallel to the axial direction, the light is reflected by the ultrasonic transducer on the reception side so as to be received by the ultrasonic transducer on the reception side.
[0010]
For this reason, most of the ultrasonic waves transmitted from the ultrasonic transducer on the transmitting side are received by the ultrasonic transducer on the receiving side in the same phase, so that the amplitude of the received wave can be increased, and the fluid The flow velocity can be measured with high accuracy. In addition, most of the ultrasonic waves transmitted from the ultrasonic transducer on the transmission side can pass through the flow velocity measurement tube in a cross section fully parallel to the axial direction. The flow velocity of the fluid can be measured with high accuracy even when the flow is unevenly distributed.
[0011]
Further, it is preferable that the ultrasonic reflecting portion is formed so as to satisfy a condition of the following expression [1] on at least a part of the reflecting surface.
[0012]
m = − {γx / (Gy) + √ [1+ (γx / (Gy)) 2 ] (1)
O: Intersecting point (x, y) between axis d of ultrasonic transducers (2) and (3) and axis c of flow velocity measuring tube (1): Ultrasonic reflecting members (4) and (5) having intersection O as the origin Position m on the reflecting surface of the ultrasonic wave reflecting member (4) (5) Slope at position (x, y) on the reflecting surface r: Diameter b of the radiating surface of the ultrasonic transducers (2) and (3) b: Length y in the y direction of the flow velocity measuring tube (1): 1-r / b
G: Distance in the y direction from the origin O to the radiation surface of the ultrasonic transducers (2) and (3) According to this, the ultrasonic reflecting portion having the above-described effects can be formed simply and reliably. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a sectional view of an ultrasonic flow velocity measuring apparatus according to an embodiment of the present invention as viewed from above, and FIG. 2 is a view of the ultrasonic flow velocity measuring apparatus as viewed from the side (viewed along the line II in FIG. 1). FIG.
[0015]
1 and 2, (1) is a U-shaped flow rate measuring tube through which a fluid flows, (1a) is an accommodation portion provided at a bent portion of the flow rate measuring tube (1), and (1b) is a flow rate measuring tube ( 1) The flow velocity measuring unit provided in the lower horizontal part, (2) and (3) are the ultrasonic vibrators provided in the housing part (1a), and (4) and (5) are the same in the housing part (1a). Ultrasonic reflecting members made of metal or the like provided at positions corresponding to the ultrasonic transducers (2) and (3), respectively.
[0016]
Further, (6) is a drive pulse circuit for generating drive pulses applied to the ultrasonic transducers (2) and (3), and (7) is based on ultrasonic waves received by the ultrasonic transducers (2) and (3). (8) is a switching circuit for switching the connection between the ultrasonic transducers (2) and (3) and the drive pulse generating circuit (6) and the receiving amplifier circuit (7). Are the same as those shown in FIG. 5, and therefore the same reference numerals are given and the description thereof will be omitted.
[0017]
In this embodiment, as shown in FIG. 1, the axial direction of the flow velocity measuring portion (1b) of the flow velocity measuring tube (1) is in the x direction, and the axial directions of the ultrasonic vibrators (2) and (3) are in the y direction. And As shown in FIG. 2, a direction perpendicular to both the x direction and the y direction is defined as a z direction.
[0018]
The flow velocity measurement pipe (1) is formed in a rectangular cross section, and flows in from an upstream end (left end in FIG. 2) of the flow velocity measurement pipe (1) as shown in FIG. The fluid passes through the flow velocity measuring unit (1a) as it is, and after the flow velocity is measured during the passage, the fluid flows from the downstream end (the right end in FIG. 2) of the flow velocity measuring unit (1a). It is spilled.
[0019]
As shown in FIG. 1, the ultrasonic reflecting members (4) and (5) are curved in the xy directions so that their reflecting surfaces face each other. Specifically, as shown in FIG. 3, the ultrasonic reflecting members (4) and (5) have an ultrasonic transducer (where a normal a of an arbitrary point Q on the reflecting surface thereof corresponds to the point Q). 2) The angle (θ 1 + θ 2 ) formed by the line b connecting the point P on the radiation surface of (3) and the axis c of the flow velocity measuring tube (1) (or the parallel line c ′ of the axis c) is formed. It is formed so as to be equally divided.
[0020]
The ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmitting side are transmitted in the xy direction at the ultrasonic reflecting sections (4) and (5) on the transmitting side, and the axis of the flow velocity measuring tube (1) is changed. After being reflected so as to be parallel to the direction and passing through the inside of the flow velocity measuring section (1b) of the flow velocity measuring pipe (1) in parallel to the axial direction, the ultrasonic reflection sections (5) and (4) on the receiving side will be described later. The light is reflected so as to converge to the virtual radiation point R, and is received by the ultrasonic transducers (3) and (2) on the receiving side.
[0021]
In particular, in this embodiment, the ultrasonic reflecting members (4) and (5) are formed in such a shape that their reflecting surfaces satisfy the condition of the following expression [1].
[0022]
m = − {γx / (Gy) + √ [1+ (γx / (Gy)) 2 ] (1)
O: Intersecting point (x, y) between axis d of ultrasonic transducers (2) and (3) and axis c of flow velocity measuring tube (1): Position (coordinate) on the reflecting surface with intersection O as the origin
m: inclination at the position (x, y) on the reflection surface r: diameter of the radiation surface of the ultrasonic transducers (2), (3) b: length of the flow velocity measuring tube (1) in the y direction γ: 1-r / B
G: Distance in the y-direction from the origin O to the radiation surfaces of the ultrasonic transducers (2) and (3) The ultrasonic reflecting members (4) and (5) are formed in such a shape for the following reason. Note that, for convenience of explanation, the ultrasonic reflecting member (4) will be described.
[0023]
First, in FIG.
P: Ultrasonic transmission point (reception point)
Q: reflection point R corresponding to transmission point P: virtual emission point O: intersection (x, y) of axis d of ultrasonic transducer (2) and axis c of flow velocity measuring tube (1): intersection O is the origin Position G on the reflecting surface to be defined G: Distance in the y direction from the origin O to the radiation surface of the ultrasonic transducer (2) r: Diameter b of the radiation surface of the ultrasonic transducer (2) b: Flow velocity measurement tube (1) Θ: the angle between the normal a of the Q point and the straight line b θ2: the angle x between the normal a of the Q point and the parallel axis c ′ of the flow velocity measuring tube (1) xp: ultrasonic vibration If the distance from the axis d of the child (2) to the transmission point P is:
For the line segment PQ (straight line b),
tan (θ 1 + θ 2 ) = (G−y) / (x−xp) [2]
It becomes.
Also, the condition of the normal line at point Q is
tan θ 2 = dx / dy ... [3]
It becomes.
Also, if x and xp are considered to correspond proportionally,
x / b = xp / r ... [4]
And γ (gamma) = 1−r / b,
x-xp
= X-xr / b
= X (1-r / b)
= Xγ ... [5]
It becomes.
Here, if θ1 = θ2 = θ (∵reflection condition) and dx / dy = 1 / m, the left expression of the above expression [2] becomes:
tan (θ1 + θ2)
= Tan (2θ)
= 2tanθ / (1-tan 2 θ)
= 2m / (1-m 2 ) ... [6]
It becomes.
On the other hand, from the above equation [5], the right equation of the above equation [2] becomes:
(Gy) / (x-xp) = (Gy) / xγ ... [7]
It becomes.
Therefore, according to the above equations [6] and [7],
2m / (1-m 2) = (G-y) / xγ
∴m 2 + 2mxγ / (G−y) −1 = 0 ... [8]
Solving the above equation [8] for m gives
m = − {γx / (Gy) ± √ [1+ (γx / (Gy)) 2 ] ... [9]
It becomes. Because m <0,
m = − {γx / (Gy) + √ [1+ (γx / (Gy)) 2 ] ... [1]
And the above equation [1] is derived.
Then, according to the above equation [1], y = ∫mdx... [10]
As a result, the shape of the reflecting surface of the ultrasonic reflecting member (4) in the xy directions can be obtained.
[0024]
The shape of the other ultrasonic reflecting member (5) in the xy directions can be obtained in the same manner as described above.
[0025]
Further, as shown in FIG. 2, the ultrasonic reflecting members (4) and (5) have their reflecting surfaces formed in an arc shape in the xz direction. As shown in FIG. 4, this arc is an arc centered on a point R ′ which is twice as long as the virtual radiation point R from the reflection surfaces of the ultrasonic reflection members (4) and (5). The reason why the ultrasonic reflecting members (4) and (5) are formed in this way is that the ultrasonic waves emitted from the radiating point at a distance of 1/2 of the diameter of the arc are parallel to the axial direction c in the arc. The reason for this is to utilize the property that, while being reflected, the ultrasonic wave incident parallel to the axial direction c is reflected so as to converge to the virtual radiation point R in the arc.
[0026]
The ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmitting side are transmitted in the xz direction at the ultrasonic reflecting portions (4) and (5) on the transmitting side, and the axis of the flow velocity measuring tube (1) is changed. After being reflected parallel to the direction and passing through the flow velocity measuring section (1b) of the flow velocity measuring pipe (1) in parallel with the axial direction, virtual radiation occurs at the ultrasonic reflecting sections (5) and (4) on the receiving side. The light is reflected so as to converge to the point R, and is received by the ultrasonic transducer on the receiving side.
[0027]
Next, an ultrasonic flow velocity measuring method using the ultrasonic flow velocity measuring device shown in FIGS. 1 and 2 will be described.
[0028]
First, by the operation of the switching circuit (8), the drive pulse generation circuit (6) is connected to the upstream ultrasonic vibrator (2), and the downstream ultrasonic vibrator (3) is connected to the reception amplifier circuit (7). Then, when a drive pulse is generated by the drive pulse generation circuit (6) and applied to the ultrasonic vibrator (2), ultrasonic waves are transmitted radially from the ultrasonic vibrator (2).
[0029]
The ultrasonic waves transmitted from the upstream ultrasonic transducer (2) are parallel to each other in the axial direction of the flow velocity measuring tube (1) on the reflection surface of the ultrasonic reflection member (4) on the upstream side. The light is reflected and passes through the flow velocity measuring section (1b) of the flow velocity measuring pipe (1) in parallel with the axial direction. In this embodiment, since the reflecting surfaces of the ultrasonic reflecting members (4) and (5) are formed in the above-described curved or arcuate shape in the xy and xz directions, the ultrasonic reflecting members (4) and (5). The ultrasonic wave reflected by the can pass through the cross section of the flow velocity measuring part (1b) fully. The one-dot chain line in FIG. 2 indicates the actual reflection area (within the circle) on the reflection surface of the reflection members (4) and (5).
[0030]
Then, the ultrasonic waves that have passed through the flow velocity measuring section (1b) in parallel with the axial direction converge on the ultrasonic transducer (3) on the downstream side on the reflecting surface of the ultrasonic reflecting member (5) on the downstream side. And is received by the ultrasonic transducer (3) in the same phase as it is.
[0031]
In the reception amplifier circuit (7), a reception wave corresponding to the ultrasonic wave received by the ultrasonic transducer (3) on the downstream side is output. The received wave at this time has an increased amplitude because most of the ultrasonic waves are received in phase.
[0032]
Thereafter, based on the reception wave output from the reception amplification circuit (7), the ultrasonic wave is transmitted from the upstream ultrasonic vibrator (2) to the downstream ultrasonic vibrator (3). The forward propagation time until the ultrasonic wave is received is determined.
[0033]
Next, by the operation of the switching circuit (8), the drive pulse generation circuit (6) is connected to the downstream ultrasonic oscillator (3), and the upstream ultrasonic oscillator (2) is connected to the reception amplifier circuit (7). Then, when the drive pulse is generated by the drive pulse generation circuit (6) and applied to the ultrasonic vibrator (3), ultrasonic waves are transmitted radially from the ultrasonic vibrator (3). .
[0034]
Most of the ultrasonic waves transmitted from the ultrasonic transducer (3) follow the path opposite to the path of the ultrasonic wave transmitted from the ultrasonic transducer (2) described above, and are transmitted to the ultrasonic transducer (2). Received.
[0035]
Then, in the same manner as described above, based on the reception wave output from the reception amplification circuit (7), the ultrasonic vibration is transmitted from the downstream ultrasonic transducer (3) to the downstream ultrasonic vibration (3). The propagation time in the reverse direction until the child (2) receives the ultrasonic wave is obtained.
[0036]
Thus, the flow velocity of the fluid is obtained based on the difference between the propagation times of the ultrasonic waves in the forward and reverse directions, and the flow rate of the fluid is further obtained as necessary.
[0037]
As described above, most of the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmitting side are received by the ultrasonic transducers (3) and (2) on the receiving side in the same phase. The amplitude of the wave can be increased, and the flow velocity of the fluid can be accurately measured.
[0038]
In addition, most of the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmission side can pass through the flow velocity measuring tube (1) fully in cross section and parallel to the axial direction, so that the fluid is small. The flow velocity of the fluid can be measured with high accuracy even when the flow is unevenly distributed to any location in the flow velocity measurement pipe.
[0039]
In this embodiment, the ultrasonic reflecting portion is formed as an ultrasonic reflecting member (4) (5) separate from the flow velocity measuring tube (1), but is formed directly on the inner surface of the flow measuring tube (1). It may be.
[0040]
Also, the ultrasonic reflecting members (4) and (5) have the entire reflecting surface formed in the above-mentioned curved shape in the xy direction, but only a part of the reflecting surface is formed in the xy direction as described above. It may be formed into a curved shape.
[0041]
The ultrasonic reflecting members (4) and (5) have their reflecting surfaces formed in an arc shape in the xz direction, but only a part of the reflecting surface is formed in an arc shape in the xz direction. Alternatively, the entire reflecting surface may be formed in another shape other than a circular arc in the xz direction.
[0042]
Further, the arrangement of the ultrasonic transducers (2) and (3) and the ultrasonic reflection members (4) and (5) is not limited to the above-described one, and may be other arrangements. In short, after the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) are reflected by one of the ultrasonic reflecting members (4) and (5), the other ultrasonic reflecting members (5) and (4) Any configuration may be used as long as it is reflected by the ultrasonic transducers (3) and (2) and received by the ultrasonic transducers (3) and (2).
[0043]
【The invention's effect】
According to the first aspect of the present invention, most of the ultrasonic waves transmitted from the transmitting and transmitting ultrasonic transducers are received in the same phase by the receiving ultrasonic transducers, thereby increasing the amplitude of the received wave. It is possible to accurately measure the flow velocity of the fluid. In addition, most of the ultrasonic waves transmitted from the ultrasonic transducer on the transmission side can pass through the flow velocity measurement tube in a cross section fully parallel to the axial direction. The flow velocity of the fluid can be measured with high accuracy even when the flow is unevenly distributed.
[0044]
According to the second aspect of the present invention, it is possible to easily and reliably form the ultrasonic reflecting portion having the above-described effects.
[Brief description of the drawings]
FIG. 1 is an upper sectional view of an ultrasonic flow velocity measuring device according to an embodiment of the present invention.
FIG. 2 is a sectional view of the ultrasonic flow velocity measuring device of FIG.
FIG. 3 is a diagram illustrating a state of reflection of an ultrasonic wave in an xy direction by an ultrasonic reflecting member.
FIG. 4 is a diagram showing a state of reflection of an ultrasonic wave in an xz direction by an ultrasonic reflecting member.
FIG. 5 is a schematic configuration diagram of a conventional ultrasonic flow velocity measuring device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flow velocity measuring tube 2, 3 ... Ultrasonic oscillator 4, 5 ... Ultrasonic reflecting member 6 ... Drive pulse generation circuit 7 ... Reception amplification circuit 8 ... Switching circuit

Claims (2)

流速測定管(1)を流れる計測流体の上流側と下流側にそれぞれ超音波振動子(2)(3)が配置され、前記各超音波振動子(2)(3)から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定するものとなされている超音波流速測定装置において、
前記流速測定管(1)の上流側と下流側にそれぞれ超音波反射部(4)(5)が前記超音波振動子(2)(3)に対応するように設けられ、
前記超音波反射部(4)(5)は、反射面の任意の点Qの法線aが、その点Qと対応する超音波振動子(2)(3)の放射面の点P及び点Pの後方に位置する仮想放射点Rとを結んだ線と、流速測定管(1)の軸線cとがなす角を二等分するように形成されていることを特徴とする超音波流速測定装置。
Ultrasonic vibrators (2) and (3) are arranged on the upstream and downstream sides of the measurement fluid flowing through the flow velocity measuring pipe (1), respectively, and ultrasonic waves are mutually transmitted from the ultrasonic vibrators (2) and (3). In an ultrasonic flow velocity measuring device that generates and transmits, mutually receives the transmitted ultrasonic waves, and measures the flow velocity based on the difference in the propagation time of the ultrasonic waves,
Ultrasonic reflectors (4) and (5) are provided on the upstream and downstream sides of the flow velocity measuring tube (1), respectively, so as to correspond to the ultrasonic transducers (2) and (3),
The ultrasonic reflectors (4) and (5) are arranged such that the normal line a of an arbitrary point Q on the reflection surface corresponds to the point Q and corresponds to the point P and the point on the radiation surface of the ultrasonic transducer (2) (3). Ultrasonic flow velocity measurement characterized in that an angle formed between a line connecting a virtual radiation point R located behind P and an axis c of the flow velocity measurement pipe (1) is bisected. apparatus.
前記超音波反射部は、その反射面の少なくとも一部において下式[1]の条件を満たすように形成されている超音波流速測定装置。
m=−{γx/(G−y)+√[1+(γx/(G−y))2]・・・[1]
O:超音波振動子(2)(3)の軸線dと流速測定管(1)の軸線cとの交点
(x、y):交点Oを原点とする超音波反射部材(4)(5)の反射面上の位置
m:超音波反射部材(4)(5)の反射面上の位置(x、y)における傾き
r:超音波振動子(2)(3)の放射面の直径
b:流速測定管(1)のy方向の長さ
γ:1−r/b
G:原点Oから超音波振動子(2)(3)の放射面までのy方向の距離
An ultrasonic flow velocity measuring device, wherein the ultrasonic reflecting section is formed so as to satisfy a condition of the following expression [1] on at least a part of its reflecting surface.
m =-{γx / (Gy) + √ [1+ (γx / (Gy)) 2] (1)
O: Intersecting point (x, y) between axis d of ultrasonic transducers (2) and (3) and axis c of flow velocity measuring tube (1): Ultrasonic reflecting members (4) and (5) having intersection O as the origin Position m on the reflecting surface of the ultrasonic wave reflecting member (4) (5) Slope at position (x, y) on the reflecting surface r: Diameter b of the radiating surface of the ultrasonic transducers (2) and (3) b: Length y in the y direction of the flow velocity measuring tube (1): 1-r / b
G: Distance in the y direction from the origin O to the radiation surface of the ultrasonic transducers (2) and (3)
JP2002105889A 2002-04-09 2002-04-09 Ultrasonic flow velocity measuring device Expired - Fee Related JP3583114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105889A JP3583114B2 (en) 2002-04-09 2002-04-09 Ultrasonic flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105889A JP3583114B2 (en) 2002-04-09 2002-04-09 Ultrasonic flow velocity measuring device

Publications (2)

Publication Number Publication Date
JP2003302415A JP2003302415A (en) 2003-10-24
JP3583114B2 true JP3583114B2 (en) 2004-10-27

Family

ID=29390367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105889A Expired - Fee Related JP3583114B2 (en) 2002-04-09 2002-04-09 Ultrasonic flow velocity measuring device

Country Status (1)

Country Link
JP (1) JP3583114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257611A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Apparatus for measuring flow of fluid
CN103076817B (en) * 2013-01-09 2016-01-27 深圳市建恒测控股份有限公司 A kind of volume control device
CN103076052A (en) * 2013-01-09 2013-05-01 深圳市建恒测控股份有限公司 Detector mounting pipe component
CN107505016B (en) * 2017-09-13 2022-02-08 湖北锐意自控系统有限公司 Gas flow metering gas chamber and gas flow meter

Also Published As

Publication number Publication date
JP2003302415A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
JP2013507623A (en) Ultrasonic flow sensor for detecting the flow rate of fluid medium
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP7151311B2 (en) ultrasonic flow meter
JP2001021398A (en) Ultrasonic flowmeter
JP3535612B2 (en) Ultrasound transceiver
JP4368591B2 (en) Ultrasonic flow meter
JP3013596B2 (en) Transmission ultrasonic flowmeter
JP3535625B2 (en) Ultrasonic current meter
JP3328505B2 (en) Ultrasonic flow meter
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JP2002131104A (en) Ultrasonic flow rate measuring system
JP3653829B2 (en) Anemometer
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JP2003121223A (en) Ultrasonic flow velocity-measuring instrument
JPH0710252Y2 (en) Ultrasonic probe
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus
WO2005064289A1 (en) Ultrasonic flowmeter, ultrasonic transducer, ultrasonic transmitting/receiving unit, and flowrate measuring method using ultrasonic flowmeter
JP2001289679A (en) Ultrasonic type vortex flowmeter
JP2002214010A (en) Ultrasonic flow velocity measuring apparatus
JPH09236462A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees