JP3582783B2 - High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method - Google Patents

High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method Download PDF

Info

Publication number
JP3582783B2
JP3582783B2 JP2000272710A JP2000272710A JP3582783B2 JP 3582783 B2 JP3582783 B2 JP 3582783B2 JP 2000272710 A JP2000272710 A JP 2000272710A JP 2000272710 A JP2000272710 A JP 2000272710A JP 3582783 B2 JP3582783 B2 JP 3582783B2
Authority
JP
Japan
Prior art keywords
housing member
peripheral surface
inner peripheral
frequency
cylindrical housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000272710A
Other languages
Japanese (ja)
Other versions
JP2002080914A (en
Inventor
精一 沢津橋
美治 亀山
良行 町永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2000272710A priority Critical patent/JP3582783B2/en
Publication of JP2002080914A publication Critical patent/JP2002080914A/en
Application granted granted Critical
Publication of JP3582783B2 publication Critical patent/JP3582783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不等肉厚部を有する筒状体、すなわち、自動車部品であるトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法およびその方法に使用する高周波コイルに関する。
【0002】
【従来の技術】
従来、この種の高周波移動焼入方法が適用される、不等肉厚部を有する筒状体として、例えば、近年採用されているトリポート型自在継手のハウジング部材1は、図5に示すように、軸心に直角な面での断面肉厚形状は、各部によって形状が著しく異なり、かつ、より複雑で、内周面に凹凸部が設けられている。
すなわち、該トリポートハウジング部材1は、図示しない球面ローラが転動するローラ溝2を挟んで、その両側のローラ転動面2aを接続する接続部3は、最も肉厚が薄く、ローラ溝2とこれに隣接するローラ溝2とを接続する区画部4は、最も肉厚が厚くなっている。
【0003】
かかる不等肉厚部を有する前記ハウジング部材1の内面を高周波加熱方法により移動焼入する、従来の焼入方法は、図6ないし図9により説明すると、以下のようである。
まず、図6は、図7に示す高周波コイル6を内蔵する高周波焼入装置5により、前記ハウジング部材1の内面を焼入するときの、全体の要部配置を示す斜視図、図7は前記高周波コイル6の斜視図、図8は、前記ハウジング部材1の内面を焼入するときの要部縦断面図、図9は、図8のB−B線による、第2の冷却部を含む横断面図である。
【0004】
前記高周波コイル6は、図5および図7に示すように、銅などの導体からなる中空状の角管で形成されており、その中空内部には冷却液が、循環するようになっている。
該高周波コイル6は、高周波焼入時に、図5の前記ハウジング部材1の3箇所のローラ溝2内に挿入され、ほぼ水平に配置されるように、単巻コイル6a,6b,6cからなる。これらの各単巻コイル6a,6b,6cは、各ローラ溝2のローラ転勤面2aに対応する部位に、該転動面2aに沿って弧状に形成され、該転動面2aとの間隙をほぼ一定としている。
【0005】
また、前記ハウジング部材1の、最も薄肉部である前記接続部3に対応する部位では、前記単巻コイル6a,6b,6cは、ほぼ直線状に形成され、該接続部3の内面3aと所定の間隙をもって、配置、移動し得るようになっている。これは、前記接続部3の過熱を防ぐためのものである。同時に、該ハウジング部材1の最厚肉部たる前記区画部4に対応して配置される加熱導体部分には、図7に示すように、前記ハウジング部材1に軸心に平行で、該単巻コイル6a,6b,6cのそれぞれの立上り部分を形成する垂直コイル部6d,6e,6d,6e,7,8が形成、接続されている。
【0006】
すなわち、各単巻コイル6a,6b,6cの両端部は、前記区画部4の対応位置で水平方向から垂直方向へ折曲されて前記垂直コイル部6d,6e,6d,6e,7,8として、互いに平行に近接して形成され、該垂直コイル部6d,6e,6d,6e,7,8は、それぞれの間に電気的絶縁体9を挟持させて、所定の長さに延設され、図7に示すように、その頂部を相互に接続されている。この場合、前記単巻コイル6cと6a間の前記垂直コイル部7,8間だけは、絶縁体9で絶縁されたまま延設され、後述するように、リード管として高周波電源に接続されている。
【0007】
このため、前記高周波コイル6は、全体して、前記各単巻コイル6a,6b,6cが、前記垂直コイル部6d,6e,6d,6e,7,8のそれぞれを介して、直列に接続されたコイルを形成し、高周波コイル6全体を通して高周波電流が流れるとともに、その中空部内を冷却水が循環するように構成されている。
この場合、前記区画部4に対向して配置される前記垂直コイル部6d,6e,6d,6e,7,8では、対となる、それぞれの垂直コイル部6d,6e;6d,6e;7,8間では流れる高周波電流の方向は、相互に逆方向になり、前記区画部4を誘導加熱しない。
なお、その間に前記絶縁物9が介在される、前記コイル立上り部としての前記垂直コイル部6d,6e;6d,6e;7,8間の間隙は支障のない範囲で極力狭くなっている。
【0008】
前記高周波焼入装置8は、かかる前記高周波コイル6を内蔵する加熱部12と第1の冷却部13とからなる内部ユニット11と、第2の冷却部14を備えている。
図6および図8に示すように、前記内部ユニット11は、基台15に穿設した貫通穴16内を挿通して上方に突出、配置された柱状体17の先端17aに、前記高周波コイル6の形状に合わせて3方向方に等分して振り分け、配設されている。
該内部ユニット11を構成する加熱部12および第1の冷却部13は、図8に示すように、高周波焼入装置5の昇降方向(前記ハウジング部材1の軸方向1a)に沿って、前記加熱部12が該昇降方向の上方に、また、前記第1の冷却部13が下方に位置するように、一体的に成形されている。
【0009】
前記加熱部12は、前記高周波コイル6と、該高周波コイル6の各単巻コイル6a,6b,6cで、その前記軸方向1aの前後側面(図8における上下側面)を覆いながら、前記ハウジング部材1の内周面と対向する側面のみを露出して、高周波電流による誘導加熱効果を高めるダストコアまたは珪素鋼板のような強磁性体18で成型される。
前記高周波コイル6の前記垂直コイル部7,8は、適宜、リード線(図示せず)を介して、図示しない高周波電源に接続されるとともに、該一対の垂直コイル部7,8の一方が給水源に連結された給水管に、また他方が排水管にそれぞれ接続されている。
【0010】
そして、図6に示す前記柱状体17自体も絶縁材で成型されており、前記第1の冷却部13は、図8に示すように、前記加熱部12の下部に各々一体的に組み付けられ、内部に中空部を形成した液室部13aには、外周方向に向かって放射状の冷却液用のノズル穴13bが複数穿設され、加熱された前記ローラ溝2の内周面2b全面に冷却液を噴射するようになっている。
なお、前記ノズル穴13bの方向は、図8において若干下向きに穿設、形成されている。
前記加熱部12と同様に、3方向に等分割して振り分けられた3個の前記第1の冷却部13は、各々適宜管路(図示せず)により前記柱状体17内に配管された冷却液圧送管19に連結されている。該圧送管19の下部は、図示しなし冷却液タンクに連結され、適宜圧送手段により冷却液を前記各冷却部13内に圧送する。
【0011】
前記第2の冷却部14は、複数個(図では、3個)の円弧形状の液室部14aをなし、前記ハウジング部材1の前記接続部3の外周面3bおよび前記区画部4の外周面4bと、それぞれある間隙をおいて対向、配置され、中空部を形成する液室部14aのうち、前記外周面3bおよび4bに対向する面には、複数のノズル穴14bが穿設され、前記冷却部14と図示しない冷却液タンクとを結ぶ圧送管20により冷却液が供給される。なお、図6の前記内部ユニット11と第2の冷却部14とは、全て略同一高さだけ、基台15から突出配置されている。
【0012】
次いで、本高周波焼入装置5の作用について説明する。
前記高周波コイル6を内蔵する前記高周波焼入装置5により、前記ハウジング部材1の内面を焼入するに際しては、まず図6に示すように、高周波焼入装置5を所定の位置で固定しておき、その直上に配置された前記ハウジング部材1を、図示しない昇降手段により下方向に所定速度で連続して下降させる。
該ハウジング部材1の下端の開口部1bを、前記高周波焼入装置5の内部ユニット11内の高周波コイル6が通過して、該ハウジング部材1内に挿入され、図9に示すように水平状の各単巻コイル6a,6b,6cを前記ローラ構2内に配置するとともに、前記垂直コイル部6d,6e,6d,6e,7,8を、該ハウジグ部材1の軸心方向に沿って前記区画部4の内面に対して平行に配置して、該高周波コイル6に高周波電流を供給する。
【0013】
前記ハウジング部材1に対し、相対的にある速度で、前記高周波コイル6を上方への移動するにつれて、前記各単巻コイル6a,6b,6cと対向するローラ溝2の内周面2bは、その表面に誘導電流を発生し、ジュール熱により瞬時(比較的短時間)に加熱される。
次いで、加熱された該内周面2bが所定の温度に達したとき、前記高周波コイル6の下方に配設された第1の冷却部13から、前記加熱面に向けて冷却液が噴射され、該加熱面を急激に冷却して、加熱面である前記ローラ溝2の内周面2b全面に焼入層(T)を形成する。
【0014】
【発明が解決しようとする課題】
ところで、前記高周波焼入装置5を用いて、被焼入体である3つのローラ溝2が形成される前記ハウジング部材1の内周面を焼入するとき、該焼入装置5の前記高周波コイル6の前記各単巻コイル6a,6b,6cと溝内周面との間隙(空隙)にバラツキがないことが必要条件となる。すなわち、前記間隙にバラツキがあると、焼入温度にバラツキを引き起こし、従って、前記焼入層にバラツキを生ずる。該焼入層のバラツキは焼入歪の発生原因となり、また焼割れの原因ともなる。
【0015】
前記高周波コイル6と前記ハウジング部材1の溝内周面との相対的位置精度を確保し、均一な焼入層を形成するためには、該焼入装置8の機械的精度と前記ハウジング部材1の位置決め精度を高めなければならない。すなわち、該焼入装置5は、前記ハウジング部材1の軸心に対する前記3つのローラ溝2の位置精度のバラツキを小さくしなければならない。また、同時に、前記ハウジング部材1のローラ溝2の位置と軸心を、正確かつ自動的に位置決めする機械装置が必要となる。
【0016】
しかしながら、前記機械的精度を有する前記焼入装置5と、前記位置決め精度を有する、前記ハウジング部材1であるワーク位置決め装置は、非常に高価なものになるという問題点があった。特に、精度の高い前記ワーク位置決め装置より構成される、前記ハウジング部材1の移動焼入機械装置の価格は、全高周波焼入装置の約80%となっている。
【0017】
本発明はかかる点に鑑みなされたものであって、その目的は前記問題点を解消し、安価な焼入装置および移動焼入機構を用いて、高品質の焼入可能な、トリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法を提案することにある。
【0019】
【課題を解決するための手段】
前記目的を達成するための本発明のトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法の構成は、加熱用の高周波コイルとトリポート型等速ジョイントの筒状ハウジング部材とを相対的に移動させながら、前記筒状ハウジング部材の内周面を加熱し、その直後、加熱された前記内周面に、冷却液を噴射して、前記内周面を焼入するに際し、前記筒状ハウジング部材の最小径内周面から、ある間隔を隔てて、円環状の高周波コイルを前記筒状ハウジング部材の内周面内に配設し、前記筒状ハウジング部材を前記筒状ハウジング部材の軸心方向を中心として回転させるとともに、前記高周波コイルと前記筒状ハウジング部材とを前記軸心方向に沿って相対的に移動させながら、前記高周波コイルに高周波電流を供給して、前記筒状ハウジング部材の内周面を高周波加熱し、その直後、該加熱面に対して、前記高周波コイルの下部に配設されたる第1の冷却手段により冷却液を噴射して、前記内周面を移動焼入するとともに、前記筒状ハウジング部材の外周に、該外周面から、ある距離を離間して配置される第2の冷却手段により、冷却液を、前記高周波加熱に先行、または該高周波加熱に並行して噴射して、前記筒状ハウジング部材の最薄肉部の過熱を抑える方法である。
【0021】
前記方法において、前記高周波電流の周波数が5kHz〜150kHzの範囲である方法である。
【0023】
以下、図面に基づいて本発明の好適な実施の形態を例示的に詳しく説明する。
図1ないし図4は、本発明の不等肉厚部を有する筒状体内面の高周波移動焼入方法と、該高周波移動焼入方法に使用される高周波加熱コイルの一実施例を示す図で、図1は、図2に示す高周波コイル26を内蔵する高周波焼入装置25により、不等肉厚部を有する筒状体としての、前記トリポートハウジング部材(筒状ハウジング部材)1の内面を焼入するときの、全体の要部配置を示す縦断面図、図2は前記高周波コイル26の斜視図、図3は、前記ハウジング部材1の内面を焼入するときの要部縦断面図、図4は、図1のA−A線による、第2の冷却部34を含む横断面図である。図5ないし図9と同一部材には、同一符号を付して、その説明を省略する。
【0024】
図2に示す高周波コイル26は、銅などの導体からなる中空状の角管で形成されており、その中空内部には冷却液が、循環するようになっている。
該高周波コイル26は、高周波焼入時に、前記ハウジング部材1内に挿入され、該ハウジング部材1の軸心に直角な、ほぼ水平面に配置される円環状の単巻コイル部26aと,該単巻コイル部26aの両端からコイル中心に向けて曲げられ、該コイル中心付近から垂直に曲げられた、立上り部分として、前記軸心に沿って配設される垂直コイル部26b,26cに、それぞれ接続されて、1つの直列のコイルを形成する。前記垂直コイル部26b,26c間は、絶縁体9で絶縁されたまま延設され、その端部は、リード管として高周波電源41に接続されるようになっている。なお、前記それぞれの垂直コイル部26b,26c間では、流れる高周波電流の方向は、相互に逆方向になり、誘導加熱はしない。
【0025】
該高周波コイル26は、本実施例においては、前記ハウジング部材1の最小径内周面4cとある所要の間隙を隔てて、単巻の円環形コイル26aに巻回され、前記最小径内周面4cの内に、該ハウジング部材1と相対的に、該ハウジング部材1の軸心方向1aに移動可能に挿入、配設されている。
【0026】
本実施の形態における高周波焼入装置25は、次の如く構成されている。
該高周波焼入装置25は、かかる前記高周波コイル26を内蔵する加熱部32と第1の冷却部33からなる内部ユニット31と、第2の冷却部34を備えている。
図1および図3に示すように、前記内部ユニット21は、前記高周波焼入装置25の基台35に穿設した貫通穴36内を挿通して上方に突出、配置された柱状体37の先端37aに、前記高周波コイル26の形状に合わせて、配設されている。
該内部ユニット31を構成する前記加熱部32と第1の冷却部33は、図3に示すように、前記高周波焼入装置25の昇降方向(前記ハウジング部材1の軸方向1a)に沿って、前記加熱部32が該昇降方向の上方に、また、第1の冷却部33が下方に位置するように一体的に形成されている。
【0027】
前記加熱部32は、前記高周波コイル26と、該高周波コイル26の単巻コイル26aの前記軸方向の前後側面(図3における上下側面)を覆いながら、前記ハウジング部材1の内周面と対向するコイル側面のみを露出して、高周波電流による誘導加熱効果を高めるダストコアまたは珪素鋼板のような磁性体38とから成型されている。
前記高周波コイル26は、その端部でリード線40を介して、加熱用高周波電源41に接続されるとともに、該コイル26の一端は給水源に連結され、また他端は排水管へと連結される。
【0028】
前記第1の冷却部33は、図3に示すように、加熱部32の下部に一体的に組み付けられ、内部に中空部を形成した液室部33aには、その外周面に放射状に冷却液のノズル穴33bが複数設けられ、前記ハウジング部材1のローラ溝2の内周面2b全面に冷却液を噴射しうるようになっている。
なお、前記ノズル穴33bの方向は、図3においてある所要角度をもって下向きに穿設、形成されている。
該第1の冷却部33は、冷却液圧送管19に連結されており、該圧送管19の下部は、図示しない冷却液タンクに連結され、適宜圧送手段により冷却液を前記冷却部33内に圧送する。
【0029】
前記第2の冷却部34は、前記ハウジング部材1の外周面3bと、焼入時にある所要の間隔を隔てて、前記ハウジング部材1の全外周面に対向して、円環状の液室をなすように形成、配設され、中空部を形成する液室部34aには、前記ハウジング部材1の全外周面に対向する面に、複数のノズル穴34bが穿設される。そして、該第2の冷却部34と図示しない冷却液タンクとを結ぶ圧送管20を介して、冷却液が供給されるようになっている。
【0030】
次いで、本実施の形態における前記高周波焼入装置25の作用について説明する。
前記高周波コイル26を内蔵する前記高周波焼入装置25により、前記ハウジング部材1の全内面を焼入するに際しては、まず、図1に示すように、高周波焼入装置25を所定位置で固定しておき、その直上に配置された前記ハウジング部材1を、その軸心上で、図示しない回転駆動装置により、ある所要回転数で回転させながら、該ハウジング部材1を適宜昇降機構により下方向に、ある所定速度で連続して下降させる。この場合、前記ハウジング部材1の回転中は、その回転中心が偏心しないようにする。
【0031】
前記ハウジング部材1の下端の開口部1bを、前記高周波焼入装置25の内部ユニット31内の高周波コイル26が通過して、該ハウジング部材1内に挿入され、図4に示すように、水平状に前記単巻コイル26aを配置するとともに、前記垂直コイル部26b,26cを、該ハウジグ部材1の軸心方向に沿って配置し、前記コイル26に高周波電流を供給する。
【0032】
前記ハウジング部材1を前記軸心を中心とし七、ある所定回転数で回転させながら、該ハウジング部材1に対し、相対的に、前記軸心方向にある速度で、前記高周波コイル26を上方へ移動すると、前記単巻コイル26aと対向する前記ハウジング部材1の内周面2bは、その表面に誘導電流を発生し、ジュール熱により瞬時、または比較的短時間に加熱される。
次いで、加熱された該内周面2bが所定の温度に達したとき、前記高周波コイル26の下方に配設された第1の冷却部33から、前記加熱面に向けて冷却液が噴射され、該加熱面を急速に冷却して、該内周面に焼入層(T)を形成する。
【0033】
この際、図3に示すように、前記ハウジング部材1の前記区画部4の内周面4c(最小径内周面)からある所要の間隙(空隙)を隔てて、円環状の前記高周波コイル26の単巻コイル26aが配置される。このように、該単巻コイル26aの外周面と前記区画部4の前記内周面46とが近接しており、前記ローラ溝2よりローラ溝2の前記接続部3の内周面3bと、該単巻コイル26aの外周面との間隙は大きくなっているが、前記区画部4の熱容量が最も大きく、前記ローラ転動面2aから前記接続部3にかけて熱容量が徐々に小さくなるので、高周波電源41の周波数を5kHz〜150kHzの範囲で、適切に選択することにより、該ハウジング部材1の内周面全面を略均一な硬化層を得ることが可能となる。
【0034】
また、最薄肉部である前記接続部3の部分では、前記高周波コイル26は、その内周面3aと最も間隔距離があり、かつ該接続部3の外周面3bには、前記第2の冷却部34から冷却水が、前記加熱に先行し、または該加熱と並行して噴射されるので、前記ローラ溝2の内周面2bのうち前記ローラ転動面2aほどは前記内周面3aは加熱されず、従って、前記第1の冷却部33による焼入層の深さ(t)も相対的に薄くなる。
【0035】
かくして、焼入される前記ハウジング部材1の内周面は、回転されながら加熱、冷却されるため、むらなく均一に高周波焼入層を形成することができ、従来のように、高周波コイル26とワーク(ハウジング部材1)との位置精度を確保するための機械装置を必要とせず、また焼入装置そのものも、従来の焼入装置並の精度は必要としない。同時に、さらに、従来以上の品質が確保できる。
【0036】
図3に示すように、前記ハウジング部材1が回転しながら下降して、該部材1の底面1c近くまで焼入層(T)が形成されると、前記高周波コイル26の高周波電流の供給を断ち、しかる後、該ハウジング部材1の回転を止めながら、上昇させればよい。
なお、始めのハウジング部材1の焼入が完了すれば、次のハウジング部材1が移動してきて、前記焼入装置25の直上に配置され、回転、下降を開始するようにすれば、そのハウジング部材1の連続焼入作業が可能になる。
【0037】
以下に、本実施例における具体例を示す。

Figure 0003582783
【0038】
前記具体例では、被焼入体として、ハウジング部材1を例示したが、本発明に係わる高周波コイルは、他の任意な、不等肉厚断面を有する筒形体の内面焼入に適用しうるものである。
また、前記具体例の被焼入体のように有底筒状体に限らず、無底の筒状体にも適用される。
【0039】
なお、本発明の技術は前記実施例における技術に限定されるものではなく、同様な機能を果たす他の態様の手段によってもよく、また本発明の技術は前記構成の範囲内において種々の変更、付加が可能である。
【0040】
【発明の効果】
以上の説明から明らかなように本発明のトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法によれば、前記筒状ハウジング部材の最小径内周面から、ある間隔を隔てて、円環状の高周波コイルを前記筒状ハウジング部材の内周面内に配設し、前記筒状ハウジング部材を前記筒状ハウジング部材の軸心方向を中心として回転させるとともに、前記高周波コイルと前記筒状ハウジング部材とを前記軸心方向に沿って相対的に移動させながら、前記高周波コイルに高周波電流を供給して、前記筒状ハウジング部材の内周面を高周波加熱し、その直後、該加熱面に対して、前記高周波コイルの下部に配設されたる第1の冷却手段により冷却液を噴射して、前記内周面を移動焼入するとともに、前記筒状ハウジング部材の外周に、該外周面から、ある距離を離間して配置される第2の冷却手段により、冷却液を、前記高周波加熱に先行、または該高周波加熱に並行して噴射して、前記筒状ハウジング部材の最薄肉部の過熱を抑えるようにしているので、安価な焼入装置および移動焼入機構を用いて、高品質の焼入加工が可能になる効果を奏する。すなわち、本発明によれば、複雑かつ高価な機構が不要となる上に形状の単純な円環状高周波コイルを用いれば済むため、焼入設備が従来と比較して極めて安価なものとなり、しかも焼入対象物を回転させることにより従来の焼入方法と比較して高品質な焼入(各溝部の焼入硬化層が均一になる)が可能となる。
【0041】
また、前記高周波電流の周波数を5kHz〜150kHzとし、また、前記円環状の高周波コイルを単巻き、または複数巻きに形成されるので、前記焼入装置9は、3つの溝位置精度に関係なく焼入が可能となり、また、前記ハウジング部材1の溝位置および軸心を正確に、かつ自動的に位置決めする機械装置も必要としない。従って、本移動焼入装置は、従来のものと比較して、極めて安価なものとなり、かつ、従来以上の高品質の焼入加工が可能となる。
【図面の簡単な説明】
【図1】本発明のトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法の一実施例を示し、図2に示す高周波コイルを内蔵する高周波焼入装置により、不等肉厚部を有する筒状体としてのトリポートハウジング部材の内周面を焼入する、全体の要部配置を示す縦断面図である。
【図2】本発明の高周波移動焼入方法に使用される高周波加熱コイルの一実施例を示す斜視図である。
【図3】前記ハウジング部材1の内面を焼入するときの要部縦断面図である。
【図4】図1のA−A線による、第2の冷却部を含む横断面図である。
【図5】従来の高周波移動焼入装置に装着されたトリポートハウジング部材の軸心に直角な面での横断面図である。
【図6】従来の高周波移動焼入装置で、図7に示す高周波コイル9を内蔵する該焼入装置により、ハウジング部材の内面を焼入する、全体の要部配置を示す斜視図である。
【図7】従来の高周波移動焼入装置に使用される高周波コイルを示す斜視図である。
【図8】従来の高周波移動焼入装置により、ハウジング部材の内面を焼入するときの要部縦断面図である。
【図9】図8のB−B線による、第2の冷却部を含む横断面図である。
【符号の説明】
1 ハウジング部材
2 ローラ溝
2b,3a,4c 内周面
3 接続部
3b、4b 外周面
4 区画部
9 絶縁体
25 高周波焼入装置
26 高周波コイル
26a 単巻コイル
31 内部ユニット
32 加熱部
33 第1の冷却部
33a,34a 液室部
33b,34b ノズル穴
34 第2の冷却部
37 柱状体
38 強磁性体
41 高周波電源[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency moving hardening method for a cylindrical body having an unequal thickness portion, that is , an inner peripheral surface of a cylindrical housing member of a tripod constant velocity joint as an automobile part, and a high-frequency coil used in the method. .
[0002]
[Prior art]
Conventionally, as a tubular body having an unequal thickness portion to which this type of high-frequency moving quenching method is applied, for example, a housing member 1 of a tripod-type universal joint, which has been recently adopted, as shown in FIG. The thickness of the cross-section in a plane perpendicular to the axis is significantly different from part to part, and is more complicated, and irregularities are provided on the inner peripheral surface.
That is, in the tripod housing member 1, the connecting portion 3 connecting the roller rolling surfaces 2a on both sides of the roller groove 2 on which the spherical roller (not shown) rolls is sandwiched, the thickness of the connecting portion 3 is the thinnest. The partition 4 connecting the roller groove 2 and the adjacent roller groove 2 has the largest thickness.
[0003]
A conventional quenching method for moving and quenching the inner surface of the housing member 1 having such unequal thickness portions by a high-frequency heating method will be described below with reference to FIGS.
First, FIG. 6 is a perspective view showing the arrangement of the main parts of the whole when the inner surface of the housing member 1 is quenched by the induction hardening device 5 incorporating the high-frequency coil 6 shown in FIG. 7, and FIG. FIG. 8 is a perspective view of the high-frequency coil 6, FIG. 8 is a longitudinal sectional view of a main part when the inner surface of the housing member 1 is quenched, and FIG. FIG.
[0004]
As shown in FIGS. 5 and 7, the high-frequency coil 6 is formed of a hollow square tube made of a conductor such as copper, and a coolant is circulated inside the hollow tube.
The high-frequency coil 6 is inserted into three roller grooves 2 of the housing member 1 shown in FIG. 5 at the time of induction hardening, and includes single-turn coils 6a, 6b, and 6c so as to be arranged substantially horizontally. Each of the single-turn coils 6a, 6b, 6c is formed in an arc shape along the rolling surface 2a at a portion of each roller groove 2 corresponding to the roller rolling surface 2a, and a gap with the rolling surface 2a is formed. Almost constant.
[0005]
Further, at a portion of the housing member 1 corresponding to the connection portion 3 which is the thinnest portion, the single-turn coils 6a, 6b, 6c are formed substantially linearly, and are formed with the inner surface 3a of the connection portion 3 by a predetermined distance. Can be arranged and moved with a gap of. This is to prevent the connection portion 3 from being overheated. At the same time, as shown in FIG. 7, the heating conductor portion arranged corresponding to the partition portion 4 which is the thickest portion of the housing member 1 is parallel to the axis of the housing member 1, Vertical coil portions 6d, 6e, 6d, 6e, 7, 8 forming the rising portions of the coils 6a, 6b, 6c are formed and connected.
[0006]
That is, both ends of each of the single-turn coils 6a, 6b, 6c are bent from the horizontal direction to the vertical direction at the corresponding positions of the partitioning section 4 to form the vertical coil sections 6d, 6e, 6d, 6e, 7, 8, respectively. The vertical coil portions 6d, 6e, 6d, 6e, 7, 8 are extended to a predetermined length with an electric insulator 9 interposed therebetween, As shown in FIG. 7, the tops are interconnected. In this case, only the portion between the vertical coil portions 7 and 8 between the single-turn coils 6c and 6a is extended while being insulated by an insulator 9, and is connected to a high-frequency power supply as a lead tube as described later. .
[0007]
Therefore, in the high-frequency coil 6, as a whole, the single-turn coils 6a, 6b, 6c are connected in series via the vertical coil portions 6d, 6e, 6d, 6e, 7, 8 respectively. A high-frequency current flows through the entire high-frequency coil 6 and cooling water circulates through the hollow portion.
In this case, in the vertical coil portions 6d, 6e, 6d, 6e, 7, 8 arranged opposite to the partition portion 4, respective vertical coil portions 6d, 6e; 6d, 6e; The directions of the high-frequency currents flowing between the sections 8 are opposite to each other, and the section 4 is not induction-heated.
The gap between the vertical coil portions 6d, 6e; 6d, 6e; 7, 8 as the coil rising portions, between which the insulator 9 is interposed, is as narrow as possible without any problem.
[0008]
The induction hardening device 8 includes an internal unit 11 including a heating unit 12 having the high-frequency coil 6 built therein and a first cooling unit 13, and a second cooling unit 14.
As shown in FIGS. 6 and 8, the internal unit 11 is inserted into a through-hole 16 formed in the base 15 and protrudes upward. Are equally distributed in three directions according to the shape of.
As shown in FIG. 8, the heating unit 12 and the first cooling unit 13 constituting the internal unit 11 perform the heating along the vertical direction of the induction hardening device 5 (the axial direction 1 a of the housing member 1). The unit 12 is integrally formed so that the unit 12 is located above the elevating direction and the first cooling unit 13 is located below.
[0009]
The heating part 12 is formed by the high-frequency coil 6 and the single-turn coils 6 a, 6 b, 6 c of the high-frequency coil 6 while covering the front and rear sides (upper and lower sides in FIG. 8) in the axial direction 1 a of the housing member. 1 is formed of a ferromagnetic material 18 such as a dust core or a silicon steel plate exposing only the side surface facing the inner peripheral surface to enhance the effect of induction heating by high-frequency current.
The vertical coil portions 7, 8 of the high-frequency coil 6 are connected to a high-frequency power source (not shown) via lead wires (not shown), and one of the pair of vertical coil portions 7, 8 is supplied. The water supply pipe is connected to the water source, and the other is connected to the drain pipe.
[0010]
The columnar body 17 itself shown in FIG. 6 is also formed of an insulating material, and the first cooling unit 13 is integrally assembled to the lower part of the heating unit 12 as shown in FIG. A plurality of nozzle holes 13b for cooling liquid are formed radially in the liquid chamber portion 13a having a hollow portion formed therein in the outer peripheral direction, and the cooling liquid is formed on the entire inner peripheral surface 2b of the heated roller groove 2. Is to be injected.
The direction of the nozzle hole 13b is formed by drilling slightly downward in FIG.
Similarly to the heating unit 12, the three first cooling units 13 equally divided and distributed in three directions are respectively cooled by pipes (not shown) in the columnar body 17 as appropriate. It is connected to a hydraulic pressure feed pipe 19. The lower portion of the pressure feed pipe 19 is connected to a coolant tank (not shown), and the coolant is fed into each of the cooling units 13 by a suitable pressure feeding means.
[0011]
The second cooling portion 14 forms a plurality (three in the figure) of arc-shaped liquid chamber portions 14 a, and has an outer peripheral surface 3 b of the connecting portion 3 of the housing member 1 and an outer peripheral surface of the partition portion 4. A plurality of nozzle holes 14b are formed in a surface of the liquid chamber portion 14a, which faces the outer peripheral surfaces 3b and 4b, of the liquid chamber portion 14a that is opposed to and disposed with a certain gap therebetween and forms a hollow portion. Coolant is supplied by a pressure feed pipe 20 connecting the cooling unit 14 and a coolant tank (not shown). Note that the internal unit 11 and the second cooling unit 14 in FIG. 6 are all arranged at substantially the same height so as to protrude from the base 15.
[0012]
Next, the operation of the induction hardening device 5 will be described.
When the inner surface of the housing member 1 is hardened by the induction hardening device 5 having the built-in high frequency coil 6, the induction hardening device 5 is first fixed at a predetermined position as shown in FIG. The housing member 1 disposed immediately above the housing member is continuously lowered at a predetermined speed downward by a lifting means (not shown).
The high-frequency coil 6 in the internal unit 11 of the high-frequency hardening device 5 passes through the opening 1b at the lower end of the housing member 1 and is inserted into the housing member 1, and as shown in FIG. Each of the single-turn coils 6a, 6b, 6c is arranged in the roller assembly 2, and the vertical coil portions 6d, 6e, 6d, 6e, 7, 8 are divided along the axial direction of the housing member 1. A high-frequency current is supplied to the high-frequency coil 6 by disposing the high-frequency coil 6 in parallel with the inner surface of the section 4.
[0013]
As the high-frequency coil 6 moves upward at a certain speed relative to the housing member 1, the inner peripheral surface 2b of the roller groove 2 facing each of the single-turn coils 6a, 6b, 6c An induced current is generated on the surface, and the surface is instantaneously (relatively short) heated by Joule heat.
Next, when the heated inner peripheral surface 2b reaches a predetermined temperature, a cooling liquid is jetted from the first cooling unit 13 disposed below the high-frequency coil 6 toward the heating surface, The heated surface is rapidly cooled to form a quenched layer (T) on the entire inner peripheral surface 2b of the roller groove 2, which is the heated surface.
[0014]
[Problems to be solved by the invention]
By the way, when the inner peripheral surface of the housing member 1 in which the three roller grooves 2 to be quenched are formed by using the induction hardening device 5, the high-frequency coil of the hardening device 5 is hardened. A necessary condition is that there is no variation in the gaps (air gaps) between the single-turn coils 6a, 6b, 6c and the inner peripheral surface of the groove. That is, if there is variation in the gap, variation occurs in the quenching temperature, and thus variation occurs in the quenched layer. The variation in the quenched layer causes quenching distortion and also causes quench cracking.
[0015]
In order to secure the relative positional accuracy between the high-frequency coil 6 and the inner peripheral surface of the groove of the housing member 1 and to form a uniform hardened layer, the mechanical accuracy of the hardening device 8 and the housing member 1 Positioning accuracy must be improved. That is, the quenching device 5 must reduce the variation in the positional accuracy of the three roller grooves 2 with respect to the axis of the housing member 1. At the same time, a mechanical device for accurately and automatically positioning the position and the axis of the roller groove 2 of the housing member 1 is required.
[0016]
However, there is a problem that the hardening device 5 having the mechanical accuracy and the work positioning device as the housing member 1 having the positioning accuracy are very expensive. In particular, the price of the moving quenching machine for the housing member 1, which is composed of the highly accurate workpiece positioning device, is about 80% of that of the full induction quenching device.
[0017]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-mentioned problems and to use a low-cost quenching device and a moving quenching mechanism to perform high-quality quenching, a tripod type constant velocity. An object of the present invention is to propose a high-frequency moving quenching method for an inner peripheral surface of a cylindrical housing member of a joint.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the high-frequency moving and quenching method of the inner peripheral surface of the cylindrical housing member of the tripod constant velocity joint according to the present invention includes a high-frequency coil for heating and a cylindrical housing member of the tripod constant velocity joint. While relatively moving the inner peripheral surface of the cylindrical housing member, immediately after that, when cooling water is sprayed on the heated inner peripheral surface to harden the inner peripheral surface, An annular high-frequency coil is disposed in the inner peripheral surface of the cylindrical housing member at a certain distance from the minimum diameter inner peripheral surface of the cylindrical housing member, and the cylindrical housing member is formed in the cylindrical shape. A high-frequency current is supplied to the high-frequency coil while rotating about the axial direction of the housing member and moving the high-frequency coil and the cylindrical housing member relatively along the axial direction. The high frequency heating of the inner peripheral surface of the cylindrical housing member, immediately thereafter, by spraying a cooling liquid to the heating surface by a first cooling means disposed below the high frequency coil, While moving and quenching the inner peripheral surface , the outer peripheral surface of the cylindrical housing member, from the outer peripheral surface, by a second cooling means disposed at a distance from the cooling liquid, prior to the high-frequency heating, Alternatively, it is a method of injecting in parallel with the high-frequency heating to suppress overheating of the thinnest portion of the cylindrical housing member .
[0021]
In the above method, the frequency of the high-frequency current is in a range of 5 kHz to 150 kHz.
[0023]
Hereinafter, a preferred embodiment of the present invention will be illustratively described in detail with reference to the drawings.
FIGS. 1 to 4 are views showing an embodiment of a high-frequency moving quenching method for a cylindrical inner surface having an unequal thickness portion and a high-frequency heating coil used in the high-frequency moving quenching method of the present invention. FIG. 1 shows an inner surface of the tripod housing member (cylindrical housing member) 1 as a cylindrical body having an unequal thickness portion by an induction hardening device 25 incorporating a high-frequency coil 26 shown in FIG. FIG. 2 is a vertical cross-sectional view showing the arrangement of main parts when quenching, FIG. 2 is a perspective view of the high-frequency coil 26, FIG. 3 is a vertical cross-sectional view showing main parts when quenching the inner surface of the housing member 1. FIG. 4 is a cross-sectional view including the second cooling unit 34 along the line AA in FIG. 1. The same members as those in FIGS. 5 to 9 are denoted by the same reference numerals, and description thereof will be omitted.
[0024]
The high-frequency coil 26 shown in FIG. 2 is formed of a hollow square tube made of a conductor such as copper, and a coolant is circulated inside the hollow tube.
The high-frequency coil 26 is inserted into the housing member 1 at the time of induction hardening, and is formed in an annular single-turn coil portion 26 a arranged substantially in a horizontal plane at right angles to the axis of the housing member 1 and the single-turn coil. Both ends of the coil portion 26a are bent toward the center of the coil, and are vertically bent from near the center of the coil, and are connected to the vertical coil portions 26b and 26c disposed along the axis as rising portions, respectively. To form one series coil. The vertical coil portions 26b and 26c are extended while being insulated by the insulator 9, and their ends are connected to a high-frequency power supply 41 as a lead tube. The directions of the high-frequency currents flowing between the vertical coil portions 26b and 26c are opposite to each other, and no induction heating is performed.
[0025]
In the present embodiment, the high-frequency coil 26 is wound around a single-turn toroidal coil 26a with a certain gap between the minimum-diameter inner peripheral surface 4c of the housing member 1 and the minimum-diameter inner peripheral surface 4c. 4c, it is inserted and disposed movably in the axial direction 1a of the housing member 1 relative to the housing member 1.
[0026]
The induction hardening device 25 in the present embodiment is configured as follows.
The induction hardening device 25 includes an internal unit 31 including a heating unit 32 containing the high-frequency coil 26 and a first cooling unit 33, and a second cooling unit 34.
As shown in FIG. 1 and FIG. 3, the internal unit 21 is inserted into a through hole 36 formed in a base 35 of the induction hardening device 25 and protrudes upward, and a tip of a columnar body 37 is disposed. 37a is arranged in accordance with the shape of the high-frequency coil 26.
As shown in FIG. 3, the heating unit 32 and the first cooling unit 33 that constitute the internal unit 31 are arranged along a vertical direction of the induction hardening device 25 (axial direction 1 a of the housing member 1). The heating section 32 is integrally formed so as to be located above the elevating direction, and the first cooling section 33 is located below.
[0027]
The heating unit 32 faces the inner peripheral surface of the housing member 1 while covering the front and rear side surfaces (upper and lower side surfaces in FIG. 3) of the high-frequency coil 26 and the single-turn coil 26 a of the high-frequency coil 26. It is formed from a dust core or a magnetic body 38 such as a silicon steel plate which exposes only the coil side surface and enhances the induction heating effect by high frequency current.
The high-frequency coil 26 is connected at an end thereof to a high-frequency power supply 41 for heating via a lead wire 40, and one end of the coil 26 is connected to a water supply source, and the other end is connected to a drain pipe. You.
[0028]
As shown in FIG. 3, the first cooling unit 33 is integrally assembled to a lower portion of the heating unit 32, and a liquid chamber 33a having a hollow portion formed therein has a cooling liquid radially formed on an outer peripheral surface thereof. Are provided so that the coolant can be sprayed on the entire inner peripheral surface 2b of the roller groove 2 of the housing member 1.
The direction of the nozzle hole 33b is formed by drilling downward at a certain angle in FIG.
The first cooling unit 33 is connected to a cooling fluid pressure feeding pipe 19, and a lower portion of the pressure feeding pipe 19 is connected to a cooling fluid tank (not shown). Pump.
[0029]
The second cooling portion 34 forms an annular liquid chamber facing the entire outer peripheral surface of the housing member 1 at a predetermined interval at the time of quenching from the outer peripheral surface 3b of the housing member 1. A plurality of nozzle holes 34b are formed in the liquid chamber portion 34a formed and arranged as described above and forming a hollow portion on a surface facing the entire outer peripheral surface of the housing member 1. The cooling liquid is supplied via a pressure feed pipe 20 connecting the second cooling section 34 and a cooling liquid tank (not shown).
[0030]
Next, the operation of the induction hardening device 25 in the present embodiment will be described.
When the entire inner surface of the housing member 1 is hardened by the induction hardening device 25 having the high-frequency coil 26 therein, first, as shown in FIG. 1, the induction hardening device 25 is fixed at a predetermined position. The housing member 1 disposed immediately above the housing member 1 is rotated downward by a rotation drive device (not shown) at a certain required number of rotations on the axis thereof, and the housing member 1 is appropriately moved downward by a lifting mechanism. lowering continuously at a predetermined speed. In this case, during rotation of the housing member 1, the center of rotation is prevented from being eccentric.
[0031]
The high frequency coil 26 in the internal unit 31 of the high frequency quenching device 25 passes through the opening 1b at the lower end of the housing member 1 and is inserted into the housing member 1, and as shown in FIG. And the vertical coil portions 26b and 26c are arranged along the axial direction of the housing member 1 to supply a high-frequency current to the coil 26.
[0032]
The high-frequency coil 26 is moved upward with respect to the housing member 1 at a certain speed in the axial direction while rotating the housing member 1 at a certain predetermined number of revolutions around the axis. When moved, the inner peripheral surface 2b of the housing member 1 facing the single-turn coil 26a generates an induced current on its surface and is heated instantaneously or in a relatively short time by Joule heat.
Next, when the heated inner peripheral surface 2b reaches a predetermined temperature, a cooling liquid is jetted from the first cooling unit 33 disposed below the high-frequency coil 26 toward the heating surface, The heated surface is rapidly cooled to form a quenched layer (T) on the inner peripheral surface.
[0033]
At this time, as shown in FIG. 3, the annular high-frequency coil 26 is separated from the inner peripheral surface 4c (minimum diameter inner peripheral surface) of the partition 4 of the housing member 1 by a predetermined gap (gap). Are disposed. As described above, the outer peripheral surface of the single-turn coil 26a and the inner peripheral surface 46 of the partition portion 4 are close to each other, and the inner peripheral surface 3b of the connection portion 3 of the roller groove 2 is Although the gap with the outer peripheral surface of the single-turn coil 26a is large, the heat capacity of the partitioning section 4 is the largest and the heat capacity gradually decreases from the roller rolling surface 2a to the connection section 3, so that the high-frequency power supply By appropriately selecting the frequency of 41 within the range of 5 kHz to 150 kHz, it is possible to obtain a substantially uniform hardened layer over the entire inner peripheral surface of the housing member 1.
[0034]
Further, in the portion of the connection portion 3 which is the thinnest portion, the high-frequency coil 26 has the longest distance from the inner peripheral surface 3a thereof, and the outer peripheral surface 3b of the connection portion 3 has the second cooling cooling water from section 34, the aforementioned prior row in the heating or because it is injected in parallel with the heating, the inner circumferential surface 3a is as the roller rolling surface 2a of the inner circumferential surface 2b of the roller grooves 2, Is not heated, and therefore, the depth (t) of the quenched layer formed by the first cooling unit 33 also becomes relatively thin.
[0035]
Thus, the inner peripheral surface of the housing member 1 to be quenched is heated and cooled while being rotated, so that an induction hardened layer can be formed uniformly and evenly. There is no need for a mechanical device for ensuring the positional accuracy with respect to the workpiece (housing member 1), and the quenching device itself does not require the same accuracy as a conventional quenching device. At the same time, higher quality than before can be secured.
[0036]
As shown in FIG. 3, when the housing member 1 descends while rotating and a quenched layer (T) is formed near the bottom surface 1c of the member 1, the supply of the high-frequency current of the high-frequency coil 26 is cut off. Thereafter, the housing member 1 may be raised while stopping the rotation.
When the quenching of the first housing member 1 is completed, the next housing member 1 moves and is disposed immediately above the quenching device 25 and starts rotating and descending. 1 enables continuous hardening work.
[0037]
Hereinafter, a specific example in this embodiment will be described.
Figure 0003582783
[0038]
In the specific example, the housing member 1 is illustrated as the quenched body. However, the high-frequency coil according to the present invention can be applied to the internal hardening of any other cylindrical body having an unequal thickness cross section. It is.
Further, the present invention is not limited to the cylindrical body having the bottom as in the hardened body of the specific example, and is also applicable to a cylindrical body having no bottom.
[0039]
Note that the technology of the present invention is not limited to the technology in the above-described embodiment, and may be implemented by means of another embodiment that performs a similar function. Addition is possible.
[0040]
【The invention's effect】
As is clear from the above description, according to the high-frequency moving quenching method of the inner peripheral surface of the cylindrical housing member of the tripod constant velocity joint of the present invention, the distance from the minimum diameter inner peripheral surface of the cylindrical housing member is a certain distance. An annular high-frequency coil is disposed in the inner peripheral surface of the cylindrical housing member, and the cylindrical housing member is rotated about an axial direction of the cylindrical housing member. And while relatively moving the cylindrical housing member along the axial direction, supplying a high-frequency current to the high-frequency coil, high-frequency heating the inner peripheral surface of the cylindrical housing member, immediately thereafter, against the heating surface, said injected cooling fluid by the first cooling means upcoming is arranged in a lower portion of the high-frequency coil, thereby moving quenching the inner peripheral surface of the cylindrical housing member Around the periphery, the cooling liquid is injected by a second cooling means arranged at a certain distance from the outer peripheral surface, prior to the high-frequency heating or in parallel with the high-frequency heating, and Since the overheating of the thinnest portion of the member is suppressed , high quality quenching can be performed using an inexpensive quenching device and a moving quenching mechanism. That is, according to the present invention, requires, in comparison quenching equipment as conventional becomes extremely inexpensive With the simple annular radio frequency coil shape on complex and expensive mechanism is not necessary, moreover By rotating the object to be quenched, high-quality quenching (a quench hardened layer in each groove becomes uniform) becomes possible as compared with the conventional quenching method.
[0041]
Further, since the frequency of the high-frequency current is 5 kHz to 150 kHz, and the annular high-frequency coil is formed in a single winding or a plurality of windings, the quenching device 9 can harden regardless of the three groove position accuracy. And a mechanical device for accurately and automatically positioning the groove position and the axis of the housing member 1 is not required. Therefore, the present mobile quenching apparatus is extremely inexpensive as compared with the conventional one, and the quenching process of higher quality than before can be performed.
[Brief description of the drawings]
[1] shows one embodiment of a high frequency moving quenching method of the inner peripheral surface of the tripod type constant velocity universal joint of the cylindrical housing member of the present invention, the induction hardening NyuSo location having a built-in high-frequency coil shown in FIG. 2 more, quench the inner peripheral surface of the tripod housing member as a tubular body having an unequal thickness portions is a longitudinal sectional view showing the whole of a main part arrangement.
FIG. 2 is a perspective view showing one embodiment of a high-frequency heating coil used in the high-frequency moving quenching method of the present invention.
FIG. 3 is a longitudinal sectional view of a main part when the inner surface of the housing member 1 is quenched.
FIG. 4 is a cross-sectional view including a second cooling unit, taken along line AA of FIG. 1;
FIG. 5 is a cross-sectional view of a tripod housing member mounted on a conventional high-frequency moving quenching apparatus, taken along a plane perpendicular to the axis.
FIG. 6 is a perspective view showing a general arrangement of main parts of a conventional high-frequency moving hardening device, in which the inner surface of a housing member is hardened by the hardening device incorporating the high-frequency coil 9 shown in FIG.
FIG. 7 is a perspective view showing a high-frequency coil used in a conventional high-frequency moving hardening apparatus.
FIG. 8 is a longitudinal sectional view of an essential part when the inner surface of a housing member is quenched by a conventional high-frequency moving quenching apparatus.
FIG. 9 is a cross-sectional view including a second cooling unit, taken along line BB of FIG. 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing member 2 Roller groove 2b, 3a, 4c Inner peripheral surface 3 Connection part 3b, 4b Outer peripheral surface 4 Partition part 9 Insulator 25 Induction hardening device 26 High frequency coil 26a Single winding coil 31 Internal unit 32 Heating unit 33 First Cooling sections 33a, 34a Liquid chamber sections 33b, 34b Nozzle holes 34 Second cooling section 37 Columnar body 38 Ferromagnetic body 41 High frequency power supply

Claims (2)

加熱用の高周波コイルとトリポート型等速ジョイントの筒状ハウジング部材とを相対的に移動させながら、前記筒状ハウジング部材の内周面を加熱し、その直後、加熱された前記内周面に、冷却液を噴射して、前記内周面を焼入するに際し、
前記筒状ハウジング部材の最小径内周面から、ある間隔を隔てて、円環状の高周波コイルを前記筒状ハウジング部材の内周面内に配設し、前記筒状ハウジング部材を前記筒状ハウジング部材の軸心方向を中心として回転させるとともに、前記高周波コイルと前記筒状ハウジング部材とを前記軸心方向に沿って相対的に移動させながら、前記高周波コイルに高周波電流を供給して、前記筒状ハウジング部材の内周面を高周波加熱し、その直後、該加熱面に対して、前記高周波コイルの下部に配設されたる第1の冷却手段により冷却液を噴射して、前記内周面を移動焼入するとともに、前記筒状ハウジング部材の外周に、該外周面から、ある距離を離間して配置される第2の冷却手段により、冷却液を、前記高周波加熱に先行、または該高周波加熱に並行して噴射して、前記筒状ハウジング部材の最薄肉部の過熱を抑えることを特徴とするトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法。
While relatively moving the high-frequency coil for heating and the cylindrical housing member of the tripod constant velocity joint, heat the inner peripheral surface of the cylindrical housing member, immediately after, on the heated inner peripheral surface, Injecting a cooling liquid, when quenching the inner peripheral surface,
An annular high-frequency coil is disposed in the inner peripheral surface of the cylindrical housing member at a certain interval from the minimum diameter inner peripheral surface of the cylindrical housing member, and the cylindrical housing member is disposed in the cylindrical housing. While rotating about the axial direction of the member and supplying the high-frequency current to the high-frequency coil while relatively moving the high-frequency coil and the cylindrical housing member along the axial direction, the cylinder The inner peripheral surface of the cylindrical housing member is subjected to high-frequency heating, and immediately thereafter, a cooling liquid is sprayed on the heated surface by a first cooling means disposed below the high-frequency coil, thereby cleaning the inner peripheral surface. while moving quenching, the outer periphery of the tubular housing member, from the outer peripheral surface, the second cooling means are spaced a certain distance, the coolant, prior to the high-frequency heating, or the radiofrequency Is injected in parallel with, the cylindrical housing high-frequency moving quenching method of the inner peripheral surface of the cylindrical housing member tripod constant-velocity joint, characterized in that to suppress the overheating of the thinnest portion of the member.
前記高周波電流の周波数が5kHz〜150kHzの範囲であることを特徴とする請求項1に記載のトリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法。The method of claim 1, wherein a frequency of the high-frequency current is in a range of 5 kHz to 150 kHz.
JP2000272710A 2000-09-08 2000-09-08 High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method Expired - Fee Related JP3582783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272710A JP3582783B2 (en) 2000-09-08 2000-09-08 High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272710A JP3582783B2 (en) 2000-09-08 2000-09-08 High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method

Publications (2)

Publication Number Publication Date
JP2002080914A JP2002080914A (en) 2002-03-22
JP3582783B2 true JP3582783B2 (en) 2004-10-27

Family

ID=18758779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272710A Expired - Fee Related JP3582783B2 (en) 2000-09-08 2000-09-08 High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method

Country Status (1)

Country Link
JP (1) JP3582783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415718A (en) * 2011-03-01 2013-11-27 Ntn株式会社 Thermal processing method, outer connecting member, and tripod-type constant velocity universal joint

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781578B2 (en) * 2001-09-21 2011-09-28 電気興業株式会社 Induction hardening method of inner surface of cylindrical body having a plurality of grooves inside
JP4235505B2 (en) * 2003-08-08 2009-03-11 高周波熱錬株式会社 Quenching method of inner surface of outer ring of constant velocity universal joint
EP3199647B1 (en) * 2010-10-11 2019-07-31 The Timken Company Apparatus for induction hardening
JP5813385B2 (en) * 2011-06-14 2015-11-17 Ntn株式会社 Heat treatment method and heat treatment apparatus
CN103907396B (en) * 2011-11-04 2016-02-10 Ntn株式会社 High frequency heat process coil, constant-speed universal coupling outside joint member and constant-speed universal coupling
KR101307444B1 (en) * 2011-12-09 2013-09-11 양희선 Apparatus for induction hardening inner diameter of shoulder
CN103589833B (en) * 2013-11-04 2015-08-26 镇江市天祥精密机电有限公司 A kind of inner hole part quenching machine
JP6436473B2 (en) * 2014-06-30 2018-12-12 トピー工業株式会社 Heat treatment system and heat treatment method
IT201700056454A1 (en) * 2017-05-24 2018-11-24 Saet Spa DEVICE AND METHOD FOR TEMPERING INDUCTION SINGLE SHOT OF MECHANICAL COMPONENTS
CN114921635B (en) * 2022-05-11 2023-10-13 一汽解放汽车有限公司 Heat treatment method for front axle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415718A (en) * 2011-03-01 2013-11-27 Ntn株式会社 Thermal processing method, outer connecting member, and tripod-type constant velocity universal joint
CN103415718B (en) * 2011-03-01 2016-06-29 Ntn株式会社 Heat treatment method

Also Published As

Publication number Publication date
JP2002080914A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
KR100557309B1 (en) High frequency induction heating coil
JP4121128B2 (en) Induction heating device
CN114072529A (en) Movable quenching device and movable quenching method
JP7311811B2 (en) Transfer quenching device and transfer quenching method
JP2745282B2 (en) High frequency induction heating device
JPS59177892A (en) High frequency coil for moving and quenching cylindrical inner peripheral orbit groove with irregular thick unit
US11846001B2 (en) Split multiple coil electric induction heat treatment systems for simultaneous heating of multiple features of a bearing component
JP3730192B2 (en) Inner surface hardening device
JPH0553844B2 (en)
JP7141076B2 (en) Induction hardening equipment
JP3499476B2 (en) Induction hardening equipment for shaft-shaped workpieces
JPH06132076A (en) Method and device for levitation high frequency quenching of steel ball
JP3059165B1 (en) Heating coil for induction hardening of a cylindrical body having an opening on the outer peripheral surface and quenching and cooling method
JP2023150355A (en) Induction heating coil and high-frequency hardening device
JPS58197220A (en) High frequency hardening method
US20210204370A1 (en) Heating coil, heating apparatus and manufacturing method of workpiece
JP3159478B2 (en) Method for uniform heating of steel ball surface
JP2540040Y2 (en) High frequency heating coil
JP5180463B2 (en) Cylinder block quenching device and cylinder block manufacturing method
JPS60141827A (en) High-frequency induction heating method
JP3733615B2 (en) Induction hardening equipment
JP3164539B2 (en) Induction hardening equipment
JPH0226933Y2 (en)
JPS58197219A (en) High frequency hardening device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees