JP3575883B2 - ディジタル復調器 - Google Patents

ディジタル復調器 Download PDF

Info

Publication number
JP3575883B2
JP3575883B2 JP23844095A JP23844095A JP3575883B2 JP 3575883 B2 JP3575883 B2 JP 3575883B2 JP 23844095 A JP23844095 A JP 23844095A JP 23844095 A JP23844095 A JP 23844095A JP 3575883 B2 JP3575883 B2 JP 3575883B2
Authority
JP
Japan
Prior art keywords
signal
frequency deviation
detection
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23844095A
Other languages
English (en)
Other versions
JPH0983594A (ja
Inventor
文雄 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23844095A priority Critical patent/JP3575883B2/ja
Priority to CA002180905A priority patent/CA2180905C/en
Priority to US08/677,881 priority patent/US5914985A/en
Priority to EP96111427A priority patent/EP0763919B1/en
Priority to DE69635643T priority patent/DE69635643T2/de
Priority to AU60576/96A priority patent/AU678950B2/en
Publication of JPH0983594A publication Critical patent/JPH0983594A/ja
Application granted granted Critical
Publication of JP3575883B2 publication Critical patent/JP3575883B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0032Correction of carrier offset at baseband and passband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0046Open loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • H04L2027/0055Closed loops single phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0029Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of received data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/046Speed or phase control by synchronisation signals using special codes as synchronising signal using a dotting sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衛星通信、移動体通信、移動体衛星通信などにおいて受信信号の復調に用いられるディジタル復調器に関する。
【0002】
【従来の技術】
ディジタル変調された信号を復調する復調器としては、受信信号をアナログ信号のまま検波する復調器が従来よりよく知られている。これに対して近年、受信信号をA/D変換し、ディジタル化された受信信号に対して演算処理を施すことにより、受信信号の復調を行うディジタル復調器が開発されている。
【0003】
このようなディジタル復調器としては、例えば、文献“A New Coherent Demodulation Technique for Land−Mobile Satellite Communications”(International Mobile Satellite Conference,Ottawa,pp622−627,1990 )に示される装置がある。
【0004】
図6は、この従来装置の構成を模式的に示すブロック図である。この装置は、QPSK変調信号を同期検波するための装置である。この復調器には、受信信号を周波数変換して得られたIF(Intermediate Frequency)信号が入力される。
【0005】
図6において、A/D変換器60は、入力IF信号を、例えばIF周波数の4倍などの高速サンプリングレートで直接的にサンプリングし、ディジタル化する。A/D変換器60から出力されたサンプル信号は、ディジタル直交検波回路62において、位相がπ/2異なる固定周波数の2つの参照信号と乗算され、準同期直交検波される。そして、ディジタル直交検波回路62は、検波結果を間引くなどして、受信信号のビットレートの4倍程度のレートの出力信号(検波サンプル信号)を生成する。すなわち、ディジタル直交検波回路62から出力される次式で示される検波サンプル信号が出力される。
【0006】
【数1】
Figure 0003575883
上式(1)において、IQC()及びQQC()は、それぞれ検波サンプル信号の同相及び直交成分であり、I()及びQ()は、それぞれ伝送対象のディジタル信号の同相及び直交成分である。そして、nは整数であり、Tはディジタル直交検波回路62出力時点におけるサンプリング周期を示す。また、Δωは受信信号の搬送波周波数と参照信号の周波数との周波数偏差を示し、θは検波サンプル信号の初期位相(すなわち、受信搬送波に対する参照信号の初期位相)を示す。なお、準同期検波に用いられる参照信号には、搬送波周波数に極めて近い周波数の正弦波が用いられるので、検波サンプル信号はベースバンドの信号となる。
【0007】
ディジタル直交検波回路62からは、上式(1)で示される検波サンプル信号が複素データとして出力される。この検波サンプル信号は、受信フィルタ64に入力される。受信フィルタ64は、検波サンプル信号を波形成形し、帯域外の雑音を除去する。
【0008】
受信フィルタ64の出力は、2方向に分岐し、ビットタイミング再生部(BTR:Bit Timing Recovery )66及び補間処理部68に入力される。
【0009】
BTR66は、受信フィルタ64の出力信号に基づいて、ビットタイミング、すなわち受信信号の値を判定する判定タイミングを求める。求められた判定タイミング情報は補間処理部68に入力される。なお、このBTR66における判定タイミングの推定方法の一例は、上記文献にも示されている。
【0010】
さて、受信フィルタ64の出力信号はオーバーサンプリング周期でサンプルされた信号であり、サンプリングタイミングは判定タイミングとは必ずしも同期していない。そこで、補間処理部68は、BTR66から入力される判定タイミング情報を用いて、受信フィルタ64の出力信号に対して補間演算を行い、次式で示される判定タイミングにおける検波信号(判定タイミング検波信号と呼ぶ)を求める。
【0011】
【数2】
Figure 0003575883
上式(2)において、I()及びQ()は、それぞれ判定タイミング検波信号の同相成分及び直交成分を示す。そして、Tは判定タイミングの周期(すなわちナイキスト間隔)を示し、θは判定タイミング検波信号の初期位相成分を示す。
【0012】
したがって、補間処理部68からは、ナイキスト間隔ごとに上式(2)で示される判定タイミング検波信号が複素データとして出力される。以下の回路における演算処理は、すべてこの判定タイミングの信号に基づいて行われる。なお、図6においては、実線はオーバーサンプリング周期で変化する信号が流れる信号線路を示し、白抜き線はナイキスト周期で変化する信号が流れる信号線路を示す。
【0013】
補間処理部68以降の回路では、判定タイミング検波信号I(mT)及びQ(mT)から周波数偏差(Δω)及び初期位相(θ)による位相回転成分を除去することにより、元のディジタル信号I(mT)及びQ(mT)を得る。
【0014】
このため、まず自動周波数制御回路(AFC:Automatic Frequency Control )70にて周波数偏差成分を推定し、これを乗算器72にフィードバックすることにより、判定タイミング検波信号I,Qから周波数偏差成分を除去する。次に、位相推定器74が、周波数偏差成分が除去された判定タイミング検波信号を用いて初期位相θを推定し、この初期位相から位相補正信号を生成する。上記文献には、この位相推定器74の内部構成の一例が示されている。そして、乗算器76は、周波数偏差成分が除去された判定タイミング検波信号に位相補正信号を乗算することにより、判定タイミング検波信号から初期位相成分を除去する。乗算器76の出力は、受信信号の同期検波出力となる。
【0015】
【発明が解決しようとする課題】
図6に示した従来のディジタル復調器では、AFC回路及び位相推定器が判定タイミング検波信号に基づき動作する。したがって、例えばバースト信号の入力時等においてBTRが正常に動作するまでの間は、AFC回路及び位相推定器は動作することができない。別言すれば、BTRが正常に動作するまでは、AFC回路等を動作させたとしても正しい出力が得られないので、その間AFC回路等を動作させても無意味であった。したがって、従来装置では、BTRが安定化し正常動作状態に至るのを待ってAFC回路を起動し、その後AFC回路が正常動作状態に至った後に位相推定器を起動していた。このため、従来装置には、高速動作が要求される場合に十分対応できないという問題があった。また、従来装置には、定常動作状態となった後についても、BTRが誤動作するとAFC回路及び位相推定器が誤動作してしまうという問題があった。
【0016】
本発明は、このような問題を解決するためになされたものであり、高速動作が可能で、BTRの誤動作が他の回路要素に波及しにくいディジタル復調器を提供することを目的とする。
【0021】
また、本発明の基礎となる構成は、ディジタル変調された受信信号を遅延検波するディジタル復調器であって、受信信号を所定の参照信号を用いて準同期検波し、受信信号のデータ値を判定する判定タイミングの周期よりも小さいサンプリングタイミングごとに検波サンプル信号を出力するディジタル準同期検波手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき、前記判定タイミングを再生する判定タイミング再生手段と、前記判定タイミング再生手段からの出力情報を用い、前記ディジタル準同期検波手段からの検波サンプル信号に対して補間演算を行うことにより、各判定タイミングにおける検波信号を求める補間手段と、前記補間手段からの出力信号に基づき、判定タイミング検波信号の位相を求める位相検出手段と、前記位相検出手段の出力信号を遅延検波する遅延検波手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき前記受信信号の搬送波と前記参照信号との周波数偏差を推定し、推定された周波数偏差を用いて前記遅延検波手段の遅延時間当たりの位相回転量を求める周波数偏差推定手段と、前記遅延検波手段の出力から前記遅延時間当たりの位相回転量を減算する減算手段と、を有する。
【0022】
この構成では、遅延検波手段の出力に含まれる周波数偏差による位相回転成分を周波数偏差推定手段にて求め、これを減算手段において遅延検波手段の出力から減算することにより、周波数偏差成分の除去された遅延検波出力を得る。その際、周波数偏差推定手段では、ディジタル準同期検波手段からオーバーサンプリング周期で出力される検波サンプル信号に基づいて周波数偏差を推定する。このため、周波数偏差推定手段は、周波数偏差推定を判定タイミング再生手段とは無関係に行うことができる。したがって、この構成によれば、復調器全体としての高速動作が可能で、判定タイミング再生手段の誤動作が周波数偏差推定手段における周波数偏差推定処理に波及しない遅延検波復調器を得ることができる。
【0023】
そして、本発明は、前記基礎となる構成において、前記周波数偏差推定手段は、さらに前記周波数偏差を用いて前記各サンプリングタイミングに対する周波数偏差補正信号を算出し、前記デジタル復調器は、さらに、前記ディジタル準同期検波手段の直後に設けられ、前記周波数偏差推定手段に接続され、前記周波数偏差補正信号にて検波サンプル信号を補正する周波数偏差補正手段と、前記減算手段に対して前記位相回転量を出力するかあるいは前記周波数偏差補正手段に対して前記周波数偏差補正信号を出力するかを示す選択信号を、前記周波数偏差推定手段に対し与え、該選択信号により前記周波数偏差推定手段の動作を制御する選択手段と、 を有し、前記選択手段にて前記周波数偏差補正信号が選択された場合には、前記補間手段は前記周波数偏差補正手段から出力される補正された検波サンプル信号に基づき補間処理を行うことを特徴とする。
【0024】
この構成では、周波数偏差推定手段は、2種類の補正信号、すなわち遅延時間当たりの位相回転量を補正するための信号及び各サンプリングタイミングに対する周波数偏差補正信号を算出することができる。両者のうちいずれの算出を行うかは、選択手段からの選択信号によって決定される。位相回転量補正信号は、前述の第3の構成と同様、遅延検波手段の出力の補正に用いられるのに対し、周波数偏差補正信号は、ディジタル準同期検波手段の直後に設けられた周波数偏差補正手段にフィードバックされる。したがって、この構成では、位相回転量補正信号にて遅延検波手段の出力を補正するモードと、周波数偏差補正信号を周波数偏差補正手段にフィードバックして補間手段の前で周波数偏差を補正するモードとを、選択信号に応じて切り換えることができる。前者のモードでは、前述の第3の構成と同様復調動作の高速安定化が実現され、後者のモードでは、復調速度は低下するものの大きな周波数偏差への対応が可能になる。
【0025】
したがって、例えば、信号捕捉時等の復調器の高速動作が要求される場合は前者のモードを選択し、復調器が定常動作状態となった時には後者のモードを選択することにより、受信状態に応じた適応的な復調動作が可能となる。
【0026】
【発明の実施の形態】
以下、本発明に係るディジタル復調器の実施形態を図面に基づいて説明する。以下では、本発明の理解のために参考例を3つ説明し、その後本発明の実施形態を説明する
参考例1.
図1は、本発明に係るディジタル復調器の第1の参考例の回路構成を模式的に示すブロック図である。この装置は、QPSK変調信号を同期検波するための装置である。この復調器には、受信信号を周波数変換して得られたIF(Intermediate Frequency)信号が入力される。なお、図1においては、実線はオーバーサンプリング周期で変化する信号が流れる信号線路を示し、白抜き線はナイキスト周期で変化する信号が流れる信号線路を示す。
【0027】
図1において、A/D変換器10は、入力IF信号を例えばIF周波数の4倍などの高速サンプリングレートで直接的にサンプリングし、ディジタル化する。A/D変換器10から出力されたサンプル信号は、ディジタル直交検波回路12において、位相がπ/2異なる固定周波数の2つの参照信号と乗算され、準同期直交検波される。そして、ディジタル直交検波回路12は、高速サンプリング周期の検波結果を間引くあるいはクロックの乗せ換えを行うなどして、受信信号のビットレートの4倍程度のレートの出力信号(検波サンプル信号)を生成する。すなわち、ディジタル直交検波回路12からは、次式で示される検波サンプル信号が出力される。
【0028】
【数3】
Figure 0003575883
上式(3)において、IQC()及びQQC()は、それぞれ検波サンプル信号の同相成分及び直交成分であり、I()及びQ()は、それぞれ伝送対象のディジタル信号の同相成分および直交成分である。そして、nは整数であり、Tはディジタル直交検波回路12の出力時点におけるサンプリング周期を示す。また、Δωは受信信号の搬送波周波数と参照信号の周波数との周波数偏差を示し、θは検波サンプル信号の初期位相(すなわち、受信搬送波に対する参照信号の初期位相)を示す。なお、ディジタル直交検波回路12において準同期検波に用いられる参照信号は、搬送波周波数に極めて近い周波数の正弦波なので、検波結果である検波サンプル信号はベースバンドの信号となる。この検波サンプル信号は、オーバーサンプリング周期Tで出力される。
【0029】
検波サンプル信号は、受信フィルタ14に入力される。受信フィルタ14は、検波サンプル信号を波形成形するとともに、帯域外の雑音を除去する。受信フィルタ14としては、例えばナイキストフィルタを用いることができる。
【0030】
受信フィルタ14の出力は、ビットタイミング再生部(BTR)16、補間処理部18及び自動周波数制御回路(AFC)20に入力される。
【0031】
BTR16は、受信フィルタ14の出力信号に基づいて、ビットタイミング、すなわち受信信号の値を判定するための判定タイミングを求める。この判定タイミングは信号のS/N比が最も高い時刻のことであり、判定タイミング同士の間隔はナイキスト間隔に等しい。例えば、受信フィルタ14として、ナイキストフィルタを用いた場合、この判定タイミングはナイキスト点と呼ばれる。このような判定タイミングにて受信信号のデータ値を判定すれば、符号間干渉が低減される。求められた判定タイミング情報は補間処理部18及びAFC20に入力される。なお、このBTR16における判定タイミングの推定方法の一例は、上記文献にも示されている。
【0032】
補間処理部18は、BTR16から入力される判定タイミング情報を用いて、受信フィルタ14の出力信号に対して補間演算を行い、判定タイミングにおける検波信号(判定タイミング検波信号と呼ぶ)を求める。
【0033】
この補間処理部18における補間について図を用いて説明する。図7は、補間処理部18における補間処理を説明するための図である。図7において、時刻n−1〜n+2はそれぞれディジタル直交検波回路12の出力のサンプリングタイミングを示しており、データIn−1 〜In+2 はそのサンプリングタイミングにおける補間処理部18への入力データを示している。今、BTR16にて判定タイミングが再生され、図7に示された期間における判定タイミングがmであると推定されたとする。この判定タイミングmの情報は補間処理部18に入力され、補間処理部18は、判定タイミングmの前後のサンプリングタイミングデータを用いて、判定タイミングmにおける検波信号データINm(判定タイミング検波信号)を算出する。この判定タイミング検波信号は、例えばラグランジェの一次補間、二次補間などの方法により求めることができる。場合によっては、さらに高次の補間方式を用いてもよい。
【0034】
補間処理部18から出力される判定タイミング検波信号は、次式によって表される。
【0035】
【数4】
Figure 0003575883
上式(4)において、I()及びQ()は、それぞれ判定タイミング検波信号の同相成分及び直交成分を示す。そして、Tは判定タイミングの周期(すなわちナイキスト間隔)を示し、θは判定タイミング検波信号の初期位相成分を示す。なお、ここで、式(4)の判定タイミング検波信号の初期位相θが式(3)における検波サンプル信号の初期位相θと異なった表現となっているのはの次のような理由からである。すなわち、サンプリングタイミング(nT)と判定タイミング(mT)とは必ずしも同期していないため、サンプリングタイミングの開始点(n=0)と判定タイミングの開始点(m=0)との時刻が異なるので、その時刻のオフセット分だけ初期位相の値が異なってくるからである。例えば、図7においてn=0,m=0とした場合を考えてみると、オーバーサンプリング周期での信号の表現(式(3))の基準時刻0(n=0)とナイキスト周期での信号の表現(式(4))の基準時刻0(m=0)とは必ずしも一致しないことが分かる。この基準時刻のずれの間に、周波数偏差Δωによって信号に位相回転が生じるので、この位相回転分だけ初期位相が異なってくるのである。したがって、θは、θに基準時刻のずれの間の周波数偏差Δωによる位相回転を加算したものとなる。
【0036】
補間処理部18からは、ナイキスト間隔ごとに上式(4)で示される判定タイミング検波信号が複素データとして出力される。この判定タイミング検波信号を複素表示すると次式のようになる。
【0037】
【数5】
Figure 0003575883
上式(5)において、R()は、複素表示された判定タイミング検波信号であり、jは虚数単位を示す。
【0038】
AFC20は、受信フィルタ14からのオーバーサンプリング周期の検波信号を用いて、公知の演算方法により受信信号の搬送波周波数と参照信号との周波数偏差Δωを推定する。本参考例では、図6の従来装置と異なり、オーバーサンプリング周期の検波信号を用いて周波数偏差Δωを推定する。そして、AFC20は、推定された周波数偏差ΔωとBTR16から入力された判定タイミング情報とを用いて、判定タイミングに対する周波数偏差補正信号を算出する。周波数偏差補正信号CAFC は、次式で表される。
【0039】
【数6】
AFC (mT)=exp(−jΔωmT) …(6)
そして、AFC20からは、上式(6)で表される周波数偏差補正信号CAFC が、ナイキストレートで出力される。この周波数偏差補正信号CAFC は乗算器22に入力される。
【0040】
乗算器22は、補間処理部18から出力された判定タイミング検波信号Rと周波数偏差補正信号CAFC とを複素乗算することにより、判定タイミング検波信号から周波数偏差成分を除去する。乗算器22からは、次式で表される周波数偏差成分が除去された判定タイミング検波信号RAFC が出力される。
【0041】
【数7】
Figure 0003575883
乗算器22の出力は、2方向に分岐し、位相推定器24及び乗算器26に入力される。
【0042】
位相推定器24は、乗算器22の出力RAFC を用いて、判定タイミング検波信号の初期位相成分θを推定する。この位相推定器24としては、上記文献に挙げられた回路を用いることができる。そして、この推定された初期位相成分θを用いて、位相推定器24は、次式で表される位相補正信号CPEを算出する。
【0043】
【数8】
PE(mT)=exp(−jθ) …(8)
この位相補正信号CPEは、乗算器26に入力される。乗算器26は、乗算器22から出力された周波数偏差成分のない判定タイミング検波信号RAFC と位相補正信号CPEとを複素乗算することにより、判定タイミング検波信号から初期位相成分を除去する。したがって、乗算器26からは、次式で表される同期検波出力Sが出力される。
【0044】
【数9】
Figure 0003575883
式(9)から分かるように、本参考例におけるディジタル復調器によれば、伝送対象デジタル信号の同相成分I及び直交成分Qが正しく復調される。
【0045】
以上説明したように、本参考例では、AFC20は受信フィルタから出力されるオーバーサンプリング周期の検波信号を用いて周波数偏差Δωを求めるため、AFC20は、BTR16と独立に動作する。したがって、図6の従来装置では、AFCは、BTRが正常動作状態となるまでは動作することができなかったのに対し、AFC20は、BTR16の安定化を待たずに動作することができる。よって、本参考例によれば、復調器全体が安定化するまでに要する時間がBTR16の安定化までの待ち時間分だけ短縮され、復調器全体として高速動作が可能になる。
【0046】
また、本参考例によれば、定常動作状態においてBTR16が誤動作した場合でも、AFC20はBTR16の出力に関係なく周波数偏差Δωを推定することができる。したがって、BTR16が正常動作に復帰し次第、AFC20からは正しい周波数偏差補正信号が出力される。
【0047】
なお、本参考例の手法は、QPSK変調信号に限らずBPSKやFSKなどの他の変調方式の信号の復調にも適用することが可能である。
以上に説明した参考例1の構成は次のように要約できる。すなわち、この構成は、ディジタル変調された受信信号を同期検波するディジタル復調器であって、受信信号を所定の参照信号を用いて準同期検波し、受信信号のデータ値を判定する判定タイミングの周期よりも小さいサンプリングタイミングごとに検波サンプル信号を出力するディジタル準同期検波手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき、前記判定タイミングを再生する判定タイミング再生手段と、前記判定タイミング再生手段からの出力情報を用い、前記ディジタル準同期検波手段からの検波サンプル信号に対して補間演算を行うことにより、各判定タイミングにおける検波信号を求める補間手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき前記受信信号の搬送波と前記参照信号との周波数偏差を推定し、推定された周波数偏差を用いて前記各判定タイミングにおける周波数偏差補正信号を算出する周波数偏差推定手段と、前記周波数偏差補正信号に基づき前記補間手段から出力された検波信号を補正し、周波数偏差が補正された判定タイミング検波信号を出力する周波数偏差補正手段と、前記周波数偏差補正手段の出力に基づき前記判定タイミング検波信号の初期位相成分を推定し、推定された初期位相成分を用いて前記判定タイミングに対する位相補正信号を算出する位相推定手段と、前記位相補正信号を用いて前記周波数偏差補正手段の出力を補正し、同期検波された復調信号を出力する位相補正手段と、を有する。
この構成では、受信信号の周波数偏差の推定を、ディジタル準同期検波手段からオーバーサンプリング周期で出力される検波サンプル信号に基づいて行う。この結果、周波数偏差推定手段は、判定タイミング再生手段における判定タイミング再生処理が収束するのを待たずに独立して周波数偏差の推定処理を行うことができる。したがって、この構成によれば、復調器全体としての高速動作が可能となるとともに、判定タイミング再生手段の誤動作が周波数偏差推定手段における周波数偏差推定処理に波及するのを防ぐことができる。
【0048】
参考例2.
図2は、本発明に係るディジタル復調器の第2の参考例の回路構成を模式的に示すブロック図である。図2において、図1の構成要素と同一の構成要素には同一の符号を付してその説明を省略する。
【0049】
この参考例2は、AFCだけでなく位相推定器をもオーバーサンプリング周期の信号で動作させることにより、参考例1よりもさらに高速な動作を実現するものである。
【0050】
このため、図2におけるAFC30は、判定タイミングに対する周波数偏差補正信号だけでなく、ディジタル直交検波回路12の出力のサンプリングタイミングに対する周波数偏差信号をも算出する。すなわち、AFC30は、受信フィルタ14から出力されたオーバーサンプリング周期の検波信号を用いて周波数偏差Δωを推定するとともに、判定タイミングに対する周波数偏差補正信号CINT (式(10)参照)と、サンプリングタイミングに対する周波数偏差補正信号CRX(式(11)参照)とを算出する。
【0051】
【数10】
INT (mT)=exp(−jΔωmT) …(10)
【数11】
RX(nT)=exp(−jΔωnT) …(11)
そして、判定タイミングに対する周波数偏差補正信号CINT は乗算器22に入力され、サンプリングタイミングに対する周波数偏差補正信号CRXは乗算器32に入力される。
【0052】
乗算器22は、補間処理部18から出力された判定タイミング検波信号Rに対して周波数偏差補正信号CINT を複素乗算することにより、判定タイミング検波信号から周波数偏差成分を除去する。この結果、乗算器22からは、次式で表される周波数偏差成分が除去された判定タイミング検波信号XINT が出力される。
【0053】
【数12】
Figure 0003575883
一方、乗算器32は、受信フィルタ14から出力された検波サンプル信号に対して周波数偏差補正信号CRXを乗算することにより、検波サンプル信号から周波数偏差成分を除去する。乗算器32からは、次式で表される周波数偏差成分の除去された検波サンプル信号XRXが出力される。
【0054】
【数13】
Figure 0003575883
そして、位相推定器34は、周波数偏差成分の除去された検波サンプル信号XRXに基づき、検波サンプル信号の初期位相成分θを推定する。すなわち、位相推定器34は、オーバーサンプリング周期の信号XRXに基づき、BTR16の出力とは無関係に初期位相成分θを算出する。さらに、位相推定器34は、得られた初期位相成分θに基づき、次式で表される位相補正信号CPE2 を算出する。
【0055】
【数14】
PE2 (nT)=exp(−jθ) …(14)
位相推定器34で求められた位相補正信号CPE2 はサンプリングタイミングにおける初期位相成分θを補正するための信号なので、このままでは乗算器22から出力された判定タイミング検波信号の初期位相成分θを補正することができない。なぜなら、サンプリングタイミングと判定タイミングとの基準時刻のずれにより、θとθとが異なった値になるからである。
【0056】
そこで、本参考例では、位相修正器36によって位相補正信号CPE2 を判定タイミングに対応する値に修正する。すなわち、位相修正器36は、BTR16からの判定タイミング情報とAFC30からの周波数偏差情報に基づいてタイミングのずれによる位相回転量を求め、その位相回転量により位相補正信号CPE2 を修正する。したがって、位相修正器36からは、次式で表される判定タイミングに対する位相補正信号CPE3 がナイキストレートで出力される。
【0057】
【数15】
PE3 (mT)=exp(−jθ) …(15)
この判定タイミングに対する位相補正信号CPE3 は、乗算器26に入力される。乗算器26は、式(12)で表される周波数偏差成分が除去された判定タイミング検波信号XINT に対して位相補正信号CPE3 を乗算することにより、判定タイミング検波信号から初期位相成分を除去する。乗算器26からは、次式で表される同期検波出力Sが出力される。
【0058】
【数16】
Figure 0003575883
式(9)から分かるように、本参考例におけるディジタル復調器においても、伝送対象デジタル信号の同相成分I及び直交成分Qが正しく復調される。
【0059】
以上説明したように、本参考例では、AFC30だけでなく位相推定器34もオーバーサンプリング周期の検波信号に基づき、BTR16とは独立に動作する。したがって、本参考例では、AFC30及び位相推定器34の両方がBTR16の安定化を待たずに動作することができるので、復調器全体が正常動作状態となるまでの時間が参考例1よりもさらに短くなる。
【0060】
また、本参考例によれば、定常動作状態においてBTR16が誤動作した場合でも、AFC30及び位相推定器34は、BTR16の出力に関係なく周波数偏差Δω及び初期位相成分θを推定することができる。したがって、BTR16が正常動作に復帰し次第、AFC30及び位相推定器34からはそれぞれ正しい周波数偏差補正信号及び位相補正信号が出力される。
【0061】
なお、本参考例の手法は、QPSK変調信号に限らずBPSKやFSKなどの他の変調方式の信号の復調にも適用することが可能である。
以上に説明した参考例2の構成は以下のように要約できる。すなわちこの構成は、ディジタル変調された受信信号を同期検波するディジタル復調器であって、受信信号を所定の参照信号を用いて準同期検波し、受信信号のデータ値を判定する判定タイミングの周期よりも小さいサンプリングタイミングごとに検波サンプル信号を出力するディジタル準同期検波手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき、前記判定タイミングを再生する判定タイミング再生手段と、前記判定タイミング再生手段からの出力情報を用い、前記ディジタル準同期検波手段からの検波サンプル信号に対して補間演算を行うことにより、各判定タイミングにおける検波信号を求める補間手段と、前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき前記受信信号と参照信号との周波数偏差を推定し、推定された周波数偏差を用いて前記各判定タイミングに対する第1の周波数偏差補正信号及び前記各サンプリングタイミングに対する第2の周波数偏差補正信号を算出する周波数偏差推定手段と、前記第1の周波数偏差補正信号に基づき前記補間手段から出力された検波信号を補正し、周波数偏差補正された判定タイミング検波信号を出力する第1の周波数偏差補正手段と、前記第2の周波数偏差補正信号に基づき前記ディジタル準同期検波手段から出力された検波サンプル信号を補正し、周波数偏差が補正された検波サンプル信号を出力する第2の周波数偏差補正手段と、前記第2の周波数補正手段によって周波数偏差が補正された検波サンプル信号に基づき、前記検波サンプル信号の初期位相成分を推定し、推定された初期位相成分を用いて前記サンプルタイミングに対する位相補正信号を算出する位相推定手段と、前記判定タイミング再生手段からの判定タイミング情報及び前記周波数偏差推定手段からの第1の周波数偏差補正信号を用いて、前記サンプルタイミングにおける位相補正信号を修正して前記判定タイミングにおける位相補正信号を算出する位相補正信号修正手段と、前記判定タイミングにおける位相補正信号を用いて前記第1の周波数偏差補正手段の出力を補正し、同期検波された復調信号を出力する位相補正手段と、を有する。
この構成では、受信信号の周波数偏差の推定だけでなく、初期位相成分の推定をも、オーバーサンプリング周期の検波サンプル信号に基づいて行う。すなわち、位相推定手段では、ディジタル準同期検波手段から出力される検波サンプル信号に基づき、検波サンプル信号の初期位相成分を推定し、この推定結果に基づいて位相補正信号を生成する。ただし、位相推定手段で求められる位相補正信号はサンプルタイミングに対する値なので、位相補正信号修正手段にてこれを判定タイミングに対する値に修正する。位相補正手段では、位相補正信号修正手段から出力される判定タイミングに対する位相補正信号により、判定タイミング検波信号を補正する。したがって、この構成によれば、復調器全体としてのさらなる高速動作が可能となるとともに、判定タイミング再生手段の誤動作が位相推定手段における初期位相成分の推定処理に波及するのを防ぐことができる。
【0062】
参考例3.
前述の参考例1及び2は同期検波方式の復調器であったが、この参考例3は遅延検波方式を採用する。この参考例3は位相変調された信号の復調に用いることができる。
【0063】
図3は、参考例3に係るディジタル復調器の回路構成を模式的に示すブロック図である。図3において、図1の構成要素と同一の構成要素には同一の符号を付してその説明を省略する。
【0064】
この参考例3において、A/D変換器10〜補間処理部18までの動作は前述の参考例1のものと同じである。そして、本参考例においては、補間処理部18から出力される判定タイミング検波信号から位相情報を抽出し、その位相情報を用いて遅延検波を行う。
【0065】
このため、座標変換部42は、補間処理部18から出力される判定タイミング検波信号を極座標形式に座標変換することにより、判定タイミング検波信号の位相を求める。補間処理部18から出力される判定タイミング検波信号は、式(5)で表されるので、座標変換部にて求められる判定タイミング検波信号の位相Rは次式に示す形となる。
【0066】
【数17】
(mT)=ΔωmT+θ+θ(mT) …(17)
ただし、θ(mT)は、変調による位相成分であり、次式で表される。
【0067】
【数18】
θ(mT)=arg{I(mT)+jQ(mT)} …(18)
座標変換部42の出力は、遅延回路44及び減算器46に入力される。遅延回路44は、座標変換部42から出力された位相信号Rを1シンボル周期(1ナイキスト周期)だけ遅延する。そして、減算器46は、座標変換部42から出力された位相信号R(mT)から、遅延回路44から出力される1シンボル周期遅延された位相信号R((m−1)T)を減算し、遅延検波を行う。この遅延検波の結果DD(mT)は、次式で表される。
【0068】
【数19】
Figure 0003575883
式(19)から分かるように、減算器46からの遅延検波出力DDには、変調による位相成分の他に、周波数偏差による位相回転成分ΔωTが含まれている。そして、この位相回転成分ΔωTを除去しないと、誤り率特性が劣化してしまう。
【0069】
このため、本参考例の復調器では、AFC40により位相回転成分ΔωTs を求め、減算器48によって遅延検波出力DDから位相回転成分ΔωTs を減算する。すなわち、AFC40は、受信フィルタ14から出力されたオーバーサンプリング周期の検波信号を用いて周波数偏差Δωを推定し、これに基づいて1シンボル周期(ナイキスト間隔)Ts 当たりの位相回転量DAFC を求める。
【0070】
【数20】
AFC (mT)=ΔωT …(20)
なお、この演算の際、1シンボル周期Tの値はほぼ既知である。なぜなら、1シンボル周期Tはオーバーサンプリング周期Tのほぼ整数倍になっているからである。したがって、AFC40は、1シンボル周期Tとしてサンプリングクロックから定まる固定値を記憶しておき、それを式(20)の演算に用いれば、実用上十分な精度で位相回転量DAFC を求めることができる。ただし、さらに精度を向上させるためには、BTR16で求められる正確な1シンボル周期TをAFC40に与える構成としてもよい。
【0071】
そして、減算器48において、この位相回転量DAFC を減算器46の出力DDから減算することにより、変調位相成分のみの遅延検波結果が得られる。減算器48の出力信号SDEは、次式で表される。
【0072】
【数21】
Figure 0003575883
式(21)から分かるように、減算器48の出力は、正確に変調による位相成分の差となっている。そして、この位相差SDEから元のデジタル信号が再生される。
【0073】
以上説明したように、本参考例では、AFC40、BTR16とは独立に動作するので、AFC40はBTR16の安定化を待たずに動作することができる。したがって、本参考例によれば、高速動作が可能な遅延検波復調器が得られる。
【0074】
また、本参考例によれば、定常動作状態においてBTR16が誤動作した場合でも、AFC40はBTR16の出力に関係なく周波数偏差Δωを推定することができる。したがって、BTR16が正常動作に復帰し次第AFC40からは正しい位相回転量が出力され、これにより復調器全体が正常動作状態に復帰する。
【0075】
なお、以上の説明では、遅延検波の遅延量は1シンボル周期であったが、遅延量は数シンボル周期であってもよい。
【0076】
また、本参考例において、遅延検波は前述した位相減算に限られるものではなく、例えば複素乗算など、他の手法を用いて行うこともできる。ちなみに、複素乗算にて位相検波を行う場合の演算過程は以下のようになる。
【0077】
すなわち、複素乗算による遅延検波では、補間処理部の出力信号それ自体を遅延し、現在の信号と1シンボル周期前の信号と複素乗算することにより検波を行う。この場合、時刻mにおける補間処理部の出力信号をS(m)とすると、遅延検波出力DD(m)は、
【数22】
DD(m)=S(m)×S(m−1)
と表される。S(m−1)は時刻mー1における信号S(m−1)の複素共役数である。S(m)及びS(m−1)は次式で表される。
【0078】
【数23】
S(m)=A(m)exp{jθ(n)}
S(m−1)=A(m−1)exp{jθ(n−1)}
ここで、A(m)は信号S(m)の振幅成分、θ(m)は信号S(m)の位相成分を示している。したがって、遅延検波出力DD(m)は、次式のように整理できる。
【0079】
【数24】
Figure 0003575883
この式から分かるように、複素乗算によっても1シンボル周期の位相差を得ることができる。そして、このようにして得られた位相差成分から周波数偏差成分を除去することにより、復調信号を得ることができる。
【0080】
実施形態.
図4は、本発明に係るディジタル復調器の実施形態の回路構成を模式的に示すブロック図である。図4において、図3の構成要素と同一の構成要素には同一符号を付してその説明を省略する。
【0081】
この実施形態は、上記参考例3を改良して、信号捕捉時における回路動作の高速安定化とともに、定常動作時における周波数偏差への対応能力の拡大を可能とするものである。
【0082】
図4において、AFC50は、受信フィルタ14から出力されたオーバーサンプリング周期の検波信号を用いて周波数偏差Δωを推定する。そして、AFC50は、選択器52からの選択信号に応じて、減算器48に対する補正信号DAFC (式(20)参照)及び乗算器54に対する補正信号CRX(nT)=exp(−jΔωnT)のいずれかを算出する。すなわち、AFC50は、復調器の高速動作(高速安定化)が要求されるときには補正信号DAFC を算出して減算器48に供給し、復調器が定常動作状態のときは補正信号CRXを算出して乗算器54に供給する。
【0083】
乗算器54は、ディジタル直交検波回路12と受信フィルタ14の間に設けられている。したがって、この乗算器54に補正信号CRXをフィードバックすれば、受信フィルタ14の前段で検波サンプル信号から周波数偏差Δωによる位相回転成分が除去される。受信信号の周波数偏差が大きい場合には、受信信号は広帯域となってしまうので、その周波数偏差を除去しないと受信フィルタ14によって変調信号成分が削られてしまうおそれがあるが、補正信号CRXを乗算器54にフィードバックすれば、その周波数偏差が予め除去されるので、変調信号成分の欠落が防止される。ただし、周波数偏差を受信フィルタ14の直前にフィードバックした場合は、受信フィルタ14の遅延量のためにAFCループの高速安定化が困難となるため、復調器全体の十分な高速動作は望めない。
【0084】
したがって、この回路構成によれば、バースト信号等の捕捉時など復調器の高速動作(高速安定化)が要求される場合には、参考例3の場合と同様に周波数偏差を遅延検波後に補正することにより高速動作を実現することができる。また、復調器が定常動作状態となったときには、周波数補正に対する高速動作の要求が厳しくなくなるので、周波数偏差を受信フィルタ14の前で補正することが可能である。したがって、定常動作状態においては、補正信号CRXにて受信フィルタ14の前で周波数偏差を補正することにより、周波数偏差が大きい場合でも必要な信号成分が欠落するのを防止することができる。
【0085】
以上説明したように、本実施形態によれば、受信フィルタによる信号劣化があるものの高速に動作するモードと、動作速度は低い代わりに受信フィルタによる信号の劣化が大幅に低減されるモードとを適宜選択することにより、受信状態に応じた適応的な復調動作が可能となる。例えば、信号捕捉時等においては復調器の高速動作が可能になると共に、定常動作時においては対応可能な周波数偏差の範囲を増大させることが可能となる。
【0086】
以上、本発明に係るディジタル復調器の各実施形態について説明した。
【0087】
なお、以上の各参考例及び実施形態では、入力IF信号をA/D変換したあとディジタル処理にて準同期直交検波を行う構成を示したが、本発明における準同期検波のための構成はこのような構成に限られない。例えば、図5に示すように、入力IF信号をアナログ的に準同期直交検波し、この検波結果をA/D変換する構成とすることもできる。図5においては、入力IF信号は、固定発振器100の出力信号及びこの信号をπ/2移相器114にて移相した信号をそれぞれ参照信号として、乗算器102及び104によって準同期直交検波される。検波出力は、ローパスフィルタ(LPF)106及び108にて波形成形された後、A/D変換器110及び112にてA/D変換される。なお、A/D変換器110及び112にはオーバーサンプリング周期T(前記各参考例及び実施形態におけるディジタル直交検波回路12の出力信号の周期に等しい)のクロックが入力されており、A/D変換器110及び112は、このクロックに従ってそれぞれ検波サンプル信号IQC及びQQCを出力される。この検波サンプル信号は、前記各参考例及び実施形態におけるディジタル直交検波回路12の出力信号と同等の信号である。したがって、以下、この検波サンプル信号を用いて、各参考例及び実施形態と同様の処理を行うことができる。
【図面の簡単な説明】
【図1】参考例1のディジタル復調器の回路構成を模式的に示すブロック図である。
【図2】参考例2のディジタル復調器の回路構成を模式的に示すブロック図である。
【図3】参考例3のディジタル復調器の回路構成を模式的に示すブロック図である。
【図4】実施形態のディジタル復調器の回路構成を模式的に示すブロック図である。
【図5】準同期直交検波のための構成の他の例を示す図である。
【図6】従来のディジタル復調器の回路構成を模式的に示すブロック図である。
【図7】補間処理を説明するための説明図である。
【符号の説明】
10 A/D変換器、12 ディジタル直交検波回路、14 受信フィルタ、16 ビットタイミング再生部(BTR)、18 補間処理部、20,30,40,50 自動周波数制御回路(AFC)、22,26,32,54 乗算器、
24,34 位相推定器、36 位相修正器、42 座標変換部、44 遅延回路、46,48 減算器、52 選択器。

Claims (2)

  1. ディジタル変調された受信信号を遅延検波するディジタル復調器であって、
    受信信号を所定の参照信号を用いて準同期検波し、受信信号のデータ値を判定する判定タイミングの周期よりも小さいサンプリングタイミングごとに検波サンプル信号を出力するディジタル準同期検波手段と、
    前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき、前記判定タイミングを再生する判定タイミング再生手段と、
    前記判定タイミング再生手段からの出力情報を用い、前記ディジタル準同期検波手段からの検波サンプル信号に対して補間演算を行うことにより、各判定タイミングにおける検波信号を求める補間手段と、
    前記補間手段からの出力信号に基づき、判定タイミング検波信号の位相を求める位相検出手段と、
    前記位相検出手段の出力信号を遅延検波する遅延検波手段と、
    前記ディジタル準同期検波手段から出力された検波サンプル信号に基づき前記受信信号の搬送波と前記参照信号との周波数偏差を推定し、推定された周波数偏差を用いて前記遅延検波手段の遅延時間当たりの位相回転量を求める周波数偏差推定手段と、
    前記遅延検波手段の出力から前記遅延時間当たりの位相回転量を減算する減算手段と、
    を有し、
    前記周波数偏差推定手段は、さらに前記周波数偏差を用いて前記各サンプリングタイミングに対する周波数偏差補正信号を算出し、
    前記デジタル復調器は、さらに、
    前記ディジタル準同期検波手段の直後に設けられ、前記周波数偏差推定手段に接続され、前記周波数偏差補正信号にて検波サンプル信号を補正する周波数偏差補正手段と、
    前記減算手段に対して前記位相回転量を出力するかあるいは前記周波数偏差補正手段に対して前記周波数偏差補正信号を出力するかを示す選択信号を、前記周波数偏差推定手段に対し与え、該選択信号により前記周波数偏差推定手段の動作を制御する選択手段と、
    を有し、前記選択手段にて前記周波数偏差補正信号が選択された場合には、前記補間手段は前記周波数偏差補正手段から出力される補正された検波サンプル信号に基づき補間処理を行うことを特徴とするディジタル復調器。
  2. 請求項記載のディジタル復調器において、
    前記選択手段は、ディジタル復調器の高速動作時には前記位相回転量を前記減算手段に出力することを指示する選択信号を出力し、ディジタル復調器の定常動作時には前記周波数偏差補正手段に対して前記周波数偏差補正信号を出力することを指示する選択信号を出力することを特徴とするディジタル復調器。
JP23844095A 1995-09-18 1995-09-18 ディジタル復調器 Expired - Fee Related JP3575883B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23844095A JP3575883B2 (ja) 1995-09-18 1995-09-18 ディジタル復調器
CA002180905A CA2180905C (en) 1995-09-18 1996-07-10 Digital demodulator
US08/677,881 US5914985A (en) 1995-09-18 1996-07-10 Digital demodulator
EP96111427A EP0763919B1 (en) 1995-09-18 1996-07-16 QPSK demodulator with frequency and phase tracking
DE69635643T DE69635643T2 (de) 1995-09-18 1996-07-16 QPSK-Demodulator mit Frequenz- und Phasennachlauf
AU60576/96A AU678950B2 (en) 1995-09-18 1996-07-18 Digital demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23844095A JP3575883B2 (ja) 1995-09-18 1995-09-18 ディジタル復調器

Publications (2)

Publication Number Publication Date
JPH0983594A JPH0983594A (ja) 1997-03-28
JP3575883B2 true JP3575883B2 (ja) 2004-10-13

Family

ID=17030261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23844095A Expired - Fee Related JP3575883B2 (ja) 1995-09-18 1995-09-18 ディジタル復調器

Country Status (6)

Country Link
US (1) US5914985A (ja)
EP (1) EP0763919B1 (ja)
JP (1) JP3575883B2 (ja)
AU (1) AU678950B2 (ja)
CA (1) CA2180905C (ja)
DE (1) DE69635643T2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6282500B1 (en) * 1998-09-09 2001-08-28 Qualcomm Inc. Accumulated phase measurement using open-loop phase estimation
JP3404312B2 (ja) * 1999-02-08 2003-05-06 エヌイーシー東芝スペースシステム株式会社 可変伝送レート信号復調処理方法およびその回路
CA2346714C (en) * 1999-04-22 2007-07-10 Nippon Telegraph And Telephone Corporation Receiver for ofdm packet communication system
US6218896B1 (en) * 1999-08-27 2001-04-17 Tachyon, Inc. Vectored demodulation and frequency estimation apparatus and method
JP3796076B2 (ja) * 1999-09-07 2006-07-12 松下電器産業株式会社 Ofdm通信装置
KR100669403B1 (ko) * 2000-05-04 2007-01-15 삼성전자주식회사 브이에스비/큐에이엠 공용 수신기 및 수신방법
US6731697B1 (en) * 2000-10-06 2004-05-04 Cadence Desicgn Systems, Inc. Symbol timing recovery method for low resolution multiple amplitude signals
DE10344756A1 (de) * 2003-09-25 2005-05-12 Micronas Gmbh Verfahren und Schaltungsanordnung zum Entscheiden eines Symbols im komplexen Phasenraum eines Quadraturmodulationsverfahrens
DE102005026091B4 (de) * 2005-06-07 2019-09-05 Atmel Corp. Verfahren und Empfangseinheit zur Detektion von Datensymbolen
JP2007225303A (ja) * 2006-02-21 2007-09-06 Jfe Steel Kk 同期検波方法および装置、磁気計測方法および装置
JP5225812B2 (ja) * 2008-11-17 2013-07-03 シャープ株式会社 Ofdm復調装置、ofdm復調方法、プログラム、および、コンピュータ読み取り可能な記録媒体
JP2011082667A (ja) 2009-10-05 2011-04-21 Renesas Electronics Corp 自動周波数制御回路
JP6809814B2 (ja) * 2016-05-30 2021-01-06 日本電気株式会社 信号検出装置及び信号検出方法
JP2018064223A (ja) * 2016-10-14 2018-04-19 住友電気工業株式会社 衛星放送受信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1059490B (it) * 1976-04-22 1982-05-31 C S E L T Spa Demodulatore numerico con interpolazione per segnali dati modulati linearmente in ampiezza
US4794341A (en) * 1985-11-05 1988-12-27 Signal Processors Limited Digital filters and demodulators
CA1288878C (en) * 1988-08-15 1991-09-10 John D. Mcnicol Timing and carrier recovery in tdma without preamable sequence
DE69033596T2 (de) * 1989-10-23 2001-04-19 Nippon Telegraph & Telephone Referenzsignalgenerator und diesen enthaltenden digitaler Demodulator
DE4013384A1 (de) * 1990-04-26 1991-10-31 Philips Patentverwaltung Empfaenger mit einer anordnung zur frequenzablagenschaetzung
JP3060521B2 (ja) * 1990-10-25 2000-07-10 日本電気株式会社 復調回路
US5341402A (en) * 1991-02-19 1994-08-23 Tokyo Electric Co., Ltd. Automatic frequency control method and device for use in receiver
US5311545A (en) * 1991-06-17 1994-05-10 Hughes Aircraft Company Modem for fading digital channels affected by multipath
US5282228A (en) * 1991-12-09 1994-01-25 Novatel Communications Ltd. Timing and automatic frequency control of digital receiver using the cyclic properties of a non-linear operation
US5400366A (en) * 1992-07-09 1995-03-21 Fujitsu Limited Quasi-synchronous detection and demodulation circuit and frequency discriminator used for the same
US5376894A (en) * 1992-12-31 1994-12-27 Pacific Communication Sciences, Inc. Phase estimation and synchronization using a PSK demodulator
JP3214159B2 (ja) * 1993-01-22 2001-10-02 三菱電機株式会社 キャリア検出器
JPH06268696A (ja) * 1993-03-10 1994-09-22 Toyo Commun Equip Co Ltd Afc回路
JPH06284159A (ja) * 1993-03-29 1994-10-07 Toshiba Corp ディジタル復調器
EP0715440B1 (en) * 1994-06-22 2004-06-16 NTT DoCoMo, Inc. Synchronous detector and synchronizing method for digital communication receiver

Also Published As

Publication number Publication date
JPH0983594A (ja) 1997-03-28
CA2180905A1 (en) 1997-03-19
CA2180905C (en) 2000-01-25
US5914985A (en) 1999-06-22
AU6057696A (en) 1997-03-27
EP0763919A3 (en) 2000-08-09
EP0763919B1 (en) 2005-12-28
DE69635643D1 (de) 2006-02-02
AU678950B2 (en) 1997-06-12
EP0763919A2 (en) 1997-03-19
DE69635643T2 (de) 2006-09-14

Similar Documents

Publication Publication Date Title
CA2025232C (en) Carrier recovery system
JP4366808B2 (ja) タイミングエラー検出回路および復調回路とその方法
JP3575883B2 (ja) ディジタル復調器
JPH08251243A (ja) 復調方法及び復調装置
JPH11177644A (ja) ビットタイミング再生回路
JP3335933B2 (ja) Ofdm復調装置
JP3120136B2 (ja) Tdmaデータ受信装置
JP4139814B2 (ja) 周波数誤差検出方法、受信方法、及び送受信方法
KR100327905B1 (ko) 보간 필터를 사용한 타이밍 복원 병렬 처리 방법 및 그 장치
JPH09233134A (ja) 復調器
JP3342967B2 (ja) Ofdm同期復調回路
JP2818148B2 (ja) Ofdm復調装置
JP4292667B2 (ja) 受信装置およびその方法
JP2003218969A (ja) 復調装置
JP2000188580A (ja) Ofdm受信装置
JPH07273823A (ja) 自動周波数制御装置
JP3852574B2 (ja) 信号復調装置及び信号復調方法
JP3968546B2 (ja) 情報処理装置および方法、並びに提供媒体
WO2001008368A1 (fr) Appareil de detection de decalage de frequence
KR100438519B1 (ko) 순방향 구조로 심볼 타이밍을 추정하는 수신 시스템 및 그타이밍 추정방법
JP3660930B2 (ja) 無線通信装置における自動周波数制御信号発生回路、受信装置、基地局装置、無線送受信システム、及び周波数誤差検出方法
JPH07183925A (ja) 周波数オフセット補正装置
JPH07176994A (ja) 自動周波数制御回路
JPH11103326A (ja) 復調器
JP3086144B2 (ja) バースト復調器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees