JP3571571B2 - Power supply for disaster prevention control panel - Google Patents

Power supply for disaster prevention control panel Download PDF

Info

Publication number
JP3571571B2
JP3571571B2 JP08555799A JP8555799A JP3571571B2 JP 3571571 B2 JP3571571 B2 JP 3571571B2 JP 08555799 A JP08555799 A JP 08555799A JP 8555799 A JP8555799 A JP 8555799A JP 3571571 B2 JP3571571 B2 JP 3571571B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
circuit
voltage detection
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08555799A
Other languages
Japanese (ja)
Other versions
JP2000287384A (en
Inventor
晃久 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP08555799A priority Critical patent/JP3571571B2/en
Publication of JP2000287384A publication Critical patent/JP2000287384A/en
Application granted granted Critical
Publication of JP3571571B2 publication Critical patent/JP3571571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、停電時にバッテリからの電源供給に切り替えて火災等の異常を監視を継続する防災監視制御盤の電源装置に関する。
【0002】
【従来の技術】
従来、この種の防災監視制御盤にあっては、電源供給系統を複数系統に分け、各系統毎にスイッチングレギュレータ等を使用した電源供給回路を設けて電源を供給している。
【0003】
図5は、従来の電源装置の一例であり、内部と外部の2系統に分けて電源供給を行う場合であり、各系統に電源供給回路(パワーサプライ:PS)100a,100bが設けられ、商用交流電源102の交流入力を、例えば24ボルトといった直流電圧に変換して各系統に供給している。
【0004】
また停電時のバックアップのためバッテリ103が設けられ、停電検出でバッテリ103に切り替えて電源供給ができるようにしている。このためリレーNV1,NV2の切替リレー接点nv1,nv2のa側をバッテリ103に接続し、b側を電源供給回路100a,100bの出力に接続している。
【0005】
バッテリ103は、商用交流電源102からの交流電圧をトランス108で降圧し、充電回路109で整流することで、常時充電されている。
【0006】
リレーNV1,NV2は、電圧検出回路104a,104bと電圧検出スイッチ回路105a,105bにより制御される。商用交流電源102に停電が起きると、電源供給回路100a,100bからの電源電圧が低下し、電圧検出回路104a,104bは所定の設定電圧を下回った時に電圧検出スイッチ回路105a,105bをオフし、リレーNV1,NV2を復旧する。このため切替リレー接点nv1,nv2が図示のa側に切替わり、バッテリ103から電源を供給するようになる。
【0007】
またバッテリ試験のため、各系統毎にバッテリ試験切替回路106a,106bと試験スイッチ回路107a,107bが設けられる。CPUからバッテリ試験回路106a,106bに試験指示が行われると、各々試験スイッチ回路107a,107bをオフし、リレーNV1,NV2を復旧し、切替リレー接点nv1,nv2をa側に切り替え、バッテリ103からの電源供給に切り替えて、バッテリによる電源供給が規定時間の間、正常にできるか否かのバッテリ試験を行う。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来の電源装置にあっては、電源供給回路100a,100bから負荷に対する電源ラインの出力部もしくは電源装置内に大容量のコンデンサC1,C2が接続されており、電源を供給する負荷が軽い場合、商用交流電源が停電した際のバッテリへの電源切替えが遅くなる問題がある。
【0009】
即ち、電源供給ラインに大容量のコンデンサC1,C2が接続されるため、電源を供給する負荷が軽い場合に、停電時にコンデンサC1,C2によって電源電圧が下がるのが遅くなり、それによりリレーNV1,NV2の切替わりが遅くなってしまう。このため電圧検出回路の検出精度を上げなくてはならず、回路が複雑となってしまう問題がある。
【0010】
特に、外部に接続される負荷、例えば地区音響装置や防排煙機器の数は、建物の大きさによって決まるため、接続数が少なくなった場合に、このような問題が発生し易くなる。
【0011】
本発明は、このような従来の問題点に鑑みてなされたもので、電源供給ラインに容量の大きなコンデンサが接続されていても、停電時等のバッテリからの電源供給への切替えが簡単な回路で迅速にできる防災監視制御盤の電源装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。まず本発明の防災監視制御盤の電源装置は、商用交流電源からの交流入力電圧を所定電圧に変換して充電回路に入力するトランスと、充電回路の整流出力電圧により充電されるバッテリと、商用交流電源からの交流入力電圧を所定の直流電源電圧に変換して負荷に供給する電源供給回路と、電源供給回路の出力側に設けられ、電源供給回路による電源供給とバッテリによる電源供給を切り替える電源切替リレーと、電源供給回路からの直流電源電圧を監視し、所定の設定電圧に対し高い場合に電源切替リレーを作動して電源供給回路からの電源供給に切り替え、所定の設定電圧に対し低い場合に電源切替リレーを復旧してバッテリからの電源供給に切り替える直流電源監視回路とを備える。
【0013】
このような防災監視制御盤の電源装置につき本発明にあっては、トランスからの交流出力電圧を監視し、所定の設定電圧に対し高い場合に電源切替リレーを作動可能として電源供給回路による電源供給への切替えを可能とし、所定の設定電圧に対し低い場合に、電源切替リレーを復旧してバッテリからの電源供給に切り替える交流電源監視回路を設けたことを特徴とする。
【0014】
ここで直流電源監視回路は、電源供給回路からの直流電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた電圧検出信号を出力する直流電圧検出回路と、直流電源電圧が所定の設定電圧に対し高い場合の直流電圧検出回路からの電圧検出信号でオンし、所定の設定電圧に対し低い場合の電圧検出信号でオフする第1電圧検出スイッチ回路とを備える。
【0015】
また交流電源監視回路は、トランスからの交流出力電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた交流電圧検出信号を出力する交流電圧検出回路と、交流電源電圧が所定の設定電圧に対し高い場合の交流電圧検出回路からの電圧検出信号でオンし、所定の設定電圧に対し低い場合の電圧検出信号でオフする第2電圧検出スイッチ回路とを備える。
【0016】
そして、第1電圧検出スイッチ回路と第2電圧検出スイッチ回路を電源切替リレーに直列接続し、いずれかのスイッチ回路のオフで電源切替リレーを復旧してバッテリからの電源供給に切り替える。
【0017】
このような本発明の電源装置によれば、バッテリ充電用トランスの交流出力電圧を常時監視し、交流出力電圧が設定した電圧以下になった場合、作動状態にある電源切替リレーを復旧してバッテリからの電源供給に切り替えるため、直流電源監視回路が出力側の容量の大きなコンデサンサにより軽負荷時の電圧低下の検出に遅れがあっても、交流出力電圧の監視で直ちにバッテリからの電源供給に切り替えることができる。
【0018】
また本発明による防災監視制御盤の電源装置は、複数の電源供給系統を有する場合、電源供給回路及び電源切替リレーは複数の電源供給系統毎に設けられ、直流電源監視回路は、複数の電源供給回路毎に設けられ、電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた電圧検出信号を出力する複数の直流電圧検出回路と、複数の直流電圧検出回路による検出信号の全てが所定の設定電圧に対し高い場合に複数の電源切替リレーを一括して作動することにより各電源供給回路からの電源供給に切り替え、検出信号のいずれかが所定の設定電圧に対し低い場合に、複数の電源切替リレーを一括して復旧することによりバッテリからの電源供給に切り替える切替制御回路とを備える。
【0019】
この切替制御回路は、更に具体的には、直流電源電圧が所定の設定電圧に対し高い場合の直流電圧検出回路からの電圧検出信号でオンし、低い場合の電圧検出信号でオフする複数の第1電圧検出スイッチ回路を直列接続した直列スイッチ回路と、複数の電源切替リレーを並列接続したリレー駆動回路と、リレー駆動回路に並列接続され電源切替状態を示す電源状態信号をCPUに送出するフォトカプラの発光素子と、CPUからのバッテリ試験指示でオン,オフする試験スイッチ回路とを備え、直列スイッチ回路、リレー駆動回路及び試験スイッチ回路を直列接続し、複数のスイッチ回路の少なくともいずれか1つのオフで、複数の電源切替リレーを一括して復旧することを特徴とする。
【0020】
また複数の直流電圧検出回路は、コンパレータを備え、このコンパレータは、直流電源電圧が第1閾値電圧を越えた時にスイッチオン用の電圧検出信号を出力し、その後、電源電圧が第1閾値電圧より低い第2閾値電圧を下回った時にスイッチオフ用の電圧検出信号を出力するヒステリシス検出特性をもつ。
【0021】
このため複数の電源系統に対しCPUに電源切替状態を示す状態信号を送る回路、CPUからの指示でバッテリ試験等のために電源切替リレーを切り替えるバッテリ切替試験回路が単一の回路で共通化され、電源系統を増やす場合には、電源供給回路、電圧検出回路、電圧検出スイッチ回路、電源切替リレーの増設で済み、電源系統が増えても回路を大幅に変更することなく、容易に対応できる。
【0022】
【発明の実施の形態】
図1は、本発明による防災監視制御盤の電源装置の一実施形態の回路ブロック図である。
【0023】
図1において、商用交流電源2に対し、この実施形態にあっては3系統の電源供給回路1a,1b,1cが設けられており、防災監視制御盤の内部、地区音響用の外部1、防排煙用の外部2のそれぞれに個別に直流電源の供給を行っている。
【0024】
電源供給回路1a〜1cは例えばスイッチングレギュレータが使用され、商用交流電圧を入力し、所定の直流電源電圧に変換して出力する。ここで防災監視制御盤の内部に電源を供給する電源供給回路1aはDC24Vを供給し、地区音響用及び防排煙用の外部1,外部2に電源を供給する電源供給回路1b,1cは例えばDC26.4Vを供給する。
【0025】
また図1の電源装置には商用交流電源2の停電時に電源供給をバックアップするため、バッテリ3が設けられる。バッテリ3は商用交流電源2からの交流電源電圧をトランス8に入力し、所定の交流出力電圧VAC、例えばAC56Vに変換し、充電回路9で整流してバッテリ3を常時充電している。
【0026】
停電時にバッテリ3の電源供給に切り替えるため、電源供給回路1a〜1cからの各電源供給系統に対応して3つの電源切替リレーNV1,NV2,NV3が設けられている。この電源切替リレーNV1,NV2,NV3は切替リレー接点nv1,nv2,nv3を持ち、a側をバッテリ3に接続し、b側を電源供給回路1a〜1cからの出力に接続し、切替接点を内部、外部1、外部2側の負荷側の電源ラインに接続している。
【0027】
電源切替リレーNV1〜NV3は、後の説明で明らかにするように、商用交流電源2からの交流電源の供給に基づき、電源供給回路1a〜1cが正常に直流電源電圧を供給している時は全て作動し、切替リレー接点nv1〜nv3はb側に切り替わり、電源供給回路1a〜1cからの直流電源電圧を内部、外部1及び外部2のそれぞれに供給する。
【0028】
これに対し、停電等により電源供給回路1a〜1cからの電源電圧が断たれると電源切替リレーNV1〜NV3が復旧し、切替リレー接点nv1〜nv3をa側に切り替えることでバッテリ3からの電源供給に切り替える。
【0029】
このような電源切替リレーNV1〜NV3の作動と復旧の切替制御は、直流電圧検出回路4a,4b,4c、第1電圧検出スイッチ回路5a,5b,5cを含む直流電源監視回路により行われる。
【0030】
直流電圧検出回路4a〜4cは、電源供給回路1a〜1cの直流出力電圧を内蔵したコンパレータに入力して比較しており、所定の設定電圧より高い場合は直流電圧検出信号をHレベルとして第1電圧検出スイッチ回路5a〜5cをオンする。直流電源電圧が所定の設定電圧より低いと直流電圧検出信号をLレベルとし、第1電圧検出スイッチ回路5a〜5cをオフとする。
【0031】
この実施形態にあっては、直流電圧検出回路4a〜4cに設けているコンパレータはヒステリシス特性を持っている。ここで電源供給回路1aの内部に対する電源電圧をDC24V、電源供給回路1b,1cによる地区音響用及び防排煙用のための外部1,外部2に対する電源電圧をDC26.4Vとすると、直流電圧検出回路4a〜4cに設けているコンパレータには2つの閾値電圧Vth1,Vth2が設定されている。
【0032】
この閾値電圧はDC24Vを監視する直流電圧検出回路4aの場合、Vth1=16V、Vth2=23V、またDC26.4Vを監視する直流電圧検出回路4b,4cの場合、Vth1=19V、Vth2=25Vとなっている。
【0033】
図2は図1の直流電圧検出回路4a〜4cに設けているコンパレータのヒステリシス特性を示す。横軸に示す入力となる電源電圧に対し2つの閾値電圧Vth1,Vth2が設定されており、コンパレータは入力する電源電圧に応じてLレベル出力またはHレベル出力を生ずる。
【0034】
入力する電源電圧が0Vから増加すると、最初の閾値電圧Vth1に達してもHレベルに立ち上がらず、高い方の閾値電圧Vth2に達するとコンパレータ出力がHレベルに立ち上がる。コンパレータの出力がHレベルに立ち上がった後は、電源電圧が高い方の閾値電圧Vth2より低くなってもLレベルに立ち下がらず、電源電圧が低い方の閾値電圧Vth1より低くなる時にLレベルに立ち下がる。これによって、電源電圧の入力に対しコンパレータ出力はヒステリシス特性を持つ。
【0035】
再び図1を参照するに、直流電圧検出回路4a〜4cからの電圧検出信号によりオン,オフされる3つの第1電圧検出スイッチ回路5a〜5cは直列接続され、この直列スイッチ回路に対し3つの電源切替リレーNV1〜NV3の並列回路を直列に接続している。
【0036】
更に電源切替リレーNV1〜NV3には、電源切替状態を制御用のCPUに送るためのフォトカプラの発光素子10が並列接続されている。 更に電源切替リレーNV1〜NV3の並列回路に対しては、試験スイッチ回路7が直列接続される。試験スイッチ回路7は、CPUからのバッテリ試験の指示を受けて動作するバッテリ切替試験回路6の出力によりオン,オフする。通常時、試験スイッチ回路7はオン状態にあり、CPUからバッテリ切替試験回路6にバッテリ試験の指示が行われると、試験スイッチ回路7はオフとなる。
【0037】
このような直流電源監視回路側に対し本発明にあっては、バッテリ3に対して設けたトランス8及び充電回路9側に交流電源監視回路を設けている。この交流電源監視回路は、交流電圧検出回路12と第2電圧検出スイッチ回路13を備える。
【0038】
交流電圧検出回路12はトランス8から出力される例えばAC56Vを入力し、予め設定した所定電圧より高いか低いかを検出し、電圧検出信号を第2電圧検出スイッチ回路13に出力してオン,オフする。具体的には、交流電圧検出回路12はトランス8からの交流出力電圧AC56Vを整流平滑して直流電圧に変換した後、直流電圧検出回路4a〜4cと同様なコンパレータにより電圧を検出する。
【0039】
例えばトランス8からの交流出力電圧AC56Vは充電回路9による整流出力と同様、直流に整流平滑することでDC26.4Vとなることから、そのコンパレータにはVth1=25V、Vth2=42Vの2つが設定され、ヒステリシス特性により実質的にトランス8から出力される交流出力電圧AC37Vの変化を検出する。
【0040】
第2電圧検出スイッチ回路13は、直流電源監視回路側の第1電圧検出スイッチ回路5a〜5cと直列接続され、交流電圧検出回路12の電圧検出信号によっても電源切替リレーNV1〜NV3の復旧によるバッテリ3からの電源供給に切替えできるようにしている。
【0041】
更に直流電源監視回路側には積分回路11が設けられ、外部1及び外部2となる地区音響用及び防排煙用の電源供給系統に設けている直流電圧検出回路4b,4cからの電圧検出信号を入力し、電源電圧の瞬断等による変動を抑圧して、第1電圧検出スイッチ回路5b,5cの誤動作がないようにしている。
【0042】
図3は、図1の外部1の電源供給系統となる電源供給回路1b、直流電圧検出回路4b、及び積分回路11の電源電圧の瞬断に対する動作のタイムチャートである。
【0043】
図3(A)のように、電源供給回路1bからの直流電源電圧VDCが瞬断したとすると、直流電圧検出回路4bのコンパレータは閾値Vth1,Vth2に対応して図3(B)のような瞬間的にLレベルに立ち下がり、再びHレベルに立ち上がる電圧検出信号を出力する。
【0044】
この電圧検出信号は積分回路11に入力され、積分回路は瞬断時間に対し十分な時定数を持つことから電圧検出信号の変動分が抑圧され、図3(C)のような積分出力がなされる。このため電源電圧の瞬断によっては第1電圧検出スイッチ回路5bがオフすることはなく、安定してオン状態を保つことができる。この点は防排煙用の電源供給を行う外部2の直流電源電圧における瞬断についても同様である。
【0045】
尚、防災監視制御盤の内部に電源を供給する電源電圧を検出する直流電圧検出回路4aにあっては、外部への電源供給でないことから比較的安定しており、瞬断の可能性もないことから、積分回路11は通さず直接、第1電圧検出スイッチ回路5aに供給しているが、瞬断の可能性があるようであれば積分回路11を経由するようにしても良い。
【0046】
第1電圧検出スイッチ回路5a〜5c、第2電圧検出スイッチ回路13及び試験スイッチ7は、リレー、トランジスタ、サイリスタ等の適宜のスイッチ回路を使用することができる。
【0047】
更に、この実施形態にあっては、内部、外部1、外部2の各電源供給系統の出力側のラインに比較的大容量のコンデンサC1,C2,C3が接続されており、電源供給回路1a〜1cからの直流電源の供給が断たれても、コンデンサC1〜C3のバックアップにより直流電源電圧は緩やかに低下する。この直流電源電圧の低下度合は、各負荷に対する供給電流が少ない軽負荷時には更にゆっくりしたものとなる。
【0048】
次に図1の実施形態の動作を説明する。防災監視制御盤に設けている電源スイッチを投入すると、商用交流電源2から交流電源電圧が入力し、電源供給回路1a〜1cが動作して、内部、外部1及び外部2のそれぞれに所定の直流電源電圧を供給する。
【0049】
この直流電源電圧の出力に対し直流電圧検出回路4a〜4cがコンパレータの高い方の閾値Vth2を超えた時に電圧検出信号をHレベルとし、第1電圧検出スイッチ回路5a〜5cがオンする。同時に商用交流電源2からの電源供給でトランス8から所定の交流出力電圧が得られ、充電回路9による整流でバッテリ3の充電が開始される。
【0050】
このとき交流電圧検出回路12はトランス8の交流出力電圧の対応する直流電圧が閾値Vth2を越えたとき電圧検出信号をHレベルとし、第2電圧検出スイッチ回路13をオンする。
【0051】
ここで試験スイッチ回路7はオン状態にあることから、並列接続された電源切替リレーNV1〜NV3が一括して作動し、切替リレー接点nv1〜nv3をb側に切り替え、電源供給回路1a〜1cからの直流電源電圧を内部、外部1及び外部2の各系統に供給する。
【0052】
このような通常の電源供給状態で、例えば商用交流電源2に停電が起きると、電源供給回路1a〜1cの出力電圧は断たれるが、電源供給ラインの出力側に設けているコンデンサC1〜C3のバックアップ機能により直流電圧回路4a〜4cに対する入力電圧は緩やかに低下する。
【0053】
これに対しトランス8からの交流出力電圧は停電と同時に遮断され、このため交流電圧検出回路12からの電圧検出信号は停電直後にHレベルからLレベルに立ち下がり、第2電圧検出スイッチ回路13をオフする。このため、並列接続されている電源切替リレーNV1〜NV3が一斉に復旧し、切替リレー接点nv1〜nv3がa側に切り替わることで、バッテリ3からの電源供給に切り替わる。
【0054】
このように、電源供給回路1a〜1cからバッテリ3への電源供給の切り替わりによる内部、外部1、外部2への電源供給の瞬断があっても、大容量のコンデンサC1,C2,C3のバックアップにより各負荷への影響はない。
【0055】
図4は、商用交流電源の停電時におけるトランス出力電圧VAC、直流電源電圧VDC、直流電圧検出回路4b、交流電圧検出回路12の出力のタイムチャートである。
【0056】
図4(A)のように、商用交流電源2が停電を起こすと、トランス出力電圧VACは直ちに0Vに下がる。これに対し図4(B)のように、例えば電源供給回路1bから外部1に対する電源供給ラインの直流電源電圧VDCはコンデンサC2により緩やかに低下する。
【0057】
このとき本発明にあっては、トランス8の出力電圧を検出する交流電圧検出回路12を設けていることから、図4(C)のように停電とほぼ同時に交流電圧検出回路12がHレベルからLレベルに立ち下がり、第2電圧検出スイッチ回路13をオフすることで電源切替リレーNV1〜NV3を復旧してバッテリからの電源供給に切り替える。
【0058】
これに対し、コンデンサC1を接続している電源供給ラインの直流電圧回路4bにあっては、図4(D)のように時刻t1の停電から遅れた直流電源電圧がコンパレータの低い方の閾値電圧Vth1を下回る時刻t2で電圧検出信号をLレベルとして第1電圧検出スイッチ回路5bをオフすることになる。
【0059】
このため、従来の直流電源電圧の監視による予備電源への切替えに対し、本発明の交流電源の監視による予備電源への切替えにより、時刻t1からt2のような遅延を起こすことなく、停電とほぼ同時にバッテリ3からの電源供給に切り替えることができる。
【0060】
一方、商用交流電源2の停電ではなく、例えば電源供給回路1bの故障で直流出力電圧が低下したり遮断した場合には、コンデンサC2によって直流電源電圧が図4(B)のようにゆっくりと低下し、故障による電源異常時からある程度遅れた時間に直流電圧回路1bからの電圧検出信号がLレベルに立ち下がって、バッテリ3からの電源供給に切り替わるようになる。
【0061】
更にCPUからバッテリ試験スイッチの操作に伴うバッテリ試験指示が行われると、バッテリ切替試験回路6はオン状態にある試験スイッチ回路7をオフし、これによって電源切替リレーNV1〜NV3を一括して復旧し、内部、外部1及び外部2の各系統をバッテリ3からの電源供給に切り替え、バッテリ3による電源供給が規定時間の間、正常にできるか否かのバッテリ試験を行う。
【0062】
更に図1の実施形態にあっては、直流電源電圧の供給系統を複数系統設けており、この場合にCPUに電源切替状態を知らせるためのフォトカプラの発光素子10、バッテリ試験のためのバッテリ切替試験回路6及び試験スイッチ回路7は、各系統ごとに設けずに単一の共通回路として設けており、このため図5の従来装置のように各系統ごとに全ての回路を独立に設けていた場合に比べ、電源系統を増やした場合の回路構成を簡単にし、コストダウンを図ることができる。
【0063】
尚、上記の実施形態は、直流電源電圧の供給系統を3系統とした場合を例にとるものであったが、単一系統であってもよいし適宜の数の複数系統であってもよい。このように直流電源電圧の供給系統が増えても各系統の回路構成は同じであり、また系統数に応じて第1電圧検出スイッチ回路の直列接続数及び電源切替リレーの並列接続数が増加する。
【0064】
また本発明は上記の実施形態に限定されず、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態で示した数値による限定は受けない。
【0065】
【発明の効果】
以上説明してきたように本発明によれば、バッテリ充電用のトランスからの交流出力電圧を常時監視し、この交流出力電圧が設定した電圧以下になった場合、作動状態にある電源切替リレーを復旧してバッテリからの電源供給に切り替えるため、直流電源監視回路の出力側に容量の大きなコンデンサが接続され、軽負荷時に電圧低下の検出に遅れがあっても、交流出力電圧の監視で停電等の電圧低下に対し直ちにバッテリからの電源供給に切り替えることができ、信頼性の高いバッテリによる電源バックアップが実現できる。
【0066】
また直流電源の電源供給系統を複数設けた場合、電源供給系統の数に対し制御用のCPUに電源切替状態を示す状態信号を送る回路、CPUからの指示でバッテリ試験等のために電源切替リレーをバッテリ側に切り替えるバッテリ切替試験回路は単一の回路で共通化でき、電源供給系統を増やした場合、電源供給系統ごとに全ての回路を設けていた従来装置に比べ回路構成を大幅に変更する必要がなく、容易に対応できる。
【図面の簡単な説明】
【図1】本発明による防災監視制御盤の電源装置の実施形態を示した回路ブロック図
【図2】図1の電圧検出回路のヒステリシス特性の説明図
【図3】図1の積分回路による瞬断時の電圧変動特性の説明図
【図4】停電時の電源切替動作のタイムチャート
【図5】従来装置の回路ブロック図
【符号の説明】
1a〜1c:電源供給回路(PS1〜PS3)
2:商用交流電源
3:バッテリ
4a〜4c:直流電圧検出回路
5a〜5c:第1電圧検出スイッチ回路
6:バッテリ切替試験回路
7:試験スイッチ回路
8:トランス
9:充電回路
10:発光素子(CPU送出用)
11:積分回路
12:交流電圧検出回路
13:第2電圧検出スイッチ回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device for a disaster prevention monitoring control panel that switches to power supply from a battery at the time of a power outage and continues monitoring for an abnormality such as a fire.
[0002]
[Prior art]
Conventionally, in this kind of disaster prevention monitoring control panel, a power supply system is divided into a plurality of systems, and a power supply circuit using a switching regulator or the like is provided for each system to supply power.
[0003]
FIG. 5 is an example of a conventional power supply device, in which power is supplied to two systems, an internal system and an external system, in which power supply circuits (power supply: PS) 100a and 100b are provided for each system. The AC input of the AC power supply 102 is converted into a DC voltage of, for example, 24 volts and supplied to each system.
[0004]
A battery 103 is provided for backup at the time of a power failure, and the power is supplied by switching to the battery 103 upon detection of the power failure. Therefore, the switching relay contacts nv1 and nv2 of the relays NV1 and NV2 have the a side connected to the battery 103 and the b side connected to the outputs of the power supply circuits 100a and 100b.
[0005]
The battery 103 is constantly charged by stepping down the AC voltage from the commercial AC power supply 102 with the transformer 108 and rectifying it with the charging circuit 109.
[0006]
The relays NV1 and NV2 are controlled by voltage detection circuits 104a and 104b and voltage detection switch circuits 105a and 105b. When a power failure occurs in the commercial AC power supply 102, the power supply voltage from the power supply circuits 100a and 100b decreases, and the voltage detection circuits 104a and 104b turn off the voltage detection switch circuits 105a and 105b when the voltage drops below a predetermined set voltage. The relays NV1 and NV2 are restored. For this reason, the switching relay contacts nv1 and nv2 are switched to the illustrated “a” side to supply power from the battery 103.
[0007]
For battery testing, battery test switching circuits 106a and 106b and test switch circuits 107a and 107b are provided for each system. When the CPU issues a test instruction to the battery test circuits 106a and 106b, the test switch circuits 107a and 107b are turned off, the relays NV1 and NV2 are restored, and the switching relay contacts nv1 and nv2 are switched to the a side. , And a battery test is performed to determine whether the power supply from the battery can be performed normally for a specified time.
[0008]
[Problems to be solved by the invention]
However, in such a conventional power supply device, the large-capacity capacitors C1 and C2 are connected from the power supply circuits 100a and 100b to the output section of the power supply line to the load or the power supply device, thereby supplying power. When the load is light, there is a problem that the switching of the power supply to the battery when the commercial AC power supply fails is delayed.
[0009]
That is, since the large-capacity capacitors C1 and C2 are connected to the power supply line, when the load for supplying power is light, the power supply voltage is slowed down by the capacitors C1 and C2 at the time of a power failure, and thereby the relays NV1 and NV1 Switching of NV2 is delayed. Therefore, the detection accuracy of the voltage detection circuit must be increased, and there is a problem that the circuit becomes complicated.
[0010]
In particular, since the number of loads connected to the outside, for example, the number of district sound devices and smoke prevention devices is determined by the size of the building, such a problem is likely to occur when the number of connections is reduced.
[0011]
The present invention has been made in view of such a conventional problem, and even when a large-capacity capacitor is connected to a power supply line, switching to power supply from a battery at the time of a power failure or the like is easy. It is an object of the present invention to provide a power supply device for a disaster prevention monitoring control panel which can be quickly operated.
[0012]
[Means for Solving the Problems]
To achieve this object, the present invention is configured as follows. First, a power supply device for a disaster prevention monitoring control panel of the present invention includes a transformer for converting an AC input voltage from a commercial AC power supply into a predetermined voltage and inputting the converted voltage to a charging circuit, a battery charged by a rectified output voltage of the charging circuit, and a commercial power supply. A power supply circuit for converting an AC input voltage from an AC power supply into a predetermined DC power supply voltage and supplying the load to a load, and a power supply provided on an output side of the power supply circuit and switching between power supply by the power supply circuit and power supply by a battery The switching relay and the DC power supply voltage from the power supply circuit are monitored, and when the voltage is higher than the predetermined voltage, the power supply switching relay is activated to switch to the power supply from the power supply circuit, and when the voltage is lower than the predetermined voltage. And a DC power monitoring circuit for restoring the power switching relay and switching to power supply from the battery.
[0013]
According to the present invention, such a power supply device for a disaster prevention monitoring control panel monitors an AC output voltage from a transformer, and when the voltage is higher than a predetermined set voltage, activates a power supply switching relay to supply power by a power supply circuit. And an AC power supply monitoring circuit for restoring the power supply switching relay and switching to power supply from the battery when the voltage is lower than a predetermined set voltage.
[0014]
Here, the DC power supply monitoring circuit includes a DC voltage detection circuit that outputs a voltage detection signal according to a case where the DC power supply voltage from the power supply circuit is higher and lower than a predetermined set voltage, and a DC power supply voltage that is higher than a predetermined setting voltage. A first voltage detection switch circuit that is turned on by a voltage detection signal from a DC voltage detection circuit when the voltage is higher than the voltage, and is turned off by a voltage detection signal when the voltage is lower than a predetermined set voltage.
[0015]
The AC power supply monitoring circuit includes an AC voltage detection circuit that outputs an AC voltage detection signal according to a case where the AC output power supply voltage from the transformer is higher and lower than a predetermined set voltage; A second voltage detection switch circuit that is turned on by a voltage detection signal from an AC voltage detection circuit when the voltage is high and turned off by a voltage detection signal when the voltage is low with respect to a predetermined set voltage.
[0016]
Then, the first voltage detection switch circuit and the second voltage detection switch circuit are connected in series to the power supply switching relay, and when one of the switch circuits is turned off, the power supply switching relay is restored to switch to the power supply from the battery.
[0017]
According to such a power supply device of the present invention, the AC output voltage of the battery charging transformer is constantly monitored, and when the AC output voltage becomes equal to or lower than the set voltage, the power supply switching relay in the operating state is restored to restore the battery. Even if the DC power supply monitoring circuit has a delay in detecting a voltage drop at light load due to a large-capacitance condenser on the output side, it switches to the power supply from the battery immediately by monitoring the AC output voltage. be able to.
[0018]
Further, when the power supply device of the disaster prevention monitoring control panel according to the present invention has a plurality of power supply systems, a power supply circuit and a power supply switching relay are provided for each of the plurality of power supply systems, and the DC power supply monitoring circuit includes a plurality of power supply systems. A plurality of DC voltage detection circuits are provided for each circuit and output a voltage detection signal according to a case where the power supply voltage is higher and lower than a predetermined setting voltage, and all of the detection signals by the plurality of DC voltage detection circuits are predetermined. When the voltage is higher than the set voltage, the plurality of power supply switching relays are operated collectively to switch to the power supply from each power supply circuit, and when any of the detection signals is lower than the predetermined set voltage, A switching control circuit for switching to power supply from a battery by collectively restoring the power switching relay.
[0019]
More specifically, the switching control circuit is turned on by a voltage detection signal from the DC voltage detection circuit when the DC power supply voltage is higher than a predetermined set voltage, and turned off by a voltage detection signal when the DC power supply voltage is lower than a predetermined voltage. A series switch circuit in which one voltage detection switch circuit is connected in series, a relay drive circuit in which a plurality of power supply switching relays are connected in parallel, and a photocoupler connected in parallel with the relay drive circuit and transmitting a power supply state signal indicating a power supply switching state to the CPU And a test switch circuit that is turned on and off in response to a battery test instruction from the CPU. The series switch circuit, the relay drive circuit, and the test switch circuit are connected in series, and at least one of the plurality of switch circuits is turned off. Thus, a plurality of power supply switching relays are collectively restored.
[0020]
The plurality of DC voltage detection circuits include a comparator, and the comparator outputs a switch-on voltage detection signal when the DC power supply voltage exceeds a first threshold voltage. It has a hysteresis detection characteristic of outputting a switch-off voltage detection signal when the voltage falls below a low second threshold voltage.
[0021]
For this reason, a single circuit is used for a circuit that sends a state signal indicating a power supply switching state to the CPU for a plurality of power supply systems and a battery switching test circuit that switches a power supply switching relay for a battery test or the like according to an instruction from the CPU. When the number of power supply systems is increased, only a power supply circuit, a voltage detection circuit, a voltage detection switch circuit, and a power supply switching relay need to be added. Even if the number of power supply systems increases, the circuit can be easily changed without drastically changing the circuit.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit block diagram of an embodiment of a power supply device for a disaster prevention monitoring control panel according to the present invention.
[0023]
In FIG. 1, three AC power supply circuits 1a, 1b, and 1c are provided for a commercial AC power supply 2 in this embodiment. DC power is individually supplied to each of the smoke exhausting external units 2.
[0024]
For example, a switching regulator is used as the power supply circuits 1a to 1c. The power supply circuits 1a to 1c receive a commercial AC voltage, convert the AC voltage into a predetermined DC power supply voltage, and output the converted DC power supply voltage. Here, the power supply circuit 1a for supplying power to the inside of the disaster prevention monitoring control panel supplies 24V DC, and the power supply circuits 1b and 1c for supplying power to the outside 1 and the outside 2 for area sound and smoke prevention are, for example, Supply DC 26.4V.
[0025]
1 is provided with a battery 3 for backing up the power supply when the commercial AC power supply 2 fails. The battery 3 inputs an AC power supply voltage from the commercial AC power supply 2 to the transformer 8, converts the AC power supply voltage to a predetermined AC output voltage VAC, for example, AC56V, rectifies it by the charging circuit 9, and constantly charges the battery 3.
[0026]
In order to switch to the power supply of the battery 3 at the time of a power failure, three power supply switching relays NV1, NV2, and NV3 are provided corresponding to the respective power supply systems from the power supply circuits 1a to 1c. The power switching relays NV1, NV2, and NV3 have switching relay contacts nv1, nv2, and nv3. The a side is connected to the battery 3, the b side is connected to the output from the power supply circuits 1a to 1c, and the switching contacts are connected to the inside. , External 1 and external 2 are connected to the power supply line on the load side.
[0027]
As will be described later, the power supply switching relays NV1 to NV3 are based on the supply of AC power from the commercial AC power supply 2 and when the power supply circuits 1a to 1c are normally supplying the DC power supply voltage. All the switches are operated, and the switching relay contacts nv1 to nv3 are switched to the b side to supply the DC power supply voltage from the power supply circuits 1a to 1c to the inside, the outside 1 and the outside 2, respectively.
[0028]
On the other hand, when the power supply voltage from the power supply circuits 1a to 1c is cut off due to a power failure or the like, the power supply switching relays NV1 to NV3 are restored, and the switching relay contacts nv1 to nv3 are switched to the a side so that the power supply from the battery 3 is released. Switch to supply.
[0029]
Such switching control of the operation and restoration of the power supply switching relays NV1 to NV3 is performed by a DC power supply monitoring circuit including DC voltage detection circuits 4a, 4b, 4c and first voltage detection switch circuits 5a, 5b, 5c .
[0030]
The DC voltage detection circuits 4a to 4c input the DC output voltages of the power supply circuits 1a to 1c to built-in comparators and compare the DC output voltages . The voltage detection switch circuits 5a to 5c are turned on. When the DC power supply voltage is lower than a predetermined set voltage, the DC voltage detection signal is set to L level, and the first voltage detection switch circuits 5a to 5c are turned off.
[0031]
In this embodiment, the comparators provided in the DC voltage detection circuits 4a to 4c have hysteresis characteristics. Here, assuming that the power supply voltage for the inside of the power supply circuit 1a is DC 24V and the power supply voltage for the outside 1 and the outside 2 for the district sound and smoke prevention by the power supply circuits 1b and 1c is 26.4V DC, the DC voltage detection is performed. Two threshold voltages Vth1 and Vth2 are set in the comparators provided in the circuits 4a to 4c.
[0032]
This threshold voltage is Vth1 = 16V, Vth2 = 23V in the case of the DC voltage detection circuit 4a monitoring DC24V, and Vth1 = 19V, Vth2 = 25V in the case of the DC voltage detection circuits 4b and 4c monitoring DC26.4V. ing.
[0033]
FIG. 2 shows the hysteresis characteristics of the comparators provided in the DC voltage detection circuits 4a to 4c in FIG. Two threshold voltages Vth1 and Vth2 are set for the input power supply voltage shown on the horizontal axis, and the comparator generates an L level output or an H level output according to the input power supply voltage.
[0034]
When the input power supply voltage increases from 0 V, it does not rise to the H level even when it reaches the first threshold voltage Vth1, and when it reaches the higher threshold voltage Vth2, the comparator output rises to the H level. After the output of the comparator rises to the H level, it does not fall to the L level even if the power supply voltage falls below the higher threshold voltage Vth2, and rises to the L level when the power supply voltage falls below the lower threshold voltage Vth1. Go down. Thus, the comparator output has a hysteresis characteristic with respect to the input of the power supply voltage.
[0035]
Referring again to FIG. 1, three first voltage detection switch circuits 5a to 5c that are turned on and off by voltage detection signals from the DC voltage detection circuits 4a to 4c are connected in series. A parallel circuit of power supply switching relays NV1 to NV3 is connected in series.
[0036]
Further, a light emitting element 10 of a photocoupler for sending a power switching state to a control CPU is connected in parallel to the power switching relays NV1 to NV3. Further, a test switch circuit 7 is connected in series to a parallel circuit of the power supply switching relays NV1 to NV3. The test switch circuit 7 is turned on and off by an output of the battery switching test circuit 6 which operates in response to a battery test instruction from the CPU. Normally, the test switch circuit 7 is on, and when the CPU issues a battery test instruction to the battery switching test circuit 6, the test switch circuit 7 is turned off.
[0037]
According to the present invention, such a DC power supply monitoring circuit is provided with an AC power supply monitoring circuit on the side of the transformer 8 and the charging circuit 9 provided for the battery 3. This AC power supply monitoring circuit includes an AC voltage detection circuit 12 and a second voltage detection switch circuit 13.
[0038]
The AC voltage detection circuit 12 receives, for example, AC56V output from the transformer 8, detects whether the voltage is higher or lower than a predetermined voltage, outputs a voltage detection signal to the second voltage detection switch circuit 13, and turns on and off. I do. Specifically, the AC voltage detection circuit 12 rectifies and smoothes the AC output voltage AC56V from the transformer 8 to convert it to a DC voltage, and then detects the voltage by a comparator similar to the DC voltage detection circuits 4a to 4c.
[0039]
For example, the AC output voltage AC56V from the transformer 8 becomes DC26.4V by performing rectification and smoothing to DC similarly to the rectified output by the charging circuit 9, so that two comparators, Vth1 = 25V and Vth2 = 42V, are set in the comparator. , A change in the AC output voltage AC37V output from the transformer 8 is substantially detected by the hysteresis characteristic.
[0040]
The second voltage detection switch circuit 13 is connected in series with the first voltage detection switch circuits 5a to 5c on the DC power supply monitoring circuit side, and is also connected to the battery by recovery of the power supply switching relays NV1 to NV3 according to the voltage detection signal of the AC voltage detection circuit 12. 3 can be switched to power supply.
[0041]
Further, an integration circuit 11 is provided on the DC power supply monitoring circuit side, and voltage detection signals from DC voltage detection circuits 4b and 4c provided in a power supply system for the area 1 and the area 2 serving as the outside 1 and the outside 2 for smoke prevention. To suppress the fluctuation due to the instantaneous interruption of the power supply voltage or the like, so that the first voltage detection switch circuits 5b and 5c do not malfunction.
[0042]
FIG. 3 is a time chart of the operation of the power supply circuit 1b, the DC voltage detection circuit 4b, and the integration circuit 11, which are the power supply system of the outside 1 in FIG.
[0043]
Assuming that the DC power supply voltage VDC from the power supply circuit 1b is momentarily interrupted as shown in FIG. 3A, the comparator of the DC voltage detection circuit 4b responds to the threshold values Vth1 and Vth2 as shown in FIG. A voltage detection signal which instantaneously falls to the L level and rises to the H level again is output.
[0044]
This voltage detection signal is input to the integration circuit 11, and since the integration circuit has a sufficient time constant for the instantaneous interruption time, the fluctuation of the voltage detection signal is suppressed, and the integration output as shown in FIG. You. Therefore, the first voltage detection switch circuit 5b does not turn off due to an instantaneous interruption of the power supply voltage, and can stably maintain the on state. The same applies to the instantaneous interruption in the DC power supply voltage of the external device 2 for supplying power for smoke emission control.
[0045]
The DC voltage detection circuit 4a for detecting the power supply voltage for supplying power to the inside of the disaster prevention monitoring control panel is relatively stable because power is not supplied to the outside, and there is no possibility of an instantaneous interruption. For this reason, the voltage is supplied directly to the first voltage detection switch circuit 5a without passing through the integration circuit 11, but may be passed through the integration circuit 11 if there is a possibility of a momentary interruption.
[0046]
As the first voltage detection switch circuits 5a to 5c, the second voltage detection switch circuit 13, and the test switch 7, appropriate switch circuits such as relays, transistors, and thyristors can be used.
[0047]
Further, in this embodiment, relatively large-capacity capacitors C1, C2, and C3 are connected to the output-side lines of the internal, external 1, and external 2 power supply systems. Even if the supply of the DC power supply from 1c is cut off, the DC power supply voltage gradually decreases due to the backup of the capacitors C1 to C3. The degree of the decrease in the DC power supply voltage becomes slower at a light load in which the supply current to each load is small.
[0048]
Next, the operation of the embodiment of FIG. 1 will be described. When a power switch provided on the disaster prevention monitoring control panel is turned on, an AC power supply voltage is input from the commercial AC power supply 2, and the power supply circuits 1a to 1c operate, and a predetermined DC power is supplied to the internal, external 1 and external 2 respectively. Supply power supply voltage.
[0049]
When the DC voltage detection circuits 4a to 4c exceed the higher threshold Vth2 of the comparator with respect to the output of the DC power supply voltage, the voltage detection signal is set to the H level, and the first voltage detection switch circuits 5a to 5c are turned on. At the same time, a predetermined AC output voltage is obtained from the transformer 8 by power supply from the commercial AC power supply 2, and charging of the battery 3 is started by rectification by the charging circuit 9.
[0050]
At this time, the AC voltage detection circuit 12 sets the voltage detection signal to the H level when the DC voltage corresponding to the AC output voltage of the transformer 8 exceeds the threshold value Vth2, and turns on the second voltage detection switch circuit 13.
[0051]
Here, since the test switch circuit 7 is in the ON state, the power supply switching relays NV1 to NV3 connected in parallel are operated collectively, and the switching relay contacts nv1 to nv3 are switched to the b side, and the power supply circuits 1a to 1c Are supplied to the internal, external 1 and external 2 systems.
[0052]
In such a normal power supply state, for example, when a power failure occurs in the commercial AC power supply 2, the output voltages of the power supply circuits 1a to 1c are cut off, but the capacitors C1 to C3 provided on the output side of the power supply line are turned off. , The input voltage to the DC voltage circuits 4a to 4c gradually decreases.
[0053]
On the other hand, the AC output voltage from the transformer 8 is cut off at the same time as the power failure, so that the voltage detection signal from the AC voltage detection circuit 12 falls from the H level to the L level immediately after the power failure, and the second voltage detection switch circuit 13 Turn off. For this reason, the power supply switching relays NV1 to NV3 connected in parallel are restored at the same time, and the switching relay contacts nv1 to nv3 are switched to the “a” side, thereby switching to the power supply from the battery 3.
[0054]
As described above, even if the power supply from the power supply circuits 1a to 1c to the battery 3 is switched, the power supply to the internal, external 1, and external 2 is momentarily interrupted, and the large-capacity capacitors C1, C2, and C3 are backed up. There is no effect on each load.
[0055]
FIG. 4 is a time chart of the output of the transformer output voltage VAC, the DC power supply voltage VDC, the DC voltage detection circuit 4b, and the output of the AC voltage detection circuit 12 when the commercial AC power supply fails.
[0056]
As shown in FIG. 4A, when the commercial AC power supply 2 experiences a power failure, the transformer output voltage VAC immediately drops to 0V. On the other hand, as shown in FIG. 4B, for example, the DC power supply voltage VDC of the power supply line from the power supply circuit 1b to the outside 1 is gradually reduced by the capacitor C2.
[0057]
At this time, according to the present invention, since the AC voltage detection circuit 12 for detecting the output voltage of the transformer 8 is provided, as shown in FIG. By falling to the L level and turning off the second voltage detection switch circuit 13, the power supply switching relays NV1 to NV3 are restored and the power supply from the battery is switched.
[0058]
On the other hand, in the DC voltage circuit 4b of the power supply line to which the capacitor C1 is connected, the DC power supply voltage delayed from the power failure at the time t1 as shown in FIG. At time t2 below Vth1, the voltage detection signal is set to L level, and the first voltage detection switch circuit 5b is turned off.
[0059]
For this reason, in contrast to the conventional switching to the standby power supply by monitoring the DC power supply voltage, the switching to the standby power supply by monitoring the AC power supply of the present invention allows the power failure to occur almost without delay such as from time t1 to t2. At the same time, it is possible to switch to the power supply from the battery 3.
[0060]
On the other hand, when the DC output voltage is reduced or cut off due to, for example, a failure of the power supply circuit 1b instead of the power failure of the commercial AC power supply 2, the DC power supply voltage is slowly reduced by the capacitor C2 as shown in FIG. Then, the voltage detection signal from the DC voltage circuit 1b falls to the L level at a certain delay from the time of the power failure due to the failure, and the power supply from the battery 3 is switched.
[0061]
Further, when a battery test instruction accompanying the operation of the battery test switch is issued from the CPU, the battery switching test circuit 6 turns off the test switch circuit 7 in the ON state, thereby recovering the power supply switching relays NV1 to NV3 collectively. Then, the internal, external 1 and external 2 systems are switched to the power supply from the battery 3 and a battery test is performed to determine whether the power supply from the battery 3 can be performed normally for a specified time.
[0062]
Further, in the embodiment of FIG. 1, a plurality of DC power supply voltage supply systems are provided. In this case, a light emitting element 10 of a photocoupler for notifying a CPU of a power supply switching state, a battery switching for a battery test The test circuit 6 and the test switch circuit 7 are provided as a single common circuit without being provided for each system, and therefore all the circuits are provided independently for each system as in the conventional device of FIG. As compared with the case, the circuit configuration when the number of power supply systems is increased can be simplified, and the cost can be reduced.
[0063]
In the above embodiment, the case where the supply system of the DC power supply voltage is three is taken as an example. However, a single system may be used or an appropriate number of plural systems may be used. . Thus, even if the supply system of the DC power supply voltage increases, the circuit configuration of each system is the same, and the number of series connection of the first voltage detection switch circuits and the number of parallel connection of the power supply switching relay increase according to the number of systems. .
[0064]
In addition, the present invention is not limited to the above embodiments, includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above embodiments.
[0065]
【The invention's effect】
As described above, according to the present invention, the AC output voltage from the battery charging transformer is constantly monitored, and when the AC output voltage becomes equal to or lower than the set voltage, the activated power supply switching relay is restored. In order to switch to the power supply from the battery, a large-capacity capacitor is connected to the output side of the DC power supply monitoring circuit. It is possible to immediately switch to the power supply from the battery in response to the voltage drop, and a highly reliable battery power backup can be realized.
[0066]
When a plurality of power supply systems of DC power supply are provided, a circuit for sending a state signal indicating a power supply switching state to a control CPU for the number of power supply systems, a power supply switching relay for a battery test or the like according to an instruction from the CPU. The battery switching test circuit that switches the power supply to the battery side can be shared by a single circuit, and when the number of power supply systems is increased, the circuit configuration is significantly changed compared to the conventional device that provided all circuits for each power supply system It is not necessary and can be easily handled.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing an embodiment of a power supply device of a disaster prevention monitoring control panel according to the present invention. FIG. 2 is an explanatory diagram of a hysteresis characteristic of a voltage detection circuit of FIG. 1. FIG. Explanatory diagram of voltage fluctuation characteristics at the time of power failure [Fig. 4] Time chart of power supply switching operation at power failure [Fig. 5] Circuit block diagram of conventional device [Explanation of reference numerals]
1a to 1c: power supply circuit (PS1 to PS3)
2: commercial AC power supply 3: batteries 4a to 4c: DC voltage detection circuits 5a to 5c: first voltage detection switch circuit 6: battery switching test circuit 7: test switch circuit 8: transformer 9: charging circuit 10, light emitting element (CPU (For sending)
11: integration circuit 12: AC voltage detection circuit 13: second voltage detection switch circuit

Claims (4)

商用交流電源からの交流入力電圧を所定の交流出力電圧に変換して充電回路に供給するトランスと、
前記充電回路の整流出力電圧により充電されるバッテリと、
商用交流電源からの交流入力電圧を所定の直流電源電圧に変換して負荷に供給する電源供給回路と、
前記電源供給回路の出力側に設けられ、前記電源供給回路による電源供給と前記バッテリによる電源供給を切り替える電源切替リレーと、
前記電源供給回路からの直流電源電圧を監視し、所定の設定電圧に対し高い場合に前記電源切替リレーを作動して前記電源供給回路からの電源供給に切り替え、所定の設定電圧に対し低い場合に前記電源切替リレーを復旧して前記バッテリからの電源供給に切り替える直流電源監視回路と、
を備えた防災監視制御盤の電源装置に於いて、
前記トランスからの交流出力電圧を監視し、所定の設定電圧に対し高い場合に前記電源切替リレーを作動可能として前記電源供給回路からの電源供給に切替えを可能とし、所定の設定電圧に対し低い場合に、前記電源切替リレーを復旧して前記バッテリからの電源供給に切り替える交流電源監視回路を設け
複数の電源供給系統を有する場合、前記電源供給回路及び電源切替リレーは複数の電源供給系統毎に設けられ、
前記直流電源監視回路は、
前記複数の電源供給回路毎に設けられ、前記電源供給回路からの直流電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた電圧検出信号を出力する複数の直流電圧検出回路と、
前記複数の直流電圧検出回路による検出信号の全てが所定の設定電圧に対し高い場合に、前記複数の電源切替リレーを一括して作動することにより前記各電源供給回路からの電源供給に切り替え、前記検出信号のいずれかが所定の設定電圧に対し低い場合に、前記複数の電源切替リレーを一括して復旧することにより前記バッテリからの電源供給に切り替える切替制御回路と、
を備えたことを特徴とする防災監視制御盤の電源装置。
A transformer that converts an AC input voltage from a commercial AC power supply into a predetermined AC output voltage and supplies the AC output voltage to a charging circuit;
A battery charged by the rectified output voltage of the charging circuit;
A power supply circuit that converts an AC input voltage from a commercial AC power supply into a predetermined DC power supply voltage and supplies the load to a load;
A power supply switching relay provided on the output side of the power supply circuit, for switching power supply by the power supply circuit and power supply by the battery,
The DC power supply voltage from the power supply circuit is monitored, and when the voltage is higher than a predetermined set voltage, the power supply switching relay is operated to switch to the power supply from the power supply circuit. DC power monitoring circuit for restoring the power switching relay and switching to power supply from the battery,
In the power supply unit of the disaster prevention monitoring control panel equipped with
The AC output voltage from the transformer is monitored, and when the voltage is higher than a predetermined set voltage, the power switching relay is enabled to enable switching to the power supply from the power supply circuit. An AC power supply monitoring circuit for restoring the power supply switching relay and switching to power supply from the battery is provided ,
When having a plurality of power supply systems, the power supply circuit and a power supply switching relay are provided for each of the plurality of power supply systems,
The DC power monitoring circuit,
A plurality of DC voltage detection circuits provided for each of the plurality of power supply circuits, and output a voltage detection signal according to a case where the DC power supply voltage from the power supply circuit is higher or lower than a predetermined set voltage,
When all of the detection signals from the plurality of DC voltage detection circuits are higher than a predetermined set voltage, the plurality of power supply switching relays are collectively operated to switch to power supply from each of the power supply circuits, When any of the detection signals is lower than a predetermined set voltage, a switching control circuit that switches to power supply from the battery by collectively restoring the plurality of power switching relays,
Disaster monitoring control panel of the power supply apparatus characterized by comprising a.
請求項1記載の防災監視制御盤の電源装置に於いて、
前記直流電源監視回路は、
前記複数の電源供給回路毎に設けられ、前記直流電源電圧が所定の設定電圧に対し高い場合の前記直流電圧検出回路からの電圧検出信号でオンし、所定の設定電圧に対し低い場合の電圧検出信号でオフする複数の第1電圧検出スイッチ回路と、
を備え、
前記交流電源監視回路は、
前記トランスからの交流出力電圧が所定の設定電圧に対し高い場合と低い場合に応じた交流電圧検出信号を出力する交流電圧検出回路と、
交流出力電圧が所定の設定電圧に対し高い場合の前記交流電圧検出回路からの電圧検出信号でオンし、所定の設定電圧に対し低い場合の電圧検出信号でオフする第2電圧検出スイッチ回路と、
を備え、
前記複数の第1電圧検出スイッチ回路と第2電圧検出スイッチ回路を前記電源切替リレーに直列接続し、いずれかのスイッチ回路のオフで前記電源切替リレーを復旧してバッテリからの電源供給に切り替えることを特徴とする防災監視制御盤の電源装置。
The power supply for a disaster prevention monitoring control panel according to claim 1,
The DC power monitoring circuit,
A voltage detection signal that is provided for each of the plurality of power supply circuits and is turned on by a voltage detection signal from the DC voltage detection circuit when the DC power supply voltage is higher than a predetermined set voltage; A plurality of first voltage detection switch circuits that are turned off by a signal;
With
The AC power supply monitoring circuit,
An AC voltage detection circuit that outputs an AC voltage detection signal according to a case where the AC output voltage from the transformer is higher or lower than a predetermined set voltage,
A second voltage detection switch circuit that is turned on by a voltage detection signal from the AC voltage detection circuit when the AC output voltage is higher than a predetermined set voltage, and is turned off by a voltage detection signal when the AC output voltage is lower than the predetermined set voltage;
With
The plurality of first voltage detection switch circuits and the second voltage detection switch circuits are connected in series to the power switching relay, and when any one of the switch circuits is turned off, the power switching relay is restored to switch to power supply from a battery. Power supply for disaster prevention monitoring and control panel.
請求項2記載の防災監視制御盤の電源装置に於いて、
前記切替制御回路は、
前記直流電源電圧が所定の設定電圧に対し高い場合の前記直流電圧検出回路からの電圧検出信号でオンし、低い場合の電圧検出信号でオフする複数の第1電圧検出スイッチ回路を直列接続した直列スイッチ回路と、
前記複数の電源切替リレーを並列接続したリレー駆動回路と、
前記リレー駆動回路に並列接続され電源切替状態を示す電源状態信号を送出するフォトカプラの発光素子と、
CPUからのバッテリ試験指示でオン,オフする試験スイッチ回路と、
を備え、
前記直列スイッチ回路、リレー駆動回路及び試験スイッチ回路を直列接続し、複数のスイッチ回路の少なくともいずれか1つのオフで、前記複数の電源切替リレーを一括して復旧することを特徴とする防災監視制御盤の電源回路。
The power supply device for a disaster prevention monitoring control panel according to claim 2 ,
The switching control circuit,
A series connection in which a plurality of first voltage detection switch circuits, which are turned on by a voltage detection signal from the DC voltage detection circuit when the DC power supply voltage is higher than a predetermined set voltage and turned off by a voltage detection signal when the DC power supply voltage is low, are connected in series. A switch circuit;
A relay drive circuit in which the plurality of power supply switching relays are connected in parallel;
A light-emitting element of a photocoupler that is connected in parallel to the relay drive circuit and sends out a power state signal indicating a power switching state,
A test switch circuit that is turned on and off by a battery test instruction from the CPU;
With
Disaster prevention monitoring control , wherein the series switch circuit, the relay drive circuit, and the test switch circuit are connected in series, and when at least one of the plurality of switch circuits is turned off, the plurality of power supply switching relays are collectively restored. Panel power circuit.
請求項1記載の防災監視制御盤の電源装置に於いて、前記複数の直流電圧検出回路はコンパレータを備え、該コンパレータは、電源電圧が第1閾値電圧を越えた時にスイッチオン用の前記電圧検出信号を出力し、その後、電源電圧が前記第1閾値電圧より低い第2閾値電圧を下回った時にスイッチオフ用の電圧検出信号を出力するヒステリシス特性をもつことを特徴とする防災監視制御盤の電源装置。 2. The power supply unit for a disaster prevention monitoring control panel according to claim 1 , wherein the plurality of DC voltage detection circuits include a comparator, and the comparator detects the voltage for switching on when the power supply voltage exceeds a first threshold voltage. A signal for outputting a signal and then outputting a switch-off voltage detection signal when the power supply voltage falls below a second threshold voltage lower than the first threshold voltage. apparatus.
JP08555799A 1999-03-29 1999-03-29 Power supply for disaster prevention control panel Expired - Fee Related JP3571571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08555799A JP3571571B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08555799A JP3571571B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Publications (2)

Publication Number Publication Date
JP2000287384A JP2000287384A (en) 2000-10-13
JP3571571B2 true JP3571571B2 (en) 2004-09-29

Family

ID=13862131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08555799A Expired - Fee Related JP3571571B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Country Status (1)

Country Link
JP (1) JP3571571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257964A (en) * 2015-06-16 2016-12-28 赵依军 LED power and the LED light device comprising it

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305201C (en) * 2003-07-03 2007-03-14 太原铁路水电工程勘察设计公司 Passive capacity on line direct current power supply screen
JP2008148495A (en) * 2006-12-12 2008-06-26 Nec Fielding Ltd System, method and program for power failure, and uninterruptible power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257964A (en) * 2015-06-16 2016-12-28 赵依军 LED power and the LED light device comprising it
CN106257964B (en) * 2015-06-16 2020-03-06 赵依军 LED power supply and LED lighting device comprising same

Also Published As

Publication number Publication date
JP2000287384A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
JP3850350B2 (en) System and method for supplying power to an electrical device
JP2000116029A (en) Backup power supply device
JP7126243B2 (en) power supply system
JP6288722B2 (en) Battery system
CN111342545A (en) Standby power supply circuit and power supply device
JP5088049B2 (en) Power system
JP3571571B2 (en) Power supply for disaster prevention control panel
CN211790932U (en) Standby power supply circuit and power supply device
KR100644335B1 (en) A uninterruptible power supply of the mode of the dual
JP2004013257A (en) Fire alarm
JP2010148297A (en) Uninterruptible power supply system
JP6505258B2 (en) Power conditioner
JPH07170678A (en) Ac uninterruptible power-supply apparatus
JP3559860B2 (en) Power supply for disaster prevention control panel
JP4095268B2 (en) Common standby uninterruptible power supply system
KR101821091B1 (en) Automatic load transfer switch system and automatic load transfer switching method using the same
KR200366913Y1 (en) A uninterruptible power supply of the mode of the dual
JP3926634B2 (en) Power failure detection device
RU2215355C1 (en) No-break power installation for railway automatic-control systems
JP2020141511A (en) Power supply system
KR101707726B1 (en) System and Method for GRID-SEPARATING of Plurality of Energy Storage Syetem
JPH0117335B2 (en)
JP2500592B2 (en) Uninterruptible power system
JP2018085793A (en) Power supply system and power supply unit
JPH05866Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees