JP3558204B2 - Wastewater biological treatment equipment - Google Patents

Wastewater biological treatment equipment Download PDF

Info

Publication number
JP3558204B2
JP3558204B2 JP19566998A JP19566998A JP3558204B2 JP 3558204 B2 JP3558204 B2 JP 3558204B2 JP 19566998 A JP19566998 A JP 19566998A JP 19566998 A JP19566998 A JP 19566998A JP 3558204 B2 JP3558204 B2 JP 3558204B2
Authority
JP
Japan
Prior art keywords
sludge
tank
activated sludge
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19566998A
Other languages
Japanese (ja)
Other versions
JP2000024698A (en
Inventor
立夫 角野
信子 橋本
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP19566998A priority Critical patent/JP3558204B2/en
Publication of JP2000024698A publication Critical patent/JP2000024698A/en
Application granted granted Critical
Publication of JP3558204B2 publication Critical patent/JP3558204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃水の生物学的処理方法及び装置に係り、特に生物学的処理で生成される汚泥を返送して循環使用する廃水の生物学的処理方法及び装置に関する。
【0002】
【従来の技術】
従来、有機性廃水又は無機性廃水を活性汚泥で生物学的に処理する廃水の生物学的処理装置としては、生物反応槽において活性汚泥により廃水を処理した後、固液分離槽において処理水に同伴する活性汚泥を沈降分離する。そして、分離した活性汚泥の一部を再び生物反応槽へ返送すると共に、余剰汚泥を引抜配管から引き抜いていた。
【0003】
しかし、引き抜いた余剰汚泥の処理には、脱水機、乾燥機等の処理設備を必要とし、処理費用もかかることから、余剰汚泥の発生量をできるだけ減少させる試みがなされてきた。
余剰汚泥の発生量を減少させる方法としては、特開平9─206781号公報に見られるように、オゾン処理法がある。このオゾン処理法は、余剰汚泥にオゾンを接触させることにより、オゾンの強力な酸化力により活性汚泥中に含有する微生物の細胞壁を破壊して細胞内体液を溶出させるものである。これにより、活性汚泥をBOD成分と同じに扱うことができるので、オゾン処理した余剰汚泥をBOD成分として生物反応槽へ返送する。
【0004】
【発明が解決しようとする課題】
しかしながら、オゾン処理法で余剰汚泥を処理すると、排ガス中に含まれる残存オゾンの処理が必要となるという問題がある。また、排ガス中には、オゾンばかりでなく、処理時に生成される亜酸化窒素や一酸化窒素等の窒素酸化物が含まれるため、これらのガスの処理も必要になる。従って、オゾン処理の設備以外にも排ガス処理の設備が必要になるので、排ガス処理のコストが大きくなるという欠点がある。特に、亜酸化窒素は、地球温暖化ガスであり、十分除去する必要がある。
【0005】
本発明は、このような事情に鑑みてなされたもので、オゾン処理法のように排ガス処理が必要なく、余剰汚泥を簡単にBOD成分として使用できる状態に処理することができるので、コスト増を殆ど伴うことなく余剰汚泥の発生を減少さらには無くすことができる廃水の生物学的処理方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は前記目的を達成するために、活性汚泥により廃水を生物学的に処理する生物反応槽と、前記生物反応槽で処理された処理水から前記活性汚泥を固液分離する固液分離槽と、前記生物反応槽と前記固液分離槽とをつなぐ返送汚泥経路とを備えた廃水の生物学的処理装置において、前記固液分離した活性汚泥の全量を前記返送汚泥経路を介して前記生物反応槽に返送すると共に該返送汚泥経路に高速攪拌機又は超音波処理装置を設け、前記全量返送する活性汚泥中に含有する微生物が所定の死滅率で死滅するように、前記高速攪拌機の攪拌速度や攪拌時間、又は前記超音波処理装置の超音波の強さや処理時間をコントロールすることを特徴とする
【0007】
本発明によれば、生物学的処理で発生する余剰汚泥を高速攪拌処理、超音波処理等の物理的手段でホモジナイズ処理してから生物学的に処理するようにしたので、余剰汚泥を簡単にBOD成分として使用できる状態に処理することができる。これにより、余剰汚泥の発生を減少さらには無くすことができる。
また、本発明のホモジナイズ処理は物理的な方法なので、従来のオゾン処理のように排ガス処理を行う必要もない。
【0008】
【発明の実施の形態】
以下添付図面に従って本発明に係る廃水の生物学的処理方法及び装置の好ましい実施の形態について詳説する。
図1は、本発明に係る廃水の生物学的処理装置の第1の実施の形態を説明する断面図で、活性汚泥循環変法に適用した例である。
【0009】
図1に示すように、本発明の生物学的処理装置10は、主として、廃水の原水配管12と、生物反応槽14と、固液分離槽16と、返送汚泥経路18と、ホモジナイズ装置21とで構成される。尚、ポンプ等の送り手段は図から省略してある。
原水配管12は、有機性廃水や無機性廃水を生物反応槽14の後記する脱窒槽20に供給する。
【0010】
生物反応槽14は、内部に活性汚泥が存在すると共に、前段側に設けられた脱窒槽20、後段側に設けられた硝化槽22の2つの槽から構成される。生物反応槽14内の活性汚泥は、活性汚泥が浮遊状態で存在する浮遊型、プラスチックやセラミックに活性汚泥を付着した付着型、活性汚泥をゲル内部に包括固定化した固定型があるが、生物反応槽内での廃水の生物学的処理により活性汚泥が生成されて増殖し、これにより余剰汚泥が発生するものであればよい。
【0011】
脱窒槽20では嫌気性状態下において活性汚泥中の脱窒菌により廃水中のBOD成分の分解と脱窒処理が行われる。一方、硝化槽22では好気性状態下において活性汚泥中の硝化菌により廃水中のアンモニア態窒素が硝化処理されて硝酸になる。そして、硝化槽22で硝化処理された硝化液が化液循環路24を介して脱窒槽20に循環されることにより廃水中の窒素成分は窒素ガスとして大気に放出されて除去される。この循環される液の一部が処理水として引き抜かれ固液分離槽16に送られる。
【0012】
固液分離槽16では、処理水に同伴される活性汚泥を重力により槽低に沈降させることにより処理水から活性汚泥を分離する。処理水から活性汚泥を分離する手段としては、他に、傾斜板を利用したラメラセパレータ、或いは加圧浮上等を用いてもよい。
返送汚泥経路18は、固液分離槽16の低部と生物反応槽14の脱窒槽20入口側とを繋ぐ経路として形成される。
【0013】
ホモジナイズ装置21は、返送汚泥経路18の途中に設けられ、物理的手段で活性汚泥をホモジナイズ処理し、活性汚泥中の微生物を分散させ細胞壁を傷つけるか破壊して細胞内体液を溶出させることにより、微生物を溶融状態で死滅させることができる機器で構成される。物理的手段で活性汚泥をホモジナイズ処理する機器としては、高速攪拌機、超音波処理機等を使用することができる。この場合、高速攪拌機等を単独で用いてもよく、あるいは上記各機器を組み合わせて用いてもよい。
【0014】
次に、上記の如く構成された廃水の生物学的処理装置10の作用について説明する。
原水配管12から生物反応槽14に供給された廃水の原水は、脱窒槽20と硝化槽22とでの硝化・脱窒処理されて廃水中のアンモニア成分やBOD成分等が除去され、除去された処理水は固液分離槽16に送られる。固液分離槽16では、処理水に同伴された活性汚泥を沈降させ、沈降した活性汚泥は汚泥返送経路18を介して脱窒槽20に返送される。この廃水の生物学的処理において、生物反応槽14では活性汚泥が生成して増殖し、増殖しすぎると処理に悪影響を及ぼすことから、固液分離槽16で沈降した活性汚泥の全量を生物反応槽14へ返送することができず、余剰汚泥が発生する。
【0015】
そこで、本発明では、固液分離槽16から生物反応槽14へ活性汚泥を返送する返送汚泥経路18に物理的手段で活性汚泥をホモジナイズ処理することのできるホモジナイズ装置を設け、活性汚泥をホモジナイズ処理して所定の死滅率で活性汚泥中の微生物を死滅させた後、生物反応槽14へ返送するようにした。これにより、死滅した活性汚泥を脱窒槽20における脱窒菌の栄養源であるBOD成分として利用するようにした。
【0016】
固液分離槽16で分離された活性汚泥をどの程度の死滅率で死滅させるかは、活性汚泥を固液分離槽16から生物反応槽14へ戻す汚泥返送率、換言すると、余剰汚泥の発生量により決定される。この余剰汚泥に相当する活性汚泥中の微生物を死滅させ、BOD成分とする。微生物の死滅率のコントロールは、ホモジナイズ機器の処理条件を変えることにより行うことができ、例えば高速攪拌機の場合は、その攪拌速度や攪拌時間により、また、超音波処理の場合は、超音波の強さや処理時間により所定の死滅率で微生物を死滅させることができる。
【0017】
活性汚泥中の微生物の死滅率は、理論的には以下の式(1)で表すことができる。
dX/dt=μX−DX…(1)
但し、dX/dt:活性汚泥の生成速度(mg/L/時間)
μ:微生物の比増殖速度(L/時間)
X:汚泥(微生物)濃度(mg/L)
D:ホモジナイズによる微生物の比死滅速度(L/時間)
上記式(1)でμX=DX、即ち、μ=Dになるとき、余剰汚泥は発生しないことになる。理論的には、この条件で微生物を死滅させていけばよい訳である。しかしながら、廃水処理に使用する微生物の比増殖速度μは、環境条件により変動し、極めて多様な値をとることから、余剰汚泥の発生量も変動する。そこで、都市下水、農村集落排水、食品工場廃水、化学工場廃水、半導体廃水、畜産廃水、鉱山廃水等のデータを蓄積して余剰汚泥を発生させないための微生物の死滅率を調査した。
【0018】
表1は、余剰汚泥を発生させないためのBOD容積負荷と微生物の死滅率との関係を示したものである。
【0019】
【表1】

Figure 0003558204
表1における微生物の死滅率は、ホモジナイズ処理する前の活性汚泥とホモジナイズ処理した後の活性汚泥を普通寒天培地で計測した菌数を基に以下の式(2)から計算したものである。
【0020】
R=(X−X)/X…(2)
但し、R:微生物の死滅率
:ホモジナイズ処理前の菌数
:ホモジナイズ処理後の菌数
表1から分かるように、BOD容積負荷によって、余剰汚泥を発生させないための微生物の死滅率が異なり、BOD容積負荷が0.1〜0.5(kg−BOD/m/日)の場合は微生物の死滅率は10〜20%、BOD容積負荷が0.5〜1.0(kg−BOD/m/日)の場合は微生物の死滅率は20〜40%、BOD容積負荷が1.0(kg−BOD/m/日)以上の場合は微生物の死滅率は70〜90%が必要である。
【0021】
従って、廃水のBOD容積負荷に応じてホモジナイズ処理を行う高速攪拌機や超音波処理機等の処理条件を変えて微生物の死滅率をコントロールする必要がある。この場合、高速攪拌機の攪拌速度は、5000〜15000rpmがよい。この理由は、5000rpm以下にするとホモジナイズ処理に時間がかかりすぎ、15000rpm以上にすると微生物の死滅率をコントロールするのが難しくなるためである。また、超音波処理の場合、超音波の強さは100〜500(w/L/分) が良い。この理由は、100(w/L/分) 以下にするとホモジナイズ処理に時間がかかりすぎ、500(w/L/分) 以上にすると微生物の死滅率をコントロールするのが難しくなるためである。
【0022】
表2は、ウレタンプレホリマや食品加工の乳化処理に使用されている高速攪拌機を用いて攪拌速度を5000rpm、10000rpm及び15000rpmで行った場合の攪拌時間と微生物の死滅率との関係を示したものである。
【0023】
【表2】
Figure 0003558204
表2から分かるように、高速攪拌機の攪拌速度が大きくなるに従って、また攪拌時間が長くなるに従って、微生物の死滅率が増加するので、攪拌速度と攪拌時間とを制御することにより微生物の死滅時間をコントロールすることができる。この場合,前述したように、高速攪拌機の攪拌速度は、5000〜15000rpmの範囲にすることが好ましい。
【0024】
表3は、超音波処理機を用いて超音波の強さを150(w/L/分) と300(w/L/分) で行った場合の処理時間と微生物の死滅率との関係を示したものである。
【0025】
【表3】
Figure 0003558204
表3から分かるように、超音波処理の超音波の強さが大きくなるに従って、また処理時間が長くなるに従って、微生物の死滅率が増加するので、超音波の強さと処理時間とを制御することにより微生物の死滅時間をコントロールすることができる。この場合,前述したように、超音波の強さは100〜500(w/L/分) 範囲にすることが好ましい。
【0026】
図2は、本発明に係る廃水の生物学的処理装置の第2の実施の形態を説明する断面図である。尚、第1の実施の形態と同様の装置、部材は同符号を付して説明する。
第2の実施の形態の生物学的処理装置30は、生物反応槽31を、第1の脱窒槽20、硝化槽22、第2の脱窒槽32、再曝気槽34で構成し、返送汚泥経路18の途中から第2の脱窒槽32への分岐経路36を配設してこの分岐経路36にホモジナイズ装置21を設置すると共に、返送汚泥経路18の返送汚泥の一部を分配器38で分岐経路36に分配するようにしたものである。この構成においては、第1の脱窒槽20と硝化槽22が第1の実施の形態での生物反応槽に相当する。
【0027】
本発明の第2の実施の形態によれば、第1の脱窒槽20と硝化槽22により硝化・脱窒処理された処理水は、第2の脱窒槽32において処理水中に残存する亜硝酸、硝酸等の硝酸態窒素が脱窒処理されて窒素ガスに変えられて処理水が更に浄化される。一方、固液分離装置16で沈降された返送汚泥は、返送汚泥経路18から脱窒槽20に戻る途中で分配器38により分配され、一部の返送汚泥が分岐経路36に送られる。分岐経路36に送られた返送汚泥は、ホモジナイズ装置21によりホモジナイズ処理されてから第2の脱窒槽32に送られ、BOD成分として利用される。ホモジナイズ装置21としては、第1の実施の形態と同様に高速攪拌機、超音波処理機を用いることができる。
【0028】
これにより、第2の脱窒槽32での脱窒菌の栄養源であるBOD成分を確保することができるので、メタノール等の栄養源を特別に添加する必要がない。従って、余剰汚泥を有効利用することができる。また、第2の脱窒槽32に送られて脱窒処理に供されなかった残存BOD成分は、再曝気槽34において除去される。従って、本発明の第2の実施の形態は、第1の実施の形態よりも、処理水の規制値が厳しい場合に対応させることができる。
【0029】
また、第2の実施の形態では、分岐経路に分配された活性汚泥の微生物を全て死滅させてBOD成分としてもよいので、第1の実施の形態のように、微生物の死滅率をコントロールする必要がない。従って、高速攪拌機の場合は、攪拌速度を15000rpm以上で行うことができるので、高速攪拌機の制御が容易になると共に、攪拌時間を短縮できる。また、超音波処理の場合は、超音波の強さを500(w/L/分) 以上で行うことができるので、超音波処理の制御が容易になると共に、処理時間を短縮できる。
【0030】
尚、物理的手段で活性汚泥をホモジナイズ処理する機器としては、高速攪拌機、超音波処理機の他に、圧力型ホモジナイザー、コロイドミルを使用することができる。
【0031】
【実施例】
図1に示す廃水の生物学的処理装置を用いて実施した実施例を以下に説明する。ホモジナイズ装置としては高速攪拌機を用い、10000rpmで15分間攪拌した。
また、比較例として、図1の返送汚泥経路にホモジナイズ装置を設置しない従来の生物学的処理装置を用いて行った。
【0032】
実施例、比較例ともにBOD成分濃度180(mg/L)の有機性廃水を用い、BOD容積負荷が0.8(kg−BOD/m/日)になるようにした。この有機性廃水を、活性汚泥循環変法により硝化・脱窒処理を行い、固液分離槽から生物反応槽に返送する返送汚泥の返送率が50%となるようにして半年以上連続運転を行った。
【0033】
その結果、実施例では、固液分離槽で沈降した返送汚泥を装置外に引き抜かなかったが、生物反応槽内の浮遊活性汚泥濃度MLSSは、1800〜2300(mg/L)の間で推移し、余剰汚泥を発生させる必要がなかった。
また、処理水のBOD成分濃度も4〜10(mg/L)の間で良好に推移した。
これに対し、比較例では、処理水のBOD成分濃度を実施例と同様の4〜10(mg/L)の間に収めるためには、固液分離槽で沈降した返送汚泥を余剰汚泥として35〜45%の割合で装置外に引き抜く必要があった。この時の生物反応槽での浮遊活性汚泥濃度MLSSは、約2000(mg/L)であった。
【0034】
【発明の効果】
以上説明したように、本発明の廃水の生物学的処理装置によれば、余剰汚泥を簡単にBOD成分として使用できる状態に処理することができるので、余剰汚泥の発生を減少さらには無くすことできる。
また、本発明における高速攪拌機又は超音波処理装置は物理的手段により行うので、従来のオゾン処理のように排ガス処理を行う装置も必要もない。
【0035】
従って、従来のオゾン処理に比べて装置コストやランニングコストを大幅に削減することができる。
【図面の簡単な説明】
【図1】本発明に係る廃水の生物学的処理装置の第1の実施の形態を説明する断面図
【図2】本発明に係る廃水の生物学的処理装置の第2の実施の形態を説明する断面図
【符号の説明】
10、30…生物学的処理装置
12…原水配管
14、31…生物反応槽
16…固液分離槽
18…返送汚泥経路
20…脱窒槽(第1の脱窒槽)
22…硝化槽
24…硝化液循環路
32…第2の脱窒槽
34…再曝気槽
36…分岐経路
38…分配器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for biological treatment of wastewater, and more particularly to a method and apparatus for biological treatment of wastewater in which sludge generated in biological treatment is returned and recycled.
[0002]
[Prior art]
Conventionally, as a biological treatment apparatus for wastewater that biologically treats organic wastewater or inorganic wastewater with activated sludge, after treating wastewater with activated sludge in a biological reaction tank, the wastewater is converted into treated water in a solid-liquid separation tank. The accompanying activated sludge is settled and separated. Then, a part of the separated activated sludge was returned to the biological reaction tank again, and excess sludge was drawn out from the drawing pipe.
[0003]
However, the treatment of the extracted excess sludge requires processing equipment such as a dehydrator and a dryer, and the treatment costs are high. Therefore, attempts have been made to reduce the amount of excess sludge generated as much as possible.
As a method for reducing the generation amount of excess sludge, there is an ozone treatment method as disclosed in Japanese Patent Application Laid-Open No. 9-206781. In this ozone treatment method, by contacting surplus sludge with ozone, the strong oxidizing power of ozone destroys the cell wall of microorganisms contained in activated sludge and elutes intracellular body fluid. As a result, the activated sludge can be treated in the same manner as the BOD component, and the excess sludge treated with ozone is returned to the biological reaction tank as the BOD component.
[0004]
[Problems to be solved by the invention]
However, when excess sludge is treated by the ozone treatment method, there is a problem that treatment of residual ozone contained in exhaust gas is required. In addition, since the exhaust gas contains not only ozone but also nitrogen oxides such as nitrous oxide and nitric oxide generated during the treatment, it is necessary to treat these gases. Accordingly, exhaust gas treatment equipment is required in addition to the ozone treatment equipment, so that the cost of exhaust gas treatment is increased. In particular, nitrous oxide is a global warming gas and needs to be sufficiently removed.
[0005]
The present invention has been made in view of such circumstances, and does not require exhaust gas treatment unlike the ozone treatment method, and can process excess sludge in a state where it can be easily used as a BOD component. An object of the present invention is to provide a biological treatment method and apparatus for wastewater, which can reduce or even eliminate the generation of excess sludge with little involvement.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a biological reaction tank for biologically treating wastewater with activated sludge, and a solid-liquid separation tank for solid-liquid separation of the activated sludge from the treated water treated in the biological reaction tank. A wastewater biological treatment device having a return sludge path connecting the biological reaction tank and the solid-liquid separation tank, wherein the entire amount of the solid-liquid separated activated sludge is transferred to the biological sludge via the return sludge path. A high-speed stirrer or an ultrasonic treatment device is provided in the return sludge path while returning to the reaction tank, and the stirring speed of the high-speed stirrer is adjusted so that the microorganisms contained in the activated sludge to be returned in its entirety die at a predetermined mortality rate. It is characterized in that the stirring time, the intensity of the ultrasonic wave of the ultrasonic processing apparatus and the processing time are controlled .
[0007]
According to the present invention, the excess sludge generated in the biological treatment is subjected to homogenization treatment by physical means such as high-speed stirring treatment and ultrasonic treatment and then biological treatment, so that the excess sludge can be easily processed. It can be processed so that it can be used as a BOD component. Thereby, the generation of excess sludge can be reduced or even eliminated.
Further, since the homogenization treatment of the present invention is a physical method, it is not necessary to perform an exhaust gas treatment unlike the conventional ozone treatment.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a biological treatment method and apparatus for wastewater according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view illustrating a biological treatment apparatus for wastewater according to a first embodiment of the present invention, which is an example applied to a modified activated sludge circulation method.
[0009]
As shown in FIG. 1, the biological treatment device 10 of the present invention mainly includes a raw water pipe 12 for wastewater, a biological reaction tank 14, a solid-liquid separation tank 16, a return sludge route 18, a homogenizing device 21. It consists of. In addition, the feeding means such as a pump is omitted from the drawing.
The raw water pipe 12 supplies organic wastewater and inorganic wastewater to a denitrification tank 20 described later in the biological reaction tank 14.
[0010]
The biological reaction tank 14 has activated sludge therein, and is composed of two tanks: a denitrification tank 20 provided on the front side and a nitrification tank 22 provided on the rear side. The activated sludge in the biological reaction tank 14 includes a floating type in which activated sludge exists in a floating state, an attached type in which activated sludge is adhered to plastic or ceramic, and a fixed type in which activated sludge is entrapped and fixed inside a gel. Activated sludge is generated and multiplied by the biological treatment of wastewater in the reaction tank, so long as it generates excess sludge.
[0011]
In the denitrification tank 20, BOD components in wastewater are decomposed and denitrified by denitrifying bacteria in activated sludge under anaerobic conditions. On the other hand, in the nitrification tank 22, the ammonium nitrogen in the wastewater is nitrified by nitrifying bacteria in the activated sludge into a nitric acid under an aerobic condition. The nitrogen component in the waste water are removed is released into the atmosphere as nitrogen gas by nitrification liquid that has been nitrified in the nitrification tank 22 is circulated to the denitrification tank 20 through the nitrifying liquid circulation path 24. A part of the circulated liquid is withdrawn as treatment water and sent to the solid-liquid separation tank 16.
[0012]
In the solid-liquid separation tank 16, activated sludge entrained in the treated water is settled to a low level by gravity to separate the activated sludge from the treated water. As a means for separating the activated sludge from the treated water, a lamella separator using an inclined plate, a pressurized flotation, or the like may be used.
The return sludge path 18 is formed as a path connecting the lower part of the solid-liquid separation tank 16 and the inlet side of the denitrification tank 20 of the biological reaction tank 14.
[0013]
The homogenizing device 21 is provided in the middle of the return sludge route 18, homogenizes the activated sludge by physical means, disperses the microorganisms in the activated sludge, damages or destroys the cell wall, and elutes intracellular body fluids. It is composed of equipment that can kill microorganisms in a molten state. As a device for homogenizing activated sludge by physical means, a high-speed stirrer, an ultrasonic processor or the like can be used. In this case, a high-speed stirrer or the like may be used alone, or the above devices may be used in combination.
[0014]
Next, the operation of the wastewater biological treatment apparatus 10 configured as described above will be described.
The raw water of the wastewater supplied from the raw water pipe 12 to the biological reaction tank 14 is subjected to nitrification and denitrification treatment in the denitrification tank 20 and the nitrification tank 22 to remove ammonia components, BOD components, and the like in the wastewater. The treated water is sent to the solid-liquid separation tank 16. In the solid-liquid separation tank 16, activated sludge entrained in the treated water is settled, and the settled activated sludge is returned to the denitrification tank 20 via the sludge return path 18. In the biological treatment of this wastewater, activated sludge is generated and proliferates in the biological reaction tank 14, and excessively proliferating adversely affects the treatment. Therefore, the entire amount of the activated sludge settled in the solid-liquid separation tank 16 is subjected to the biological reaction. It cannot be returned to the tank 14, and excess sludge is generated.
[0015]
Therefore, in the present invention, a homogenizing device capable of homogenizing activated sludge by physical means is provided in a return sludge path 18 for returning activated sludge from the solid-liquid separation tank 16 to the biological reaction tank 14, and the activated sludge is homogenized. After the microorganisms in the activated sludge are killed at a predetermined kill rate, the sludge is returned to the biological reaction tank 14. Thereby, the dead activated sludge was used as a BOD component which is a nutrient source of the denitrifying bacteria in the denitrification tank 20.
[0016]
The kill rate of the activated sludge separated in the solid-liquid separation tank 16 is determined by the sludge return rate of returning the activated sludge from the solid-liquid separation tank 16 to the biological reaction tank 14, in other words, the amount of excess sludge generated. Is determined by Microorganisms in the activated sludge corresponding to the surplus sludge are killed and used as BOD components. The killing rate of the microorganisms can be controlled by changing the processing conditions of the homogenizing equipment.For example, in the case of a high-speed stirrer, the stirring speed and the stirring time are used. Microorganisms can be killed at a predetermined kill rate depending on the pod processing time.
[0017]
The kill rate of microorganisms in activated sludge can be theoretically represented by the following equation (1).
dX / dt = μX−DX (1)
However, dX / dt: activated sludge generation rate (mg / L / hour)
μ: Specific growth rate of microorganism (L / hour)
X: Sludge (microorganism) concentration (mg / L)
D: Specific killing rate of microorganisms by homogenization (L / hour)
When μX = DX, that is, μ = D in the above equation (1), no excess sludge is generated. Theoretically, it suffices to kill the microorganisms under these conditions. However, the specific growth rate μ of microorganisms used for wastewater treatment varies depending on environmental conditions, and takes an extremely various value, so that the amount of generated excess sludge also varies. Therefore, data on urban sewage, rural settlement drainage, food factory wastewater, chemical factory wastewater, semiconductor wastewater, livestock wastewater, mine wastewater, etc. were accumulated to investigate the mortality of microorganisms to prevent the generation of excess sludge.
[0018]
Table 1 shows the relationship between the BOD volume load for preventing the generation of excess sludge and the mortality of microorganisms.
[0019]
[Table 1]
Figure 0003558204
The mortality of the microorganisms in Table 1 is calculated from the following equation (2) based on the number of bacteria of the activated sludge before the homogenization treatment and the activated sludge after the homogenization treatment, which were measured on an ordinary agar medium.
[0020]
R = (X 0 −X 1 ) / X 0 (2)
However, R: kill rate of microorganisms X 0 : number of bacteria before homogenization treatment X 1 : number of bacteria after homogenization treatment As can be seen from Table 1, the death rate of microorganisms to prevent the generation of excess sludge due to BOD volume load. Unlike, 10-20% is mortality of microorganisms in the case of BOD volume load 0.1~0.5 (kg-BOD / m 3 / day), BOD volume load 0.5 to 1.0 (kg- In the case of (BOD / m 3 / day), the kill rate of the microorganism is 20 to 40%, and when the BOD volume load is 1.0 (kg-BOD / m 3 / day) or more, the kill rate of the microorganism is 70 to 90%. is necessary.
[0021]
Therefore, it is necessary to control the mortality of microorganisms by changing the processing conditions of a high-speed stirrer, an ultrasonic processor or the like for performing a homogenization treatment according to the BOD volume load of the wastewater. In this case, the stirring speed of the high-speed stirrer is preferably 5000 to 15000 rpm. The reason for this is that if it is 5000 rpm or less, it takes too much time for the homogenization treatment, and if it is 15000 rpm or more, it becomes difficult to control the mortality of microorganisms. In the case of ultrasonic treatment, the intensity of ultrasonic waves is preferably 100 to 500 (w / L / min). The reason is that if it is less than 100 (w / L / min), it takes too much time for the homogenization treatment, and if it is more than 500 (w / L / min), it becomes difficult to control the mortality of the microorganism.
[0022]
Table 2 shows the relationship between the stirring time and the mortality of microorganisms when the stirring speed was set to 5,000 rpm, 10,000 rpm, and 15,000 rpm using a high-speed stirrer used for emulsification treatment of urethane prepolymer and food processing. Things.
[0023]
[Table 2]
Figure 0003558204
As can be seen from Table 2, as the stirring speed of the high-speed stirrer increases and as the stirring time increases, the killing rate of the microorganisms increases. Therefore, the killing time of the microorganisms is controlled by controlling the stirring speed and the stirring time. You can control. In this case, as described above, the stirring speed of the high-speed stirrer is preferably in the range of 5000 to 15000 rpm.
[0024]
Table 3 shows the relationship between the treatment time and the death rate of microorganisms when the ultrasonic intensity was set to 150 (w / L / min) and 300 (w / L / min) using an ultrasonic processor. It is shown.
[0025]
[Table 3]
Figure 0003558204
As can be seen from Table 3, as the intensity of the ultrasonic wave in the ultrasonic treatment increases and as the treatment time increases, the mortality of microorganisms increases. Therefore, it is necessary to control the ultrasonic intensity and the treatment time. Can control the death time of the microorganism. In this case, as described above, it is preferable that the intensity of the ultrasonic wave be in the range of 100 to 500 (w / L / min).
[0026]
FIG. 2 is a cross-sectional view illustrating a wastewater biological treatment apparatus according to a second embodiment of the present invention. Note that the same devices and members as in the first embodiment will be described with the same reference numerals.
In the biological treatment apparatus 30 according to the second embodiment, the biological reaction tank 31 includes a first denitrification tank 20, a nitrification tank 22, a second denitrification tank 32, and a re-aeration tank 34, and the sludge return path. A branch route 36 to the second denitrification tank 32 is provided in the middle of the route 18, the homogenizing device 21 is installed in the branch route 36, and a part of the return sludge of the return sludge route 18 is branched by the distributor 38. 36. In this configuration, the first denitrification tank 20 and the nitrification tank 22 correspond to the biological reaction tank in the first embodiment.
[0027]
According to the second embodiment of the present invention, the treated water subjected to the nitrification and denitrification treatment in the first denitrification tank 20 and the nitrification tank 22 is treated with nitrite remaining in the treated water in the second denitrification tank 32, Nitrate nitrogen such as nitric acid is denitrified and converted into nitrogen gas to further purify the treated water. On the other hand, the returned sludge settled by the solid-liquid separation device 16 is distributed by the distributor 38 while returning to the denitrification tank 20 from the returned sludge path 18, and a part of the returned sludge is sent to the branch path 36. The returned sludge sent to the branch route 36 is homogenized by the homogenizing device 21 and then sent to the second denitrification tank 32 to be used as a BOD component. As the homogenizing device 21, a high-speed stirrer or an ultrasonic processor can be used as in the first embodiment.
[0028]
Thereby, the BOD component which is a nutrient source of the denitrifying bacteria in the second denitrification tank 32 can be ensured, so that it is not necessary to add a nutrient source such as methanol. Therefore, the excess sludge can be used effectively. Further, the remaining BOD component that has been sent to the second denitrification tank 32 and has not been subjected to the denitrification treatment is removed in the re-aeration tank 34. Therefore, the second embodiment of the present invention can cope with a case where the regulation value of the treated water is stricter than that of the first embodiment.
[0029]
In the second embodiment, all the microorganisms in the activated sludge distributed to the branch path may be killed and used as the BOD component. Therefore, it is necessary to control the kill rate of the microorganisms as in the first embodiment. There is no. Therefore, in the case of a high-speed stirrer, the stirring speed can be set to 15,000 rpm or more, so that the control of the high-speed stirrer becomes easy and the stirring time can be shortened. In the case of ultrasonic processing, since the intensity of ultrasonic waves can be set to 500 (w / L / min) or more, the control of ultrasonic processing is facilitated and the processing time can be shortened.
[0030]
In addition, as a device for homogenizing activated sludge by physical means, a pressure type homogenizer and a colloid mill can be used in addition to a high-speed stirrer and an ultrasonic processor.
[0031]
【Example】
An embodiment implemented using the wastewater biological treatment apparatus shown in FIG. 1 will be described below. Using a high-speed stirrer as a homogenizing device, stirring was performed at 10,000 rpm for 15 minutes.
In addition, as a comparative example, a conventional biological treatment apparatus in which a homogenizing apparatus was not installed in the return sludge path in FIG. 1 was used.
[0032]
Example, using the organic wastewater in the comparative example both the BOD component concentration 180 (mg / L), BOD volume load was set to 0.8 (kg-BOD / m 3 / day). This organic wastewater is subjected to nitrification and denitrification treatment by a modified activated sludge circulation method, and the continuous operation is performed for more than half a year so that the return rate of the returned sludge returned from the solid-liquid separation tank to the biological reaction tank is 50%. Was.
[0033]
As a result, in the example, although the returned sludge settled in the solid-liquid separation tank was not drawn out of the apparatus, the suspended activated sludge concentration MLSS in the biological reaction tank changed between 1800 and 2300 (mg / L). There was no need to generate excess sludge.
The BOD component concentration of the treated water also changed favorably between 4 and 10 (mg / L).
On the other hand, in the comparative example, in order to keep the BOD component concentration of the treated water between 4 and 10 (mg / L) as in the example, the returned sludge settled in the solid-liquid separation tank was converted to excess sludge by 35%. It had to be pulled out of the device at a rate of ~ 45%. At this time, the suspended activated sludge concentration MLSS in the biological reaction tank was about 2000 (mg / L).
[0034]
【The invention's effect】
As described above, according to the biological treatment MakotoSo location of the wastewater of the present invention, it is possible to process ready for use simply as BOD component surplus sludge, further eliminating reduce the occurrence of excess sludge it is possible.
Further, since the high-speed stirrer or the ultrasonic treatment device in the present invention is performed by physical means, there is no need for a device for performing exhaust gas treatment as in the conventional ozone treatment.
[0035]
Therefore, the apparatus cost and the running cost can be significantly reduced as compared with the conventional ozone treatment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a biological wastewater treatment apparatus according to a first embodiment of the present invention. FIG. 2 is a schematic view illustrating a biological wastewater treatment apparatus according to a second embodiment of the present invention. Sectional view to be explained [Description of reference numerals]
10, 30 biological treatment apparatus 12 raw water piping 14, 31 biological reaction tank 16 solid-liquid separation tank 18 return sludge path 20 denitrification tank (first denitrification tank)
22 nitrification tank 24 nitrification liquid circulation path 32 second denitrification tank 34 re-aeration tank 36 branch path 38 distributor

Claims (1)

活性汚泥により廃水を生物学的に処理する生物反応槽と、前記生物反応槽で処理された処理水から前記活性汚泥を固液分離する固液分離槽と、前記生物反応槽と前記固液分離槽とをつなぐ返送汚泥経路とを備えた廃水の生物学的処理装置において、
前記固液分離した活性汚泥の全量を前記返送汚泥経路を介して前記生物反応槽に返送すると共に該返送汚泥経路に高速攪拌機又は超音波処理装置を設け、
前記全量返送する活性汚泥中に含有する微生物が所定の死滅率で死滅するように、前記高速攪拌機の攪拌速度や攪拌時間、又は前記超音波処理装置の超音波の強さや処理時間をコントロールすることを特徴とする廃水の生物学的処理装置。
A biological reaction tank for biologically treating wastewater with activated sludge, a solid-liquid separation tank for solid-liquid separation of the activated sludge from the treated water treated in the biological reaction tank, the biological reaction tank and the solid-liquid separation A biological treatment system for wastewater with a return sludge path connecting the tank and
A high-speed stirrer or an ultrasonic treatment device is provided in the return sludge path while returning the entire amount of the activated sludge separated into solid and liquid to the biological reaction tank via the return sludge path,
Controlling the stirring speed and the stirring time of the high-speed stirrer, or the intensity and processing time of the ultrasonic wave of the ultrasonic treatment device, so that the microorganisms contained in the activated sludge returned to the entire amount are killed at a predetermined kill rate. A biological treatment device for wastewater, characterized in that:
JP19566998A 1998-07-10 1998-07-10 Wastewater biological treatment equipment Expired - Fee Related JP3558204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19566998A JP3558204B2 (en) 1998-07-10 1998-07-10 Wastewater biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19566998A JP3558204B2 (en) 1998-07-10 1998-07-10 Wastewater biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2000024698A JP2000024698A (en) 2000-01-25
JP3558204B2 true JP3558204B2 (en) 2004-08-25

Family

ID=16345036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19566998A Expired - Fee Related JP3558204B2 (en) 1998-07-10 1998-07-10 Wastewater biological treatment equipment

Country Status (1)

Country Link
JP (1) JP3558204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145315B2 (en) 2013-03-01 2015-09-29 Paradigm Environmental Technologies Inc. Wastewater treatment process and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259675A (en) * 1999-07-15 2001-09-25 Nippon Kankyo Create Kk Sludge amount reducing method and its device
JP2007021285A (en) * 2005-07-12 2007-02-01 Mitsubishi Rayon Eng Co Ltd Method and apparatus for reducing volume of excess sludge
JP5557301B1 (en) * 2013-12-30 2014-07-23 誠一 金 Wastewater purification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145315B2 (en) 2013-03-01 2015-09-29 Paradigm Environmental Technologies Inc. Wastewater treatment process and system
US9809480B2 (en) 2013-03-01 2017-11-07 Cypress Technologies Limited Wastewater treatment process and system

Also Published As

Publication number Publication date
JP2000024698A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3383498B2 (en) Organic wastewater treatment method
JPH029879B2 (en)
JP3558204B2 (en) Wastewater biological treatment equipment
JPH07313992A (en) Treatment of sewage
JPH0259000B2 (en)
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JPH07222994A (en) Organic waste water treatment method
JP3449862B2 (en) Advanced purification method for organic wastewater
JP2000024687A (en) Treatment of waste nitric acid
JP3285754B2 (en) Sewage treatment apparatus and operation method thereof
JP2006346572A (en) Organic substance treatment method
JP4297405B2 (en) How to treat human waste
JP3408199B2 (en) Organic wastewater treatment apparatus and assembling method thereof
JP2500974B2 (en) Method for denitrifying and dephosphorizing organic wastewater
JP3215619B2 (en) Purification device and operation method thereof
JPS5998800A (en) Biological treatment of waste water containing organic substance
JPH0751691A (en) Treatment of sewage
JPS6350078B2 (en)
KR19990083922A (en) Processing mothod and processing system for excretions of animals
JP2003334591A (en) Treatment apparatus for organic wastewater and method therefor
JPS6355999B2 (en)
JPH0134119B2 (en)
JPS61125491A (en) Treatment of organic waste water
JPS61125493A (en) Treatment of organic waste water
JPH09122680A (en) Method for treating organic waste water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees