JP3554399B2 - Peptide derivatives - Google Patents

Peptide derivatives Download PDF

Info

Publication number
JP3554399B2
JP3554399B2 JP04989495A JP4989495A JP3554399B2 JP 3554399 B2 JP3554399 B2 JP 3554399B2 JP 04989495 A JP04989495 A JP 04989495A JP 4989495 A JP4989495 A JP 4989495A JP 3554399 B2 JP3554399 B2 JP 3554399B2
Authority
JP
Japan
Prior art keywords
group
hydrogen atom
alkyl group
arg
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04989495A
Other languages
Japanese (ja)
Other versions
JPH07300496A (en
Inventor
忍 櫻田
季美枝 村山
正晴 中野
和也 本郷
智子 竹島
信博 竹
Original Assignee
第一製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一製薬株式会社 filed Critical 第一製薬株式会社
Priority to JP04989495A priority Critical patent/JP3554399B2/en
Publication of JPH07300496A publication Critical patent/JPH07300496A/en
Application granted granted Critical
Publication of JP3554399B2 publication Critical patent/JP3554399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、オピオイド受容体等に対する作用を介して、鎮痛等の薬理作用を発揮するペプチド誘導体に係わる。
【0002】
【従来の技術】
モルヒネ等のオピオイドが結合するオピオイド受容体は、1970年代前半にその存在が証明された。オピオイド受容体は現在μ、δおよびκの3種に大別されている。モルヒネは主にμ受容体にアゴニストとして作用し、鎮痛、腸管運動抑制、呼吸抑制等の薬理学的効果を発現する。
【0003】
1975年以降、オピオイド受容体に結合する内因性のモルヒネ様物質が相次いで発見された。現在までのところ、これらの物質は全てペプチドであり、オピオイドペプチドと総称されている。オピオイドペプチドの薬理学的効果は基本的にはモルヒネと同様と考えられ、元来生体内に存在する物質であることから、モルヒネ以上の安全性を有する薬剤となる可能性が予想される。しかし、天然のオピオイドペプチドでは体内動態面での問題もあり、未だ医薬品として使用はされていない。
【0004】
1980年代にはD−体のアラニンを含有するデルモルフィンがカエルの皮膚から単離された。デルモルフィンの鎮痛効果は脳室内投与でモルヒネの約1,000 倍強力であり、体内で比較的安定であることが判明した。その後D−体のアミノ酸を含む合成オピオイドペプチドが作られた。特にκ受容体選択性の高い合成オピオイドペプチドは麻薬性のない鎮痛薬として期待され、臨床試験も実施されているが、効果、κアゴニストであることに起因すると思われる副作用、および採算性の面で医薬品としての可能性は疑問視されてきている。
【0005】
さらに、これらの合成オピオイドペプチドは経口剤としての利用が困難であり、例えば近年癌疼痛治療薬として広く使用されている硫酸モルヒネの徐放性経口剤であるMSコンチンの代替薬とはなり得ない。MSコンチンは一日投与量がグラム単位にまで増加し、その服用に困難を伴う場合があり、また、ヒスタミン遊離作用に起因すると考えられるかゆみ等の副作用が発現し、投与の中止を余儀なくされる場合もある。したがって、モルヒネ以上の安全性および薬効を有する代替薬が望まれる。
【0006】
【発明が解決しようとする課題及び課題を解決するための手段】
本発明者らは、上記課題を解決すべく優れた鎮痛効果および経口吸収性を有するオピオイドペプチド誘導体を鋭意探索した。その結果、L−Tyr−(L又はD)−Arg− Phe を基本骨格とし、N 末端にアミジノ基を有するオリゴペプチド誘導体およびその塩がかかる特性を保持することを見いだし本発明を完成した。すなわち、本発明のペプチド誘導体は次の式Iで表すことができる。
【化2】

Figure 0003554399
【0007】
上記式中の置換基について述べると、Q は D−Arg (D−アルギニン残基)またはL−Arg (L− アルギニン残基)を意味し、Rは水素原子またはC1−6(炭素数1〜6個の)アルキル基を意味する。これらのうち、Q が D−Argであり、Rが水素原子である化合物が好ましい。Rは水素原子、C1−6アルキル基、アリール基、C1−6アルカノイル基、またはアリールカルボニル基を示す。アリール基、アルカノイル基、またはアリールカルボニル基としては、例えば、置換若しくは無置換のフェニル基、好ましくは無置換フェニル基などのアリール基;アセチル基やプロパノイル基などのアルカノイル基;又はベンゾイル基などのアリールカルボニル基を用いることができる。
【0008】
X は−OR、−NR、又は−NR−CRのいずれかを示す。Rは水素原子またはC1−6アルキル基を示し、Rは水素原子またはC1−6アルキル基を示す。RはC1−6ヒドロキシアルキル基またはスルホン酸置換C1−6アルキル基を示す。水酸基またはスルホン酸基はアルキル基のいかなる位置に置換していてもよいが、末端置換のアルキル基が好ましい。R及びRは一緒になってR及びRが置換する窒素原子と共に 5または6 員含窒素飽和複素環基を示してもよく、該複素環は2個以上の窒素原子を含んでいてもよい。例えば、−NRとして1−ピペラジニル基、1−ピロリジニル基、又は1−ピペリジニル基などを用いることができる。
【0009】
また、X がNR−CR を示す場合、Rは水素原子、C1−6アルキル基、又はフェニル基等のアリール基が置換したC1−6アルキル基(アラルキル基)を示す。アラルキル基としては、例えば、ベンジル基など挙げることができる。Rは水素原子;カルボキシル基;メトキシカルボニル、エトキシカルボニルなどのC1−6アルコキシ基が置換したカルボニル基;置換若しくは無置換カルバモイル基;カルボキシル基が置換したC1−6アルキル基;置換若しくは無置換カルバモイル基が置換したC1−6アルキル基;またはC1−6アルコキシ基が置換したカルボニル基を有するC1−6アルキル基を示す。
【0010】
は水素原子;C1−6アルキル基;アミノC1−6アルキル基;アミジノ基が置換したC1−6アルキル基;グアニジノ基が置換したC1−6アルキル基、ヒドロキシC1−6アルキル基;カルボキシル基が置換したC1−6アルキル基、又は置換若しくは無置換カルバモイルが置換したC1−6アルキル基を示す。あるいは、R及びRが一緒になってRが置換する窒素原子とともに環上にカルボキシル基を有する5 または6 員の含窒素飽和複素環基を形成してもよい。このような複素環としては、2−カルボキシ−1− ピロリジニル基 (−Pro−OH)や3−カルボキシ−1− ピペリジニル基を挙げることができる。これらのうち、例えば、Rがカルボキシエチル基またはカルバモイルエチル基であり、Rが水素原子である組合せが好ましい。Rは水素原子又はC1−6アルキル基を示す。上記の各置換基において、アルキル基、アルコキシ基、又はアルカノイル基は直鎖または分枝のいずれでもよい。
【0011】
上記の式Iで示される本発明の化合物は、L−チロシン残基及びQ が示すD−Arg またはL−Arg 残基に由来する2個の不斉炭素の他、Q に結合するフェニルアラニン残基に由来する不斉炭素、RおよびRが置換する不斉炭素(ただしRおよびRが同時に同一の置換基を示す場合を除く)、並びに上記の各置換基に任意に存在する1以上の不斉炭素を有する。L−Tyr 、D−Arg 、及びL−Arg 残基に由来するもの以外の不斉炭素はR−またはS−のいずれの配置でもよい。また、本発明の式Iで示される化合物には、上記の式で示される任意の光学活性体またはラセミ体、ジアステレオ異性体またはそれらの任意の混合物もすべて包含される。
【0012】
また本発明の化合物には、塩酸塩、酢酸塩、又はパラトルエンスルホン酸などの酸付加塩や、アンモニウム塩又は有機アミン塩などの塩基付加塩が含まれる。さらに上記の一般式で示される化合物の他、上記化合物の2量体ないし多量体である化合物、及びこれらの化合物のC−末端とN−末端が結合した環状の化合物が包含される。
【0013】
本発明のペプチドは、モルヒネを凌駕する鎮痛効果を有する。鎮痛作用に伴うヒスタミン遊離作用や心拍数の低下作用がモルヒネに比して相対的に弱く、モルヒネとの交差耐性の程度も低いので、癌疼痛治療に使用するのに適することが予想される。投与経路としては静脈内投与、皮下投与、経口投与等が挙げられるが、経鼻吸収を含む粘膜吸収製剤および経皮吸収製剤も有用性が期待される。
【0014】
本発明のペプチド誘導体は、ペプチド合成に通常用いられる固相法および液相法で合成することができる。例えば、固相法によりアミジノ基を有しないペプチド鎖を合成し、さらにN末端のチロシンのアミノ基にアミジノ基を導入することによって目的のペプチド誘導体を製造することができ、また、予めアミジノ基を導入した後C末端を修飾することもできる。
【0015】
アミノ基等の保護基および縮合反応の縮合剤等は、優れたものが種々知られており、以下の実施例を参考に、また、例えば: 鈴木紘一編「タンパク質工学−基礎と応用」丸善(株)(1992)及びそこに引用された文献; M. Bondanszky, et al., “Peptide Synthesis”, John Wiley & Sons, N.Y., 1976; 並びに J.M. Stewart and D.J. Young, “Solid Phase Peptide Synthesis”, W.H.Freeman and Co., San Francisco, 1969 等を参照して適宜選択使用することができる。固相法では市販の各種ペプチド合成装置、例えばパーキン・エルマー・ジャパン製(Perkin Elmer Japan,旧社名 Applied Biosystems)のModel 430Aを利用するのが便利なこともある。合成に使用する樹脂、試薬等は市販品等を容易に入手でき、それらの例は実施例に示した。
【0016】
【実施例】
以下に実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。本実施例を参照し、あるいは本実施例の方法を修飾・変更することによって、あるいは出発原料または反応試薬を適宜選択することにより、一般式Iに包含される本発明の所望の本発明ペプチド誘導体を容易に製造することができる。なお、実施例においては、アミノ酸基の意味は通常用いられているものと同様である。D−体とL−体があるアミノ酸が言及されている場合には、そのアミノ酸はD−と特に表示していない場合はL−アミノ酸を意味する。また、以下の略号を使うことがあり、特に示していない場合にも同様な略号を用いる場合がある。
【0017】
Z :ベンジルオキシカルボニル基
OTce :トリクロロエチルエステル基
Boc :t−ブトキシカルボニル基
WSCI :1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド
TosOH :パラトルエンスルホン酸
OBzl :ベンジルオキシ基
MeβAla 又は βMeAla :N−メチル− β− アラニン
H−βAla−ol: NHCHCHCHOH
Fmoc :9−フルオレニルメチルオキシカルボニル
Pmc :2,2,5,7,8−ペンタメチルクロマン−6−スルホニル
t−Bu :三級ブチル
NMP :N−メチルピロリドン
DMF :ジメチルホルムアミド
DMSO :ジメチルスルホキシド
TFA :トリフルオロ酢酸
TEA :トリエチルアミン
DCM :ジクロロメタン
DMAP :N,N−ジメチルアミノピリジン
DIPEA :N,N−ジイソプロピルエチルアミン
DIPCI :N,N−ジイソプロピルカルボジイミド
HOBt :1−ヒドロキシベンゾトリアゾール
EDC :1−(3− ジメチルアミノプロピル)−3−エチル− カルボジイミド
HBTU :2−(1H−ベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルウロニウム・ヘキサフルオロホスフェート
PyBrop:ブロモトリス(ピロリジノ)ホスホニウム・ヘキサフルオロホスフェート
Alko樹脂:p−アルコキシベンジルアルコール樹脂 [4−ヒドロキシメチルフェノキシメチルコポリスチレン 1% ジビニルベンゼン樹脂、J. Am. Chem. Soc., 95, 1328 (1974)], 渡辺化学工業
Fmoc−NH−SAL 樹脂: 4−(2’,4’− ジメトキシフェニル−9−フルオレニルメトキシカルボニルアミノメチル)フェノキシ樹脂:渡辺化学工業
【0018】
例1
NC(NH)−Tyr−D−Arg−Phe−NHCHCHCOOH
Applied Biosystems (ABI)社の Model 430A ペプチド合成装置を用いて、上記ペプチドを固相法(Original Autoprogram for the Fmoc/NMP method)により以下のように合成した。
【0019】
Fmoc−β−Ala−Alko 樹脂 0.25 mmol/675 mg をNMP で1回洗浄し、20% ピペリジン含有NMP で4分間、さらに同じく20% ピペリジン含有NMP で16分間処理した。NMP で5回洗浄した後、61分間 Fmoc−Phe−OHと反応させた。次いでNMP にて4回洗浄し、4回目の洗浄液より樹脂を回収し、未反応のアミノ基は無水酢酸と反応させた。
【0020】
以上の1サイクルを120 分で行い、同様の操作を2サイクル目は Fmoc−Phe−OHの代わりに Fmoc−D−Arg(Pmc)−OH を用いて、3サイクル目は Fmoc−Tyr(t−Bu)−OHを用いて繰り返した。側鎖保護基は、D−Arg に対してはPmc を、Tyr に対してはt−Buを用いた。
【0021】
上記の操作により得られた樹脂500 mgをフェノール(結晶)0.75 g、エタンジチオール 0.25 ml、チオアニソール 0.50 ml、水 0.50 mlおよびTFA 10.0 ml の混合液中で室温にて3時間撹拌処理し、樹脂からペプチドを分離させると同時に保護基を除去した。次いで 3μm のフィルター(ADVANTEC−Polyflon フィルター) で濾過し、濾液に冷ジエチルエーテル 200 ml を加え、生じた沈殿を 3μm のフィルター(ADVANTEC−Polyflon フィルター)で濾取した。フィルター上の沈殿は2 N 酢酸10〜20 ml に溶解し、凍結乾燥して粗ペプチドを得た。
【0022】
粗ペプチド135 mgを水 13.5 mlに溶解し、1 M のo−メチルイソウレア 13.5 mlを加え、4℃で14日間撹拌し、アミジノ化を行った。得られた粗アミジノ化ペプチド106 mgを 20 mlの 0.1% TFA 水溶液に溶解した。0.01N の塩酸でpH 4〜5 に調整後、Gilson HPLC システムでペプチドを精製した。HPLCにはCosmosil C18カラムを用い、0.1% TFA水溶液および 70%アセトニトリル含有 0.1% TFA 水溶液の混合液の連続濃度勾配(混合比は開始時 0% から45分後の60%まで)で行い、流速は10 ml/分とした。
【0023】
精製されたペプチドのうち約 100μg を加水分解管に採取し1 mlの 0.2% フェノールを含有する6 N 塩酸を加え、脱気封管後、110 ℃で24時間加水分解した。室温冷却後40℃で濃縮乾固した後、0.01N 塩酸1 mlに溶解し、溶液20μl をアミノ酸分析計で解析した(分析計:日立 L−8500 、カラム:Hitachi Customイオン交換樹脂#2622、プレカラム: Hitachi Custom イオン交換樹脂# 2650L、バッファ−: リチウムバッファー(0.09 N−pH 2.8, 0.25 N−pH 3.7, 0.72 N−pH 3.6,1.00 N−pH 4.1, 再生 0.20N)、反応温度:135 ℃、バッファー・ポンプの流速:0.30 ml/分、ニンヒドリン・ポンプの流速:0.35 ml/ 分、検出器の波長:570 nm/440 nm、分析時間:150 分)。その結果、アミノ酸分析の結果は上記の構造を支持していた。
【0024】
精製ペプチド約150 μg を 250μl の5%酢酸に溶解し、溶液の1 μl をLiquidSIMS にて質量分析した (MS及びMS/ MS、セシウムイオンガン使用、分析計: Finnigan TSQ 700, Matrix: グリセロール−チオグリセロール(1:1) 、Collision Gas: Ar ガス 3〜5 mTorr, Collision Energy: −20 eV, Electron Multiplier: 1000−1500 V)。その結果は上記の構造を支持していた。
【0025】
例2
NC(NH)−Tyr−D−Arg−Phe−NHCHCHCONH
上記ペプチド誘導体を、合成開始時にFmoc−NH−SAL 樹脂 0.25 mmol/ 385 mgを用い、1サイクル目に Fmoc−β−Ala−OH を、2サイクル目に Fmoc−Phe−OHを、3サイクル目に Fmoc−D−Arg(Pmc)−OH を用いて、さらに4サイクル目に Fmoc−Tyr(t−Bu)−OHを用いたこと以外は実施例1と同様な操作により得た。
【0026】
アミジノ化ペプチド誘導体の合成および精製も、混合液を0.05% 蟻酸水溶液および 70%アセトニトリル含有0.05% 蟻酸水溶液(混合比は HPLC 開始時 0% から45分後の40% までの連続濃度勾配)としたこと以外は実施例1と同様に行った。アミノ酸組成分析および質量分析も実施例1と同様に行い、上記の構造を支持する結果を得た。
【0027】
例3
NC(NH)−Tyr−D−Arg−Phe−N(CH)CHCHCOOH
上記構造を有するテトラペプチド誘導体を、Fmoc/NMP法による固相法で以下のように合成した。濾過にはグラスフィルターを用いた。
【0028】
Alko樹脂 0.500 gを DMF 6 ml で膨潤させた後、Fmoc−N− メチル− β− アラニン (Fmoc− β−MeAla−OH )0.228 g およびピリジン 0.093 ml を樹脂に加え、1分間振盪し、次いで塩化 2,6− ジクロロベンゾイル 0.147 gを加えて24時間振盪した。生成した Fmoc−β−MeAla−Alko 樹脂を 6 ml のDMF で3回、次いで 6 ml のメタノールで3回、さらに 6 ml のDCM で3回洗浄し、未反応のヒドロキシメチル基はDCM 6 ml中で塩化ベンゾイル 0.0891 mlおよびピリジン 0.0847 mlを加え1時間振盪しベンゾイル化した。さらにアミノ酸樹脂を6 mlのDCM で3回、6 mlのDMF で3 回、 6 ml のメタノールで3 回順次洗浄し、水酸化カリウムデシケーター中で真空乾燥した。
【0029】
Fmoc− β−MeAla−Alko 樹脂を 12 mlのDMF で3回、次いで 20 % ピペリジンを含むDMF 12 ml で3回、さらに 12 mlのDMF で6回処理することにより Fmoc 基を除去し、Fmoc−Phe−OH 0.262 g 、PyBrop (渡辺化学工業)0.315 g 、NMP 6 ml、DIPEA 0.273 mlを加え、24時間振盪し、Fmoc−Phe− β−MeAla−Alko 樹脂を生成させた。濾過し、6 mlのNMP による洗浄後、未反応のアミノ基は 1− アセチルイミダゾール 0.248 g、DIPEA 0.0784 ml を含むDMF 6 ml中で1 時間処理しキャップした。次いで、得られた樹脂を 6 ml のNMP で洗浄した。
【0030】
Fmoc−Phe− β−MeAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去し、Fmoc−D−Arg(Pmc)−OH 0.557 g、HOBt 0.121 g、HBTU 0.299 g、DIPEA 0.274 mlを加え、1時間振盪しFmoc−D−Arg(Pmc)−Phe−β−MeAla−Alko 樹脂を生成させた。次いで前項と同様に濾過、洗浄後、未反応のアミノ基をキャップした。
【0031】
Fmoc−D−Arg(Pmc)−Phe−β−MeAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去し、Fmoc−Tyr(t−Bu)−OH 0.310 g 、HOBt 0.103 g、HBTU 0.256 g、DIPEA 0.235 mlを加え、1時間振盪しFmoc−Tyr(t−Bu)−D−Arg(Pmc)−Phe−β−MeAla−Alko 樹脂を生成させた。前項と同様に濾過、洗浄後、未反応のアミノ基をキャップした。
【0032】
Fmoc−Tyr(t−Bu)−D−Arg(Pmc)−Phe−β−MeAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去し、Matsuedaらの方法(The Journal of Organic Chemistry, 57,2497〜2502, 1992)に従って調製した 1H−ピラゾール−1− カルボキサミジン塩酸塩 0.989 g、DIPEA 1.293 ml、DMF 6 mlを加えて10〜60℃、より好ましくは40〜50℃で 1時間ないしは 4時間反応させてN末端のチロシンのアミノ基をアミジノ化した。次いで濾過、洗浄(NMP 6 mlで3回、さらにメタノール 6 ml で3回)し水酸化カリウムデシケータ中で真空乾燥を行った。
【0033】
上記の操作により得られた樹脂 596 mg をグラスフィルター上においてTFA 、フェノール、水の混合液(TFA :フェノール:水 = 93:2:5) 5 ml で1時間処理し濾過した。同様の操作を計2回行った。さらに樹脂をTFA 5 mlで 5分処理し濾過した。同様の操作を計3回行った。各操作で得られた濾液を合して20℃以下で溶媒を減圧留去した。残渣にジエチルエーテル 20 mlを加え白色沈殿とし、上清を捨てる操作を計3回行い、得られた白色粉末を水 20 mlに溶解し、分液ロート中にてジエチルエーテル 5 ml で3回洗浄し、水層を凍結乾燥し、粗アミジノ化ペプチドを得た。
【0034】
粗アミジノ化ペプチド 56.2 mgを 0.05% TFA水溶液 10 mlに溶解し、島津HPLCシステムにて精製した。HPLCにYMC D−ODS−5−ST C18カラムと 0.5% アセトニトリル含有 0.05% TFA水溶液および 70%アセトニトリル含有 0.05% TFA水溶液の混合液(混合比はHPLC開始時0%から50分後の90% までの連続濃度勾配で流速は 1 ml/分)を用いた。アミノ酸組成分析および質量分析は実施例1と同様に行い、上記の構造を支持する結果を得た。
【0035】
例4
NC(NH)−Tyr−D−Arg−Phe−N(CHCH)CHCHCOOH
上記構造を有するテトラペプチド誘導体を、Fmoc/NMP法による固相法で以下のように合成した。濾過にはグラスフィルターを用いた。
【0036】
Alko樹脂 1.000 gをNMP 12 ml で膨潤させた後、Fmoc−N− エチル− β− アラニン(Fmoc− β−EtAla−OH) 0.475 gおよびDMAP 0.017 gを加え、1分間振盪し、次いでDIPCI 0.177 g を添加して24時間振盪した。生成した Fmoc−β−EtAla−Alko 樹脂をNMP 12 ml で3回、次いで12 ml のメタノールで3回、さらにDCM 12 ml で3回洗浄し、未反応のヒドロキシメチル基はDCM 12 ml 中で塩化ベンゾイル 0.178mlおよびピリジン0.170 mlを加え1時間振盪しベンゾイル化した。さらにアミノ酸樹脂を 12 mlのDCM で3回、12 ml のDMF で3回、12 ml のメタノールで3 回順次洗浄し、水酸化カリウムデシケーター中で真空乾燥した。
【0037】
Fmoc− β−EtAla−Alko 樹脂を 20 mlのDMF で3回、次いで 20%ピペリジンを含むDMF 12 ml で3 回、さらに12 ml のDMF で6回処理することによりFmoc基を除去し、Fmoc−Phe−OH 0.387 g, PyBrop 0.466 g, NMP 12 ml, 及びDIPEA 0.523 mlを加え、24時間振盪し、Fmoc−Phe− β−EtAla−Alko 樹脂を生成させた。濾過後、12 ml のNMP で洗浄し、未反応のアミノ基は1−アセチルイミダゾール 0.551 g、DIPEA 0.174 mlを含むDMF 12 ml 中で1時間処理しキャップした。次いで、得られた樹脂を再度 12 mlのNMP で洗浄した。
【0038】
Fmoc−Phe− β−EtAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去した。樹脂にFmoc−D−Arg(Pmc)−OH 0.707 g、HOBt 0.153 g、HBTU 0.379 g、DIPEA 0.348 mlを加え、1 時間振盪しFmoc−D−Arg(Pmc)−Phe−β−EtAla−Alko 樹脂を生成させた。前項と同様に濾過、洗浄後、未反応のアミノ基をキャップした。
【0039】
Fmoc−D−Arg(Pmc)−Phe−β−EtAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去し、Fmoc−Tyr(t−Bu)−OH 0.460 g 、HOBt 0.153 g、HBTU 0.399 g、DIPEA 0.348 mlを加え、1時間振盪しFmoc−Tyr(t−Bu)−D−Arg(Pmc)−Phe−β−EtAla−Alko 樹脂を生成させた。上記と同様に濾過、洗浄後、未反応のアミノ基をキャップした。
【0040】
Fmoc−Tyr(t−Bu)−D−Arg(Pmc)−Phe−β−EtAla−Alko 樹脂から上記と同様な操作によりFmoc基を除去し、実施例3と同様に調製した 1H−ピラゾール−1− カルボキサミジン塩酸塩 2.199 g、DIPEA 2.874 ml、DMF 6 mlを加え40〜50℃で1 時間ないしは4 時間反応させてN末端のチロシンのアミノ基をアミジノ化した。次いで濾過、洗浄(NMP 12 ml で3回、さらにメタノール 12 mlで3回)し水酸化カリウムデシケータ中で真空乾燥を行った。
【0041】
上記の操作により得られた樹脂 1.514 gをグラスフィルター上においてTFA 、フェノール、及び水を含む混合液(TFA :フェノール:水=93:2 :5) 10 mlで1時間処理し濾過した。同様の操作を計2回行った。さらに樹脂をTFA 10 ml で5分処理し濾過した。同様の操作を計3回行った。各操作で得られた濾液を合して20℃以下で溶媒を減圧留去した。残渣にジエチルエーテル 20 mlを加え白色沈殿とし、上清を捨てる操作を計3 回行った。得られた白色粉末を水 30 mlに溶解し、分液ロート中でジエチルエーテル 5 ml で3回洗浄し、水層を凍結乾燥し、粗アミジノ化ペプチドを得た。
【0042】
粗アミジノ化ペプチド 100 mg を 0.05% TFA水溶液 20 mlに溶解し、実施例3と同様に精製した。アミノ酸組成分析および質量分析は実施例1と同様に行い、上記の構造を支持する結果を得た。
【0043】
例5
NC(NH)−Tyr−D−Arg−Phe−OMe
NC(NH)−Tyr−D−Arg−Phe−NHMe
NC(NH)−Tyr−D−Arg−Phe− βAla−ol
NC(NH)−Tyr−D−Arg−Phe−Gly−OH
NC(NH)−Tyr−D−Arg−Phe−Ala−OH
NC(NH)−Tyr−D−Arg−Phe−Me βAla−OEt
NC(NH)−Tyr−D−Arg−Phe−(n−Pr) βAla−OH
上記のペプチドの製造原料として、次式で表される保護ペプチド: Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OHを液相法により以下のようにして製造した。
【0044】
出発原料である Z−Phe−OTce 254 g を 25%臭化水素−酢酸 900 ml で処理してZ 基を脱離した後、氷浴下でCHCl 1000 mlに溶解した。この溶液に Boc−D−Arg(Z)−OH 288 g, HOBt 85 gを加え、TEA 77 ml で中和した後、 EDC・HCl 121 g により縮合しBoc−D−Arg(Z)−Phe−OTceとした。次いで、Boc−D−Arg(Z)−Phe−OTce241 gを 4N 塩酸−酢酸エチルエステル 1000 mlで処理して Boc基を脱離し、氷浴下で DMF 1300 mlに溶解した。この溶液にBoc−Tyr(Bzl)−OH 108 g, HOBt 46 gを加え、TEA 42 ml で中和した後、 EDC・HCl 65 gにより縮合し、次式で示される保護ペプチド:Boc−Tyr(Bzl)−D−Arg(Z)−Phe−OTce を得た。
【0045】
Boc−Tyr(Bzl)−D−Arg(Z)−Phe−OTce 48 gを4N塩酸−酢酸エチルエステル250 mlで処理してBoc 基を脱離後、氷浴下で DMF 150 ml に溶解した。この溶液を TEA7 ml で中和した後、Z−HNC(N−Z)−Pyrazole ( アミジノ化試薬) 19 gを加え、室温で攪拌し、次式の保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OTce を得た。この保護ペプチド42 gを水浴下酢酸に溶解し、その中に亜鉛末21 gを加えて2時間攪拌し、反応液より亜鉛末を除き、減圧濃縮して保護ペプチド:Z−HN−C(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OHを得た。
【0046】
Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OHにMeOH (EDC−DMAP法); NHMe (EDC−HOBt法); H− βAla−ol (EDC−HOBt法); H−Gly−OBzl ・TosOH (EDC−HOBt 法); H−Ala− OBzl・TosOH (EDC−HOBt 法); H−Me βAla−OEt (EDC−HOBt 法);又はH−(n−Pr)βAla−OBzl・TosOH (EDC−HOBt 法) を縮合させた。生成物を水浴下酢酸に溶解してパラジウム炭素の存在下で接触還元し、触媒を除いて反応液を減圧濃縮し、さらに凍結乾燥を行って粉末の目的物ペプチドを得た。下記の条件のアミノ酸分析及び質量分析の結果はそれぞれのペプチド化合物の構造を支持していた。
【0047】
アミノ酸分析は、ペプチドを約 0.5 mg を加水分解管に採取し、1 mlの 6N 塩酸を加え、脱気封管後、110 ℃で24時間加水分解した。室温冷却後40℃で濃縮乾固した後、残査を精製水5 mlに溶解した。この溶解液より 5μl を採り減圧乾燥し、残査に 50 mM NaHCO 緩衝液(pH9.0) 20μl 、ダブシルクロライド−アセトニトリル溶液 40 μl を加え、70℃で10分間加温した。反応液を減圧濃縮し、残査を 50%エタノール 100μl に溶解し、その溶液 20 μl を液体クロマトグラフィーで解析した。質量分析は、ペプチド約 150μg を 250μl の 5% 酢酸に溶解し、1 μl を Liquid SIMSにて解析した。
【0048】
例6
NC(NH)−Tyr−D−Arg−MePhe−Me βAla−OH
NC(NH)−Tyr−D−Arg−EtPhe−Me βAla−OH
上記ペプチドは、 TosOH・MeβAla−OBzlを出発原料として、C−末端より順次液相法により製造した。Boc−MePhe−OHと TosOH・MeβAla−OBzlを EDC−HOBt 法により縮合し、Boc−MePhe−MeβAla−OBzlを得て、Boc−MePhe−MeβAla−OBzlより 4N 塩酸−酢酸エチルエステルを用いて Boc基を脱離後、Boc−D−Arg(Z)−OHとEDC−HOBt法により縮合して、Boc−D−Arg(Z)−MePhe−MeβAla−OBzlとした。次いで、Boc−D−Arg(Z)−MePhe−MeβAla−OBzlより 4N 塩酸−酢酸エチルエステルを用いて Boc基を脱離後、Boc−Tyr(Bzl)−OH とEDC−HOBt法により縮合して、保護ペプチド:Boc−Tyr(Bzl)−D−Arg(Z)−MePhe −MeβAla−OBzlを得た。
【0049】
Boc−Tyr(Bzl)−D−Arg(Z)−MePhe−Me βAla−OBzlを 4N 塩酸−酢酸エチルエステルで処理して Boc基を脱離した後、Z−HNC(N−Z)−Pyrazole (アミジノ化試薬)を加えて室温で攪拌し、保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−MePhe−MeβAla−OBzlを得た。この保護ペプチドを酢酸に溶解し、パラジウム炭素を加えて溶液に水素ガスを吹き込んで接触還元した。パラジウム炭素を除いた後、減圧濃縮し、凍結乾燥を行って粉末のペプチド HNC(NH)−Tyr−D−Arg−MePhe−MeβAla−OHを得た。このペプチドは、例5に記載したアミノ酸分析及び質量分析において上記の構造を支持する結果を与えた。
【0050】
Boc−MePhe−OHの代わりに Boc−EtPhe−OH を用いて、上記と同様の方法により、TosOH・MeβAla−OBzlとEDC−HOBt法で縮合してBoc−EtPhe−MeβAla−OBzlを製造した。次いで、上記と同様の方法により脱保護と縮合を繰り返し、次式で示される保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−EtPhe−MeβAla−OBzlを得た。この保護ペプチドを酢酸に溶解してパラジウム炭素を加え、この溶液に水素ガスを吹き込んで接触還元した。パラジウム炭素を除いた後、減圧濃縮し、凍結乾燥を行って粉末のペプチド HNC(NH)−Tyr−D−Arg−EtPhe−MeβAla−OHを得た。このペプチドは、例5に記載したアミノ酸分析及び質量分析により上記の構造を支持する結果を与えた。
【0051】
例7
NC(NH)−Tyr−D−Arg−Phe−Me βAla−OH
ペプチド合成で通常用いられる液相法で以下のように合成した。 Z−Phe−OTce 254 g を出発原料として、25% 臭化水素−酢酸 900 ml で Z基を脱離後、氷浴下でCHCl 1000ml に溶解した。この溶液にBoc−D−Arg(Z)−OH 288 g、HOBt 85 g を加え、TEA 77 ml で中和した後、EDC ・HCl 121 g により縮合しBoc−D−Arg(Z)−Phe−OTceとした。次いで、Boc−D−Arg(Z)−Phe−OTce 241 gを 4N 塩酸−酢酸エチルエステル 1000 mlを用いて Boc基を脱離した後、氷浴下で DMF 1300 mlに溶解した。この溶液に Boc−Tyr(Bzl)−OH 108 g、HOBt 46 g を加え、TEA 42 ml で中和した後、 EDC・HCl 65 gにより縮合して、次式で示される保護ペプチド:Boc−Tyr(Bzl)−D−Arg(Z)−Phe−OTce を得た。
【0052】
Boc−Tyr(Bzl)−D−Arg(Z)−Phe−OTce 48 gを 4N 塩酸−酢酸エチルエステル 250ml で処理して Boc基を脱離し、氷浴下でDMF 150 mlに溶解した。この溶液をTEA 7 mlで中和した後、Z−HNC(N−Z)−Pyrazole(アミジノ化試薬) 19 gを加え、室温で攪拌し、次式の保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OTceを得た。この保護ペプチド 42 g を水浴下酢酸に溶解し、その中に亜鉛末 21 g を加え、2時間攪拌した。反応液より亜鉛末を除いた後に減圧濃縮して保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OHを得た。
【0053】
上記保護ペプチド: Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−OH 1.15 g とTosOH ・MeβAla−OBzl 0.93 g を氷浴下 DMF 30 ml(DMSO 10% 含有) で溶解し、この溶液に HOOBt 0.24 g を加えてTEA 0.21 ml で中和した後、 EDC・HCl 0.25 gにより縮合し、次式で示される保護ペプチド:Z−HNC(N−Z)−Tyr(Bzl)−D−Arg(Z)−Phe−MeβAla−OBzlを得た。この保護ペプチド 0.90 g を酢酸 100 ml に溶解し、その中にパラジウム炭素 0.90 g を加え、この溶液に水素ガスを吹き込んで接触還元した。パラジウム炭素を除いた後減圧濃縮し、凍結乾燥を行って粉末のペプチド: HNC(NH)−Tyr−D−Arg−Phe−Me βAla−OHを得た。このペプチドは実施例5に記載したアミノ酸分析及び質量分析において上記の構造を支持する結果を与えた。
【0054】
以下に本発明のペプチド誘導体の物理化学的性状として、HPLCの保持時間及び薄層クロマトグラフィーのRf値を表1に示す。これらのペプチド誘導体はいずれも凍結乾燥品として得た。また、同様の方法により合成した化合物を表2に示す。
【0055】
Figure 0003554399
【0056】
薄層クロマトグラフィーの条件:
Rf :n−ブタノール:酢酸:精製水=4:1:5を混合し、その上層を展開溶媒として用いた。
Rf :n−ブタノール:酢酸:精製水:ピリジン=15:3:10:12 を展開溶媒として用いた。
薄層板 :シリカゲル(Merck F254)
【0057】
【表1】
Figure 0003554399
Figure 0003554399
【0058】
【表2】
Figure 0003554399
【0059】
試験例
本発明のペプチド誘導体の鎮痛効果を圧刺激法にて以下のように評価した。マウスの尾根部に 10 mmHg/ 秒の割合で圧刺激を加え、もがき、刺激部位への噛みつきなどの行動を示す圧力を測定し、これを疼痛反応閾値とした。実験には予め40〜50 mmHg の圧力に反応するマウスを用いた。また最大刺激圧は 100 mmHg とした。鎮痛効果は次式
Figure 0003554399
(式中、Poは薬物処理前の疼痛反応閾値、Ptは薬物処理t分後の疼痛反応閾値、Pcは最大刺激圧である)に従い、percent of maximum possible effect (% of MPE) として算出した。用量反応曲線から 50 % の% ofMPE を与える薬物投与量をED50値として求め、薬物の鎮痛効力を比較した。皮下投与(背部皮下)及び経口投与の結果を表3に示す。
【0060】
【表3】
Figure 0003554399
【0061】
【発明の効果】
本発明のペプチド誘導体は癌疼痛等の治療に使用することができるので有用である。[0001]
[Industrial applications]
The present invention relates to a peptide derivative which exerts a pharmacological action such as analgesia through an action on an opioid receptor or the like.
[0002]
[Prior art]
Opioid receptors to which opioids such as morphine bind were proven to exist in the early 1970's. Opioid receptors are currently roughly classified into three types: μ, δ, and κ. Morphine mainly acts as an agonist on the μ receptor, and exerts pharmacological effects such as analgesia, suppression of intestinal motility, and suppression of respiration.
[0003]
Since 1975, endogenous morphine-like substances that bind to opioid receptors have been discovered one after another. To date, all of these substances are peptides, collectively referred to as opioid peptides. The pharmacological effect of the opioid peptide is basically considered to be the same as that of morphine, and since it is a substance originally present in the living body, it is expected that the drug may be a drug having safety higher than that of morphine. However, natural opioid peptides have problems in pharmacokinetics, and have not yet been used as pharmaceuticals.
[0004]
In the 1980s, delmorphin containing D-alanine was isolated from frog skin. The analgesic effect of delmorphin was approximately 1,000 times stronger than that of morphine by intraventricular administration, and was found to be relatively stable in the body. Thereafter, a synthetic opioid peptide containing D-amino acids was produced. In particular, synthetic opioid peptides with high κ receptor selectivity are expected as analgesics without narcotic properties, and clinical trials have been conducted. However, their effects, side effects that may be caused by being κ agonists, and profitability Therefore, its potential as a pharmaceutical has been questioned.
[0005]
Furthermore, these synthetic opioid peptides are difficult to use as oral preparations, and cannot be used as a substitute for MS contin, which is a sustained-release oral preparation of morphine sulfate widely used in recent years as a therapeutic agent for cancer pain. . The daily dose of MS Contin increases to the gram unit, and it may be difficult to take it.In addition, it may cause itching or other side effects thought to be caused by histamine releasing action, and the administration must be discontinued. In some cases. Therefore, an alternative drug having safety and efficacy higher than that of morphine is desired.
[0006]
Problems to be Solved by the Invention and Means for Solving the Problems
The present inventors have diligently searched for an opioid peptide derivative having an excellent analgesic effect and oral absorbability in order to solve the above problems. As a result, they have found that an oligopeptide derivative having L-Tyr- (L or D) -Arg-Phe as a basic skeleton and having an amidino group at the N-terminus and a salt thereof retain such properties, and have completed the present invention. That is, the peptide derivative of the present invention can be represented by the following formula I.
Embedded image
Figure 0003554399
[0007]
Describing the substituents in the above formula, Q means D-Arg (D-arginine residue) or L-Arg (L-arginine residue);1Is a hydrogen atom or C1-6It means an alkyl group (having 1 to 6 carbon atoms). Of these, Q is D-Arg and R1Is preferably a hydrogen atom. R2Is a hydrogen atom, C1-6Alkyl group, aryl group, C1-6It represents an alkanoyl group or an arylcarbonyl group. The aryl group, alkanoyl group or arylcarbonyl group includes, for example, an aryl group such as a substituted or unsubstituted phenyl group, preferably an unsubstituted phenyl group; an alkanoyl group such as an acetyl group or a propanoyl group; or an aryl group such as a benzoyl group A carbonyl group can be used.
[0008]
X is -OR3, -NR4R5Or -NR6-CR7R8R9Indicates one of R3Is a hydrogen atom or C1-6Represents an alkyl group;4Is a hydrogen atom or C1-6Shows an alkyl group. R5Is C1-6Hydroxyalkyl or sulfonic acid substituted C1-6Shows an alkyl group. The hydroxyl group or the sulfonic acid group may be substituted at any position of the alkyl group, but a terminal-substituted alkyl group is preferred. R4And R5Is R together4And R5May represent a 5- or 6-membered nitrogen-containing saturated heterocyclic group together with the nitrogen atom to be substituted, and the heterocyclic ring may contain two or more nitrogen atoms. For example, -NR4R5A 1-piperazinyl group, 1-pyrrolidinyl group, 1-piperidinyl group or the like can be used.
[0009]
X is NR6-CR7R8R9  , R6Is a hydrogen atom, C1-6C substituted by an aryl group such as an alkyl group or a phenyl group1-6Shows an alkyl group (aralkyl group). Examples of the aralkyl group include a benzyl group. R7Is a hydrogen atom; a carboxyl group; C such as methoxycarbonyl and ethoxycarbonyl1-6A carbonyl group substituted with an alkoxy group; a substituted or unsubstituted carbamoyl group; C substituted with a carboxyl group1-6Alkyl group; substituted or unsubstituted carbamoyl group-substituted C1-6An alkyl group; or C1-6C having a carbonyl group substituted by an alkoxy group1-6Shows an alkyl group.
[0010]
R8Is a hydrogen atom; C1-6Alkyl group; amino C1-6Alkyl group; C substituted by amidino group1-6Alkyl group; C substituted by guanidino group1-6Alkyl group, hydroxy C1-6Alkyl group; C substituted by carboxyl group1-6C substituted by an alkyl group or a substituted or unsubstituted carbamoyl1-6Shows an alkyl group. Alternatively, R6And R8But together R6May form a 5- or 6-membered nitrogen-containing saturated heterocyclic group having a carboxyl group on the ring together with the nitrogen atom to be substituted. Examples of such a heterocyclic ring include a 2-carboxy-1-pyrrolidinyl group (-Pro-OH) and a 3-carboxy-1-piperidinyl group. Of these, for example, R7Is a carboxyethyl group or a carbamoylethyl group;8Is preferably a hydrogen atom. R9Is a hydrogen atom or C1-6Shows an alkyl group. In each of the above substituents, the alkyl group, alkoxy group, or alkanoyl group may be linear or branched.
[0011]
The compound of the present invention represented by the above formula I has an L-tyrosine residue and two asymmetric carbons derived from D-Arg or L-Arg residue represented by Q 2, and a phenylalanine residue bonded to Q 2. An asymmetric carbon derived from7And R8Is substituted with an asymmetric carbon (R7And R8Have the same substituents at the same time) and one or more asymmetric carbon atoms optionally present in each of the above substituents. Asymmetric carbons other than those derived from L-Tyr, D-Arg, and L-Arg residues may be in either R- or S- configuration. Further, the compound represented by the formula I of the present invention also includes any optically active substance, a racemic form, a diastereoisomer or any mixture thereof represented by the above formula.
[0012]
The compounds of the present invention also include acid addition salts such as hydrochloride, acetate or paratoluenesulfonic acid, and base addition salts such as ammonium salt or organic amine salt. Further, in addition to the compounds represented by the above general formulas, compounds which are dimers or multimers of the above compounds, and cyclic compounds in which the C-terminal and the N-terminal of these compounds are bonded are included.
[0013]
The peptide of the present invention has an analgesic effect exceeding that of morphine. Since the histamine releasing action and the heart rate lowering action associated with the analgesic action are relatively weaker than morphine and the degree of cross-resistance with morphine is low, it is expected to be suitable for use in treating cancer pain. Examples of the administration route include intravenous administration, subcutaneous administration, and oral administration. Mucosal absorption preparations including nasal absorption and transdermal absorption preparations are also expected to be useful.
[0014]
The peptide derivative of the present invention can be synthesized by a solid phase method and a liquid phase method usually used for peptide synthesis. For example, a target peptide derivative can be produced by synthesizing a peptide chain having no amidino group by a solid phase method and further introducing an amidino group to the amino group of tyrosine at the N-terminus. After introduction, the C-terminus can be modified.
[0015]
Various excellent protecting groups such as an amino group and a condensing agent for a condensation reaction are known. For example, refer to the following Examples, for example: Koichi Suzuki, "Protein Engineering-Fundamentals and Applications," Maruzen ( (1992) and references cited therein; Bondanszky, et al. , "Peptide Synthesis", John Wiley & Sons, N.W. Y. J., 1976; M. Stewart and D. J. Young, "Solid Phase Peptide Synthesis", W.W. H. Freeman and Co. , San Francisco, 1969, etc., and can be selected and used as appropriate. In the solid phase method, it may be convenient to use various commercially available peptide synthesizers, for example, Model 430A manufactured by Perkin Elmer Japan (former company name Applied Biosystems). Commercially available products and the like can be easily obtained for the resins and reagents used in the synthesis, and examples thereof are shown in Examples.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. By referring to the present example, or by modifying or changing the method of the present example, or by appropriately selecting starting materials or reaction reagents, the desired inventive peptide derivative of the present invention encompassed by general formula I Can be easily manufactured. In the examples, the meanings of the amino acid groups are the same as those usually used. When an amino acid having a D-form and an L-form is referred to, the amino acid means an L-amino acid unless otherwise indicated as D-. In addition, the following abbreviations may be used, and similar abbreviations may be used unless otherwise indicated.
[0017]
Z: benzyloxycarbonyl group
OTce: trichloroethyl ester group
Boc: t-butoxycarbonyl group
WSCI: 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide
TosOH: paratoluenesulfonic acid
OBzl: benzyloxy group
MeβAla or βMeAla: N-methyl-β-alanine
H-βAla-ol: NH2CH2CH2CH2OH
Fmoc: 9-fluorenylmethyloxycarbonyl
Pmc: 2,2,5,7,8-pentamethylchroman-6-sulfonyl
t-Bu: tertiary butyl
NMP: N-methylpyrrolidone
DMF: dimethylformamide
DMSO: dimethyl sulfoxide
TFA: trifluoroacetic acid
TEA: triethylamine
DCM: dichloromethane
DMAP: N, N-dimethylaminopyridine
DIPEA: N, N-diisopropylethylamine
DIPCI: N, N-diisopropylcarbodiimide
HOBt: 1-hydroxybenzotriazole
EDC: 1- (3-dimethylaminopropyl) -3-ethyl-carbodiimide
HBTU: 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
PyBrop: bromotris (pyrrolidino) phosphonium hexafluorophosphate
Alko resin: p-alkoxybenzyl alcohol resin [4-hydroxymethylphenoxymethyl copolystyrene 1% divinylbenzene resin; Am. Chem. Soc. , 95, 1328 (1974)], Watanabe Chemical Industry
Fmoc-NH-SAL resin: 4- (2 ', 4'-dimethoxyphenyl-9-fluorenylmethoxycarbonylaminomethyl) phenoxy resin: Watanabe Chemical Industry
[0018]
Example 1
H2NC (NH) -Tyr-D-Arg-Phe-NHCH2CH2COOH
Using a Model 430A peptide synthesizer manufactured by Applied Biosystems (ABI), the above peptide was synthesized as follows by a solid-phase method (Original Autoprogram for the Fmoc / NMP method).
[0019]
0.25 mmol / 675 mg of Fmoc-β-Ala-Alko resin was washed once with NMP, and treated with NMP containing 20% piperidine for 4 minutes, and further treated with NMP containing 20% piperidine for 16 minutes. After washing 5 times with NMP, it was reacted with Fmoc-Phe-OH for 61 minutes. Next, the resultant was washed four times with NMP, and the resin was recovered from the fourth washing liquid, and unreacted amino groups were reacted with acetic anhydride.
[0020]
The above-described one cycle is performed in 120 minutes, and the same operation is performed in the second cycle using Fmoc-D-Arg (Pmc) -OH instead of Fmoc-Phe-OH, and in the third cycle using Fmoc-Tyr (t- Repeated with (Bu) -OH. As the side chain protecting group, Pmc was used for D-Arg, and t-Bu was used for Tyr.
[0021]
500 mg of the resin obtained by the above operation was mixed in a mixture of 0.75 g of phenol (crystal), 0.25 ml of ethanedithiol, 0.50 ml of thioanisole, 0.50 ml of water and 10.0 ml of TFA. The mixture was stirred at room temperature for 3 hours to separate the peptide from the resin and at the same time remove the protecting group. Then, the mixture was filtered through a 3 μm filter (ADVANTEC-Polyflon filter), 200 ml of cold diethyl ether was added to the filtrate, and the resulting precipitate was collected by filtration with a 3 μm filter (ADVANTEC-Polyflon filter). The precipitate on the filter was dissolved in 10-20 ml of 2N acetic acid and lyophilized to obtain a crude peptide.
[0022]
135 mg of the crude peptide was dissolved in 13.5 ml of water, 13.5 ml of 1 M o-methylisourea was added, and the mixture was stirred at 4 ° C. for 14 days to perform amidination. 106 mg of the obtained crude amidinated peptide was dissolved in 20 ml of 0.1% TFA aqueous solution. After adjusting the pH to 4-5 with 0.01 N hydrochloric acid, the peptide was purified on a Gilson HPLC system. Cosmosil C for HPLC18Using a column, a continuous concentration gradient of a mixture of a 0.1% TFA aqueous solution and a 0.1% TFA aqueous solution containing 70% acetonitrile (mixing ratio from 0% at the start to 60% after 45 minutes) was performed. It was 10 ml / min.
[0023]
About 100 μg of the purified peptide was collected in a hydrolysis tube, added with 1 ml of 6N hydrochloric acid containing 0.2% phenol, degassed and sealed, and hydrolyzed at 110 ° C. for 24 hours. After cooling to room temperature and concentrating to dryness at 40 ° C., the residue was dissolved in 1 ml of 0.01N hydrochloric acid, and 20 μl of the solution was analyzed with an amino acid analyzer (analyzer: Hitachi L-8500; column: Hitachi Custom ion exchange resin # 2622; Pre-column: Hitachi Custom ion exchange resin # 2650 L, buffer: lithium buffer (0.09 N-pH 2.8, 0.25 N-pH 3.7, 0.72 N-pH 3.6, 1.00 N -PH 4.1, regeneration 0.20N), reaction temperature: 135 ° C, buffer pump flow rate: 0.30 ml / min, ninhydrin pump flow rate: 0.35 ml / min, detector wavelength: 570 nm / 440 nm, analysis time: 150 minutes). As a result, the results of amino acid analysis supported the above structure.
[0024]
About 150 μg of the purified peptide was dissolved in 250 μl of 5% acetic acid, and 1 μl of the solution was subjected to mass spectrometry by LiquidSIMS (MS and MS / MS, using a cesium ion gun; analyzer: Finnigan TSQ 700, Matrix: glycerol-thioglycerol) (1: 1), Collision Gas: Ar gas 3-5 mTorr, Collision Energy: -20 eV, Electron Multiplier: 1000-1500 V). The results supported the above structure.
[0025]
Example 2
H2NC (NH) -Tyr-D-Arg-Phe-NHCH2CH2CONH2
The above peptide derivative was prepared using Fmoc-NH-SAL resin (0.25 mmol / 385 mg) at the start of synthesis, Fmoc-β-Ala-OH in the first cycle, and Fmoc-Phe-OH in the second cycle and three cycles. The same procedure as in Example 1 was carried out except that Fmoc-D-Arg (Pmc) -OH was used for the eyes and Fmoc-Tyr (t-Bu) -OH was used for the fourth cycle.
[0026]
For the synthesis and purification of the amidinated peptide derivative, the mixed solution was prepared using a 0.05% formic acid aqueous solution and a 70% acetonitrile-containing 0.05% formic acid aqueous solution (mixing ratio: 0% at the start of HPLC to 40% after 45 minutes). The procedure was performed in the same manner as in Example 1 except that the gradient was changed to (Gradient). Amino acid composition analysis and mass spectrometry were performed in the same manner as in Example 1, and the results supporting the above structure were obtained.
[0027]
Example 3
H2NC (NH) -Tyr-D-Arg-Phe-N (CH3) CH2CH2COOH
The tetrapeptide derivative having the above structure was synthesized as follows by a solid phase method using the Fmoc / NMP method. A glass filter was used for filtration.
[0028]
After swelling 0.500 g of Alko resin with 6 ml of DMF, 0.228 g of Fmoc-N-methyl-β-alanine (Fmoc-β-MeAla-OH) and 0.093 ml of pyridine were added to the resin. After shaking for 1 minute, 0.147 g of 2,6-dichlorobenzoyl chloride was added and shaken for 24 hours. The resulting Fmoc-β-MeAla-Alko resin was washed three times with 6 ml of DMF, then three times with 6 ml of methanol, and three times with 6 ml of DCM, and unreacted hydroxymethyl groups were removed in 6 ml of DCM. Then, 0.0891 ml of benzoyl chloride and 0.0847 ml of pyridine were added, and the mixture was shaken for 1 hour to benzoylate. Further, the amino acid resin was washed three times with 6 ml of DCM, three times with 6 ml of DMF, and three times with 6 ml of methanol, and dried in a potassium hydroxide desiccator under vacuum.
[0029]
The Fmoc-group was removed by treating the Fmoc-β-MeAla-Alko resin three times with 12 ml of DMF, then three times with 12 ml of DMF containing 20% piperidine, and six times with 12 ml of DMF, to remove the Fmoc-group. 0.262 g of Phe-OH, 0.315 g of PyBrop (Watanabe Chemical Industry), 6 ml of NMP and 0.273 ml of DIPEA were added, and shaken for 24 hours to produce an Fmoc-Phe-β-MeAla-Alko resin. . After filtering and washing with 6 ml of NMP, unreacted amino groups were treated with 6 ml of DMF containing 0.248 g of 1-acetylimidazole and 0.0784 ml of DIPEA for 1 hour and capped. Then, the obtained resin was washed with 6 ml of NMP.
[0030]
The Fmoc group was removed from the Fmoc-Phe-β-MeAla-Alko resin by the same operation as above, and 0.557 g of Fmoc-D-Arg (Pmc) -OH, 0.121 g of HOBt, 0.299 g of HBTU, 0.274 ml of DIPEA was added, and the mixture was shaken for 1 hour to produce Fmoc-D-Arg (Pmc) -Phe-β-MeAla-Alko resin. Then, after filtration and washing as in the previous section, unreacted amino groups were capped.
[0031]
The Fmoc group was removed from the Fmoc-D-Arg (Pmc) -Phe-β-MeAla-Alko resin by the same operation as described above, and 0.310 g of Fmoc-Tyr (t-Bu) -OH and 0.103 g of HOBt were removed. , HBTU 0.256 g and DIPEA 0.235 ml were added and shaken for 1 hour to produce Fmoc-Tyr (t-Bu) -D-Arg (Pmc) -Phe-β-MeAla-Alko resin. After filtration and washing as in the previous section, unreacted amino groups were capped.
[0032]
The Fmoc group was removed from the Fmoc-Tyr (t-Bu) -D-Arg (Pmc) -Phe-β-MeAla-Alko resin by the same operation as described above, and the method of Matsudada et al. (The Journal of Organic Chemistry,570.989 g of 1H-pyrazole-1-carboxamidine hydrochloride, 1.293 ml of DIPEA, and 6 ml of DMF prepared according to the method described at 10-60 ° C, more preferably at 40-50 ° C. After reacting for 4 to 4 hours, the amino group of tyrosine at the N-terminal was amidinated. Then, the mixture was filtered, washed (3 times with 6 ml of NMP, and 3 times with 6 ml of methanol), and dried in a potassium hydroxide desiccator under vacuum.
[0033]
596 mg of the resin obtained by the above operation was treated on a glass filter with 5 ml of a mixed solution of TFA, phenol and water (TFA: phenol: water = 93: 2: 5) for 1 hour and filtered. The same operation was performed twice in total. The resin was further treated with 5 ml of TFA for 5 minutes and filtered. The same operation was performed three times. The filtrate obtained by each operation was combined and the solvent was distilled off under reduced pressure at 20 ° C. or lower. 20 ml of diethyl ether was added to the residue to form a white precipitate, and the operation of discarding the supernatant was performed three times in total. The obtained white powder was dissolved in 20 ml of water, and washed 3 times with 5 ml of diethyl ether in a separating funnel. Then, the aqueous layer was freeze-dried to obtain a crude amidinated peptide.
[0034]
56.2 mg of the crude amidinated peptide was dissolved in 10 ml of a 0.05% TFA aqueous solution and purified with a Shimadzu HPLC system. HPLC shows YMC D-ODS-5-ST C18A mixture of the column and a 0.05% TFA aqueous solution containing 0.5% acetonitrile and a 0.05% TFA aqueous solution containing 70% acetonitrile (mixing ratio is a continuous concentration gradient from 0% at the start of HPLC to 90% after 50 minutes). The flow rate was 1 ml / min). Amino acid composition analysis and mass spectrometry were performed in the same manner as in Example 1, and results supporting the above structure were obtained.
[0035]
Example 4
H2NC (NH) -Tyr-D-Arg-Phe-N (CH2CH3) CH2CH2COOH
The tetrapeptide derivative having the above structure was synthesized as follows by a solid phase method using the Fmoc / NMP method. A glass filter was used for filtration.
[0036]
After swelling 1.000 g of Alko resin with 12 ml of NMP, 0.475 g of Fmoc-N-ethyl-β-alanine (Fmoc-β-EtAla-OH) and 0.017 g of DMAP were added and shaken for 1 minute. Then, 0.177 g of DIPCI was added and shaken for 24 hours. The resulting Fmoc-β-EtAla-Alko resin was washed three times with 12 ml of NMP, then three times with 12 ml of methanol and three times with 12 ml of DCM, and unreacted hydroxymethyl groups were chlorinated in 12 ml of DCM. 0.178 ml of benzoyl and 0.170 ml of pyridine were added and shaken for 1 hour to benzoylate. Further, the amino acid resin was washed with 12 ml of DCM three times, with 12 ml of DMF three times, and with 12 ml of methanol three times, and dried in a potassium hydroxide desiccator under vacuum.
[0037]
The Fmoc group was removed by treating the Fmoc-β-EtAla-Alko resin three times with 20 ml of DMF, then three times with 12 ml of DMF containing 20% piperidine, and further six times with 12 ml of DMF to remove the Fmoc-group. 0.387 g of Phe-OH, 0.466 g of PyBrop, 12 ml of NMP, and 0.523 ml of DIPEA were added, and the mixture was shaken for 24 hours to produce Fmoc-Phe-β-EtAla-Alko resin. After filtration, the precipitate was washed with 12 ml of NMP, and unreacted amino groups were treated with 12 ml of DMF containing 0.551 g of 1-acetylimidazole and 0.174 ml of DIPEA for 1 hour and capped. Then, the obtained resin was washed again with 12 ml of NMP.
[0038]
The Fmoc group was removed from the Fmoc-Phe-β-EtAla-Alko resin by the same operation as described above. 0.707 g of Fmoc-D-Arg (Pmc) -OH, 0.153 g of HOBt, 0.379 g of HBTU and 0.348 ml of DIPEA were added to the resin, and the mixture was shaken for 1 hour and Fmoc-D-Arg (Pmc)- Phe-β-EtAla-Alko resin was produced. After filtration and washing as in the previous section, unreacted amino groups were capped.
[0039]
The Fmoc group is removed from the Fmoc-D-Arg (Pmc) -Phe-β-EtAla-Alko resin by the same operation as above, and 0.460 g of Fmoc-Tyr (t-Bu) -OH and 0.153 g of HOBt are removed. , HBTU 0.399 g and DIPEA 0.348 ml were added and shaken for 1 hour to produce Fmoc-Tyr (t-Bu) -D-Arg (Pmc) -Phe-β-EtAla-Alko resin. After filtration and washing as described above, unreacted amino groups were capped.
[0040]
1H-pyrazole-1 prepared in the same manner as in Example 3 by removing the Fmoc group from the Fmoc-Tyr (t-Bu) -D-Arg (Pmc) -Phe-β-EtAla-Alko resin by the same operation as described above. -2.199 g of carboxamidine hydrochloride, 2.874 ml of DIPEA and 6 ml of DMF were added, and the mixture was reacted at 40 to 50 ° C for 1 to 4 hours to amidinate the amino group of tyrosine at the N-terminal. Next, the mixture was filtered and washed (3 times with 12 ml of NMP and 3 times with 12 ml of methanol), and dried in a potassium hydroxide desiccator under vacuum.
[0041]
1.514 g of the resin obtained by the above operation was treated on a glass filter with 10 ml of a mixed solution containing TFA, phenol and water (TFA: phenol: water = 93: 2: 5) for 1 hour and filtered. The same operation was performed twice in total. The resin was further treated with 10 ml of TFA for 5 minutes and filtered. The same operation was performed three times. The filtrate obtained by each operation was combined and the solvent was distilled off under reduced pressure at 20 ° C. or lower. 20 ml of diethyl ether was added to the residue to form a white precipitate, and the operation of discarding the supernatant was performed three times in total. The obtained white powder was dissolved in 30 ml of water, washed three times with 5 ml of diethyl ether in a separating funnel, and the aqueous layer was lyophilized to obtain a crude amidinated peptide.
[0042]
The crude amidinated peptide (100 mg) was dissolved in a 0.05% TFA aqueous solution (20 ml) and purified in the same manner as in Example 3. Amino acid composition analysis and mass spectrometry were performed in the same manner as in Example 1, and results supporting the above structure were obtained.
[0043]
Example 5
H2NC (NH) -Tyr-D-Arg-Phe-OMe
H2NC (NH) -Tyr-D-Arg-Phe-NHMe
H2NC (NH) -Tyr-D-Arg-Phe-βAla-ol
H2NC (NH) -Tyr-D-Arg-Phe-Gly-OH
H2NC (NH) -Tyr-D-Arg-Phe-Ala-OH
H2NC (NH) -Tyr-D-Arg-Phe-MeβAla-OEt
H2NC (NH) -Tyr-D-Arg-Phe- (n-Pr) βAla-OH
As a raw material for producing the above peptide, a protected peptide represented by the following formula: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OH was prepared by the liquid phase method as follows.
[0044]
254 g of Z-Phe-OTce, which is a starting material, is treated with 900 ml of 25% hydrogen bromide-acetic acid to remove the Z group, and then CH is cooled in an ice bath.2Cl2  Dissolved in 1000 ml. Boc-D-Arg (Z2) -OH (288 g) and HOBt (85 g) were added, neutralized with TEA (77 ml), and condensed with EDC · HCl (121 g) to obtain Boc-D-Arg (Z2) -Phe-OTce. Then, Boc-D-Arg (Z2) -Phe-OTce (241 g) was treated with 4N hydrochloric acid-acetic acid ethyl ester (1000 ml) to remove the Boc group, and dissolved in DMF (1300 ml) in an ice bath. 108 g of Boc-Tyr (Bzl) -OH and 46 g of HOBt were added to this solution, neutralized with 42 ml of TEA, and then condensed with 65 g of EDC · HCl to obtain a protected peptide represented by the following formula: Boc-Tyr ( Bzl) -D-Arg (Z2) -Phe-OTce was obtained.
[0045]
Boc-Tyr (Bzl) -D-Arg (Z2) -Phe-OTce (48 g) was treated with 4N hydrochloric acid-ethyl acetate (250 ml) to remove the Boc group, and then dissolved in DMF (150 ml) in an ice bath. After neutralizing this solution with 7 ml of TEA, 19 g of Z-HNC (NZ) -Pyrazole (amidination reagent) was added, and the mixture was stirred at room temperature, and protected peptide of the following formula: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OTce was obtained. 42 g of this protected peptide was dissolved in acetic acid in a water bath, and 21 g of zinc dust was added thereto, and the mixture was stirred for 2 hours. -Z) -Tyr (Bzl) -D-Arg (Z2) -Phe-OH was obtained.
[0046]
Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OH with MeOH (EDC-DMAP method); NH2Me (EDC-HOBt method); H-βAla-ol (EDC-HOBt method); H-Gly-OBzl · TosOH (EDC-HOBt method); H-Ala-OBzl · TosOH (EDC-HOBt method); Me βAla-OEt (EDC-HOBt method); or H- (n-Pr) βAla-OBzl · TosOH (EDC-HOBt method) was condensed. The product was dissolved in acetic acid in a water bath and catalytically reduced in the presence of palladium carbon. The catalyst was removed, and the reaction solution was concentrated under reduced pressure, followed by lyophilization to obtain a powdered target peptide. The results of amino acid analysis and mass spectrometry under the following conditions supported the structure of each peptide compound.
[0047]
For amino acid analysis, about 0.5 mg of the peptide was collected in a hydrolysis tube, 1 ml of 6N hydrochloric acid was added, and after degassing and sealing, the mixture was hydrolyzed at 110 ° C. for 24 hours. After cooling to room temperature and concentrating to dryness at 40 ° C., the residue was dissolved in 5 ml of purified water. Take 5 μl of this solution, dry it under reduced pressure, and add 50 mM NaHCO3  20 μl of a buffer solution (pH 9.0) and 40 μl of dabsyl chloride-acetonitrile solution were added, and the mixture was heated at 70 ° C. for 10 minutes. The reaction solution was concentrated under reduced pressure, the residue was dissolved in 100 μl of 50% ethanol, and 20 μl of the solution was analyzed by liquid chromatography. For mass spectrometry, about 150 μg of the peptide was dissolved in 250 μl of 5% acetic acid, and 1 μl was analyzed by Liquid SIMS.
[0048]
Example 6
H2NC (NH) -Tyr-D-Arg-MePhe-Me βAla-OH
H2NC (NH) -Tyr-D-Arg-EtPhe-Me βAla-OH
The peptide was produced by TosOH.MeβAla-OBzl as a starting material and sequentially from the C-terminal by a liquid phase method. Boc-MePhe-OH and TosOH.MeβAla-OBzl are condensed by the EDC-HOBt method to obtain Boc-MePhe-MeβAla-OBzl. After desorption, Boc-D-Arg (Z2) -OH and EDC-HOBt method to form a Boc-D-Arg (Z2) -MePhe-MeβAla-OBzl. Then, Boc-D-Arg (Z2) -MePhe-MeβAla-OBzl Boc group was eliminated from the mixture with 4N hydrochloric acid-ethyl acetate using 4N hydrochloric acid-ethyl acetate, and then condensed with Boc-Tyr (Bzl) -OH by EDC-HOBt method to obtain a protected peptide: Boc-Tyr (Bzl). ) -D-Arg (Z2) -MePhe-MeβAla-OBzl was obtained.
[0049]
Boc-Tyr (Bzl) -D-Arg (Z2) -MePhe-MeβAla-OBzl was treated with 4N hydrochloric acid-ethyl acetate to remove the Boc group, then Z-HNC (NZ) -Pyrazole (amidinating reagent) was added, and the mixture was stirred at room temperature. Protected peptide: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -MePhe-MeβAla-OBzl was obtained. This protected peptide was dissolved in acetic acid, palladium carbon was added, and hydrogen gas was blown into the solution to perform catalytic reduction. After removing the palladium carbon, the mixture was concentrated under reduced pressure, freeze-dried, and powdered peptide H2NC (NH) -Tyr-D-Arg-MePhe-MeβAla-OH was obtained. This peptide gave results supporting the above structure in amino acid analysis and mass spectrometry described in Example 5.
[0050]
Using Boc-EtPhe-OH in place of Boc-MePhe-OH, Boc-EtPhe-MeβAla-OBzl was condensed with TosOH.MeβAla-OBzl by the EDC-HOBt method in the same manner as described above. Then, deprotection and condensation are repeated in the same manner as described above to obtain a protected peptide represented by the following formula: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -EtPhe-MeβAla-OBzl was obtained. This protected peptide was dissolved in acetic acid, palladium carbon was added, and hydrogen gas was blown into the solution to perform catalytic reduction. After removing the palladium carbon, the mixture was concentrated under reduced pressure, freeze-dried, and powdered peptide H2NC (NH) -Tyr-D-Arg-EtPhe-MeβAla-OH was obtained. This peptide gave results supporting the above structure by amino acid analysis and mass spectrometry as described in Example 5.
[0051]
Example 7
H2NC (NH) -Tyr-D-Arg-Phe-Me βAla-OH
It was synthesized as follows by a liquid phase method usually used for peptide synthesis. Starting from 254 g of Z-Phe-OTce as a starting material, the Z group was eliminated with 900 ml of 25% hydrogen bromide-acetic acid, and CH was removed in an ice bath.2Cl2  It was dissolved in 1000 ml. Boc-D-Arg (Z2) -OH and 85 g of HOBt were added, neutralized with 77 ml of TEA, and then condensed with 121 g of EDC · HCl to obtain Boc-D-Arg (Z2) -Phe-OTce. Then, Boc-D-Arg (Z2241 g of-)-Phe-OTce was dissolved in 1300 ml of DMF in an ice bath after removing the Boc group using 1000 ml of 4N hydrochloric acid-ethyl acetate. To this solution were added 108 g of Boc-Tyr (Bzl) -OH and 46 g of HOBt, neutralized with 42 ml of TEA, and then condensed with 65 g of EDC · HCl to obtain a protected peptide represented by the following formula: Boc-Tyr (Bzl) -D-Arg (Z2) -Phe-OTce was obtained.
[0052]
Boc-Tyr (Bzl) -D-Arg (Z248) g) -Phe-OTce was treated with 250 ml of 4N hydrochloric acid-ethyl acetate to remove the Boc group and dissolved in 150 ml of DMF in an ice bath. After neutralizing this solution with 7 ml of TEA, 19 g of Z-HNC (NZ) -Pyrazole (amidinating reagent) was added, and the mixture was stirred at room temperature to obtain a protected peptide of the following formula: Z-HNC (NZ) ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OTce was obtained. 42 g of this protected peptide was dissolved in acetic acid in a water bath, and 21 g of zinc powder was added thereto, followed by stirring for 2 hours. After removing zinc dust from the reaction solution, the mixture was concentrated under reduced pressure and the protected peptide: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OH was obtained.
[0053]
The above protected peptide: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-OH (1.15 g) and TosOH.MeβAla-OBzl (0.93 g) were dissolved in 30 ml of DMF (containing 10% of DMSO) in an ice bath, and 0.24 g of HOOBt was added to this solution, and TEA was added. After neutralization with 21 ml, the mixture was condensed with 0.25 g of EDC · HCl and protected peptide represented by the following formula: Z-HNC (NZ) -Tyr (Bzl) -D-Arg (Z2) -Phe-MeβAla-OBzl was obtained. 0.90 g of this protected peptide was dissolved in 100 ml of acetic acid, 0.90 g of palladium carbon was added thereto, and hydrogen gas was blown into the solution to perform catalytic reduction. After removing the palladium carbon, the mixture was concentrated under reduced pressure, freeze-dried, and the peptide of powder: H2NC (NH) -Tyr-D-Arg-Phe-MeβAla-OH was obtained. This peptide gave results supporting the above structure in amino acid analysis and mass spectrometry described in Example 5.
[0054]
The retention time of HPLC and the Rf value of thin-layer chromatography are shown in Table 1 below as physicochemical properties of the peptide derivative of the present invention. All of these peptide derivatives were obtained as lyophilized products. Table 2 shows compounds synthesized by the same method.
[0055]
Figure 0003554399
[0056]
Conditions for thin layer chromatography:
Rfa        : N-butanol: acetic acid: purified water = 4: 1: 5, and the upper layer was used as a developing solvent.
Rfb        : N-butanol: acetic acid: purified water: pyridine = 15: 3: 10: 12 was used as a developing solvent.
Thin plate: silica gel (Merck F254)
[0057]
[Table 1]
Figure 0003554399
Figure 0003554399
[0058]
[Table 2]
Figure 0003554399
[0059]
Test example
The analgesic effect of the peptide derivative of the present invention was evaluated by the pressure stimulation method as follows. A pressure stimulus was applied to the ridge of the mouse at a rate of 10 mmHg / sec, and the pressure indicating a behavior such as struggling and biting the stimulus site was measured, and this was defined as a pain response threshold. In the experiment, mice that had previously responded to a pressure of 40 to 50 mmHg were used. The maximum stimulation pressure was 100 mmHg. The analgesic effect is
Figure 0003554399
(Where Po is the pain response threshold before drug treatment, Pt is the pain response threshold t minutes after drug treatment, and Pc is the maximum stimulation pressure), and was calculated as percent of maximum possible effect (% of MPE). The dose of the drug giving 50%% ofMPE from the dose response curve is the ED50The analgesic efficacy of the drugs was compared. Table 3 shows the results of subcutaneous administration (subcutaneous back) and oral administration.
[0060]
[Table 3]
Figure 0003554399
[0061]
【The invention's effect】
The peptide derivative of the present invention is useful because it can be used for treating cancer pain and the like.

Claims (12)

下記の式:
Figure 0003554399
〔式中、R1は水素原子またはC1-6アルキル基を示し;R2は水素原子、C1-6アルキル基、アリール基、C1-6アルカノイル基、またはアリールカルボニル基を示し;Q はD-Arg またはL-Arg を示し;X はOR3(R3は水素原子またはC1-6アルキル基を示す) 、NR4R5(R4は水素原子またはC1-6アルキル基を示し、R5はC1-6ヒドロキシアルキル基またはスルホン酸置換C1-6アルキル基を示し、あるいはR4及びR5が一緒になってそれらが置換する窒素原子と共に5 または6 員含窒素飽和複素環を示す) 、又はNR6-CR7R8R9(R6は水素原子、C1-6アルキル基、またはアリール置換C1-6アルキル基を示し、R7は水素原子、カルボキシル基、C1-6アルコキシカルボニル基カルボキシC1-6アルキル基、C 1-6 アルキル置換若しくは無置換カルバモイルC1-6アルキル基、またはC1-6アルコキシカルボニルC1-6アルキル基を示し、R8は水素原子、C1-6アルキル基、アミノC1-6アルキル基、アミジノC1-6アルキル基、グアニジノC1-6アルキル基、ヒドロキシC1-6アルキル基、カルボキシC1-6アルキル基、又はC 1-6 アルキル置換若しくは無置換カルバモイルC1-6アルキル基を示し、あるいはR6及びR8が一緒になってR6が置換する窒素原子とともに5 または6員カルボキシ置換含窒素飽和複素環を示し、R9は水素原子またはC1-6アルキル基を示す)〕で表される化合物およびその塩。
The following formula:
Figure 0003554399
Wherein R 1 represents a hydrogen atom or a C 1-6 alkyl group; R 2 represents a hydrogen atom, a C 1-6 alkyl group, an aryl group, a C 1-6 alkanoyl group, or an arylcarbonyl group; Represents D-Arg or L-Arg; X represents OR 3 (R 3 represents a hydrogen atom or a C 1-6 alkyl group), NR 4 R 5 (R 4 represents a hydrogen atom or a C 1-6 alkyl group) And R 5 represents a C 1-6 hydroxyalkyl group or a sulfonic acid-substituted C 1-6 alkyl group, or R 4 and R 5 together form a 5- or 6-membered nitrogen-containing saturated group together with the nitrogen atom which they substitute. A heterocycle), or NR 6 -CR 7 R 8 R 9 (R 6 represents a hydrogen atom, a C 1-6 alkyl group, or an aryl-substituted C 1-6 alkyl group, R 7 represents a hydrogen atom, a carboxyl group , C 1-6 alkoxycarbonyl group, a carboxy C 1-6 alkyl group, C 1-6 alkyl substituted or unsubstituted carbamoyl C 1-6 alkyl group or a C 1-6 aralkyl, Indicates alkoxycarbonyl C 1-6 alkyl group, R 8 is a hydrogen atom, C 1-6 alkyl, amino C 1-6 alkyl group, an amidino C 1-6 alkyl group, a guanidino C 1-6 alkyl, hydroxy C A 1-6 alkyl group, a carboxy C 1-6 alkyl group, or a C 1-6 alkyl- substituted or unsubstituted carbamoyl C 1-6 alkyl group, or R 6 and R 8 taken together and substituted by R 6 A 5- or 6-membered carboxy-substituted nitrogen-containing saturated heterocyclic ring together with a nitrogen atom, and R 9 represents a hydrogen atom or a C 1-6 alkyl group)];
が水素原子である請求項1に記載の化合物およびその塩。The compound according to claim 1 , wherein R 1 is a hydrogen atom, and a salt thereof. がメチルまたはエチルである請求項1又は2に記載の化合物およびその塩。The compound according to claim 1 or 2, wherein R 6 is methyl or ethyl, and a salt thereof. がカルボキシル基またはカルバモイル基である請求項1ないし3のいずれか1項に記載の化合物およびその塩。The compound according to any one of claims 1 to 3, wherein R 7 is a carboxyl group or a carbamoyl group, and a salt thereof. がカルボキシメチル基またはカルバモイルメチル基である請求項1ないしのいずれか1項に記載の化合物およびその塩。The compound according to any one of claims 1 to 3 , wherein R 7 is a carboxymethyl group or a carbamoylmethyl group, and a salt thereof. Q がD−Arg である請求項1ないし5のいずれか1項に記載の化合物およびその塩。The compound according to any one of claims 1 to 5, wherein Q is D-Arg, and a salt thereof. が水素原子であり、Rが水素原子であり、Rがカルボキシメチル基であり、Rが水素原子である請求項6に記載の化合物。The compound according to claim 6, wherein R 1 is a hydrogen atom, R 6 is a hydrogen atom, R 7 is a carboxymethyl group, and R 8 is a hydrogen atom. が水素原子であり、Rが水素原子であり、Rがカルバモイルメチル基であり、Rが水素原子である請求項6に記載の化合物。The compound according to claim 6, wherein R 1 is a hydrogen atom, R 6 is a hydrogen atom, R 7 is a carbamoylmethyl group, and R 8 is a hydrogen atom. が水素原子であり、Rがメチル基であり、Rがカルボキシメチル基であり、Rが水素原子である請求項6に記載の化合物。The compound according to claim 6, wherein R 1 is a hydrogen atom, R 6 is a methyl group, R 7 is a carboxymethyl group, and R 8 is a hydrogen atom. が水素原子であり、Rがエチル基であり、Rがカルボキシメチル基であり、Rが水素原子である請求項6に記載の化合物。The compound according to claim 6, wherein R 1 is a hydrogen atom, R 6 is an ethyl group, R 7 is a carboxymethyl group, and R 8 is a hydrogen atom. 請求項1に記載の化合物の多量体又は環状体およびその塩。A multimer or cyclic compound of the compound according to claim 1, and a salt thereof. 塩酸塩又は酢酸塩である請求項1ないし11のいずれか1項に記載の化合物の塩。The salt of the compound according to any one of claims 1 to 11, which is a hydrochloride or an acetate.
JP04989495A 1994-03-11 1995-03-09 Peptide derivatives Expired - Fee Related JP3554399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04989495A JP3554399B2 (en) 1994-03-11 1995-03-09 Peptide derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4098994 1994-03-11
JP6-40989 1994-03-11
JP04989495A JP3554399B2 (en) 1994-03-11 1995-03-09 Peptide derivatives

Publications (2)

Publication Number Publication Date
JPH07300496A JPH07300496A (en) 1995-11-14
JP3554399B2 true JP3554399B2 (en) 2004-08-18

Family

ID=26380506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04989495A Expired - Fee Related JP3554399B2 (en) 1994-03-11 1995-03-09 Peptide derivatives

Country Status (1)

Country Link
JP (1) JP3554399B2 (en)

Also Published As

Publication number Publication date
JPH07300496A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP5357022B2 (en) Multifunctional bioactive compounds
EP0148133B1 (en) Tripeptide compounds containing pyroglutamic acid and tryptophan, process for their production and therapeutic applications
IE873383L (en) Phosphinic acid derivatives
JPH0753753B2 (en) Novel peptide derived from tachykinin and pharmaceutical composition
EP1309613B1 (en) Pharmaceutical composition comprising an analgesic peptide
EP4269422A1 (en) Method for producing peptide compound containing n-substituted-amino acid residue
JPS5973574A (en) Cyclic dipeptide
HU182866B (en) Process for preparing new tetrapeptide derivatives
US6051685A (en) Peptide derivatives
HU186375B (en) Process for the preparation of biologically active encephalina derivatives
EP0755942B1 (en) N-amidino dermorphin derivative
JP3554399B2 (en) Peptide derivatives
AU718320B2 (en) Peptide derivatives
JPH051798B2 (en)
US6228841B1 (en) Peptide derivatives
JPH0262559B2 (en)
JPH05271094A (en) Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative
US20010007016A1 (en) Peptide derivatives
JP2918746B2 (en) Peptide derivatives and their uses
JPH10330398A (en) New cyclic peptide
WO1999033864A1 (en) Peptide derivatives
US5276137A (en) Analgesic peptides with a trifluoronorvaline modification
JP2627262B2 (en) New tripeptide compounds
JPH07316193A (en) Peptide derivative and use thereof
JPH10330399A (en) Neutral transmission polypeptide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees