JP3550783B2 - Lithium-containing transition metal composite oxide, method for producing the same, and use thereof - Google Patents

Lithium-containing transition metal composite oxide, method for producing the same, and use thereof Download PDF

Info

Publication number
JP3550783B2
JP3550783B2 JP05881795A JP5881795A JP3550783B2 JP 3550783 B2 JP3550783 B2 JP 3550783B2 JP 05881795 A JP05881795 A JP 05881795A JP 5881795 A JP5881795 A JP 5881795A JP 3550783 B2 JP3550783 B2 JP 3550783B2
Authority
JP
Japan
Prior art keywords
lithium
compound
manganese
transition metal
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05881795A
Other languages
Japanese (ja)
Other versions
JPH0837007A (en
Inventor
真幸 芳尾
昌樹 岡田
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP05881795A priority Critical patent/JP3550783B2/en
Publication of JPH0837007A publication Critical patent/JPH0837007A/en
Application granted granted Critical
Publication of JP3550783B2 publication Critical patent/JP3550783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、リチウム含有遷移金属複合酸化物の新規な製造方法及びこれを用いるリチウム二次電池に関するものであって、さらに詳しくは、リチウム化合物、ニッケル化合物、+3価のマンガンを含むマンガン化合物およびコバルト化合物を熱処理して、LixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウムニッケルマンガン複合酸化物の製造方法と、これを正極に使用するリチウム二次電池に関するものである。
【0002】
層状構造のリチウム含有遷移金属酸化物は、結晶構造中にリチウムイオンの移動経路と収容サイトを有することから、リチウムホスト化合物としての機能が期待される材料である。さらに、遷移金属の酸化還元能から、結晶構造中のリチウムを電気化学的に収容・放出可能であり、リチウム二次電池の活物質材料として注目されている。
【0003】
また、リチウム二次電池は、高エネルギー密度の電池として、その実用化が期待されている新型二次電池である。
【0004】
【従来の技術】
岩塩型構造で面指数(111)面にリチウムと遷移金属が規則的に配列した層状構造を持つ、LiMO型酸化物(Mは遷移金属)は、リチウム二次電池の正極活物質材料として注目を集めている。
【0005】
その中でも、リチウムコバルト酸化物(LiCoO)及びリチウムニッケル酸化物(LiNiO)をリチウム二次電池の正極活物質に用いた場合には、4V級の高い放電電圧を示すことから、これら2つの化合物の基礎から実用化までの幅広い立場での研究が盛んに行われている。
【0006】
すでに、正極活物質にリチウムコバルト酸化物を、負極に炭素材料を用いたイオンタイプのリチウム二次電池が実用化されているが、コバルト原料の資源的な制約とコストの面で、リチウムニッケル酸化物の実用化に注目が集っている。
【0007】
リチウムニッケル酸化物は、4V級でリチウムコバルト酸化物を上回る放電容量が期待できる正極活物質材料ではあるが、製造方法によって放電性能が大きく異なることや、再現良く一定の充放電特性を示す材料を製造するためには、極めて厳密な製造条件を設定する必要があること、さらにはそうして得られた材料であっても充放電サイクル数の増加に伴って充放電特性が著しく劣化するという課題があるため、現在迄、実用化までには至っていない。
【0008】
この原因としては、以下の様に考えられる。
【0009】
一般にニッケル化合物に関しては、Ni2+の化合物が安定であり、各種ニッケル化合物を熱処理した場合には、岩塩型構造のNiOが生成し易い。
【0010】
又、ニッケル化合物とリチウム化合物のモル比が完全に量論比になっていない場合には、Li面にNiが混入した構造を取り易くなり、層状構造の発達したLiNiOを生成することが難しい。
【0011】
NiOの生成及びLi面へのNiの不規則配列によって、充放電特性が著しく低下することが以前から知られており、従って、再現良く一定の充放電特性を示す材料を製造することは、本来困難である。その解決策として、例えば、Ni3+からNi2+への還元反応を防ぐために、雰囲気を酸化雰囲気にして熱処理を行うことが必要となる。
【0012】
また、上記方法により、たとえ層状構造のリチウムニッケル酸化物が合成できた場合でも、充放電反応に関しては、以下のような本質的な課題がある。
【0013】
層状構造のリチウムニッケル酸化物中のNi3+イオンは、低スピン型の電子配置(3d:t2g ・e )を持つ。充電によってNi3+イオンの電子が1個取り去られNi4+が生成するが、このとき3d軌道を形成するエネルギー的に異なる2つの軌道(t2g およびe )のうち、上方のe 軌道から電子が1個取り去られるために結晶場が変化し、結晶構造の変化を生じることになる。
【0014】
Ohzuku等は、充電によるリチウムニッケル酸化物の結晶構造変化を、X線回折によって、六方晶から単斜晶さらに六方晶へと変化することを確認している(J.Electrochem.Soc.,vol.140,pp−1862(1993))。
【0015】
また、荒井等によれば、充電によって最終的にC軸の長さが大きくことなる2つの六方晶へと変化するために結晶構造の一部の不可逆的な分解反応が生じ、リチウムの再挿入が不可能となるために放電容量が低下すると考察している(第34回電池討論会、講演番号:2A09,発表要旨集p.49(1993年))。
このように、充放電反応に伴う、ニッケル本来の性質に基づく不可逆的な結晶構造の変化によって、可逆的な充放電反応を進めることが困難と考えられている。
【0016】
以上のように、リチウムニッケル酸化物は、4V級でリチウムコバルト酸化物を上回る放電容量が期待できる正極活物質材料ではあるが、これまでのところ実用化までには至っていない。
【0017】
このため、実用化に向けて、ニッケル本来の物性に起因する製造及び電気化学特性に関する課題の解決のために、他の遷移金属との複合化による基礎物性の変化に関する検討が行われている。
【0018】
特開平5−283076号公報では、他の遷移金属との複合化によって、充放電サイクル特性を改善する方法が提案されている。
【0019】
これは、ニッケルと他の遷移金属との複合化によって、3d軌道のエネルギー準位をNi3+が安定な状態になるように変化せること、及び充放電時の結晶場の変化を抑制するように3d軌道のエネルギー準位を変化させることで、合成の再現性の改善及び充放電サイクル特性の改善を目的にした提案である。
【0020】
しかし、我々の検討によれば、この提案にあるような700℃から900℃の高い温度で1段で熱処理を行う製造条件では、遷移金属との複合化と共にニッケル自信の還元反応も起こり易く、結果的に岩塩型構造のNiOが一部生成するために、十分な充放電サイクル特性を得られる化合物を製造することが困難である。
【0021】
一方、特開平6−96768号公報では、複合化する遷移金属に二酸化マンガンを用いて、熱処理を酸素中で2段で行うことで再現良く一定の充放電特性を示す材料を製造する方法を提案している。
【0022】
この提案は、容易に層状構造に加熱変換することができるリチウム,マンガン及びニッケルから成る中間体を経由させることで、安定な充放電サイクル特性が得られる層状構造のリチウムニッケルマンガン酸化物を再現良く合成する方法の提案を目的としたものである。
【0023】
しかし、我々の検討では、この公開特許の内容の通りにリチウム化合物とニッケル化合物と二酸化マンガンとの混合物を熱処理した場合には、岩塩構造ではあるが絶縁体で電気化学的不活性な層状構造のLiMnOが生成し易くなり、十分な充放電特性を示す正極材料を得ることが困難である。
【0024】
以上述べてきたように、製造及び電気化学特性に関する課題の解決を目的とした、他の遷移金属との複合化による基礎物性の変化に関して種々の検討が行われてはいるが、ニッケル本来の物性に起因すると考えられる原因により、これまでのところ実用化までには至っていない。
【0025】
一方、最近のパーソナルユースのポータブル機器の普及に伴い、小型、軽量で、エネルギー密度の高い二次電池の開発が強く要望されている。
【0026】
この要望に対応可能な二次電池としては、負極にリチウム又はリチウムを吸蔵放出可能な物質を用いるリチウム二次電池が提案されている。
【0027】
これまでのところ、正極活物質にリチウムコバルト酸化物を用いたイオンタイプのリチウム二次電池が実用化されているが、前述したように、コバルト原料の資源的な制約とコストの面で、リチウムニッケル酸化物や、さらにはリチウムマンガン酸化物の実用化に注目が集っている。
【0028】
【発明が解決しようとする課題】
本発明の目的は、リチウム含有遷移金属複合酸化物の改良に関し、詳しくは、新規な層状構造のリチウム含有遷移金属複合酸化物を再現良く製造する新しい方法を提案し、さらに、この化合物を正極に用いることで、これまでにない高出力、高エネルギー密度の4V級リチウム二次電池を提供することにある。
【0029】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、リチウム化合物と遷移金属化合物とを熱処理して、新規なLiMnCoNi1−(y+z)(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0≦z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物を再現良く製造することが可能となり、さらに、これを正極に用いると、安定な充放電サイクル特性を示し、従来にはない高容量で高エネルギー密度のリチウム二次電池が構成可能であることを見いだし、本発明を完成するに至った。
【0030】
【作用】
以下、本発明を具体的に説明する。
【0031】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物は、層状構造LiNiO2と同じ空間群R−3m構造を有する。さらに詳しくは、岩塩型構造の面指数(111)面に沿ってリチウム面と所定のモル比でニッケルとマンガンが入った面が規則的に配列した層状構造を持つ化合物である。この化合物の合成に用いるマンガン化合物としては+3価のマンガンを含むマンガン化合物を用いて製造することを必須とする。
【0032】
詳細については不明だが、+4価のマンガンからなるマンガン化合物を用いた場合、反応初期の段階で、+4価のマンガンとリチウムとの反応が起こり易くなり、岩塩構造であるが絶縁体で導電性が悪い層状構造んLiMnOが生成し易くなると考えられる。逆に、+2価のマンガンからなるマンガン化合物を用いた場合、熱処理過程でマンガン自身の酸化反応が一部で起こり、それに伴ってニッケルの還元反応を促進する因子となり、導電性の悪いNiOの生成が起こり易くなると考えられる。
【0033】
これに対して、+3価のマンガンを含むマンガン化合物を用いた場合、上記の複合反応の進行が抑制され、遷移金属の平均原子価が+3価で、電気化学容量の大きい、結晶性の良い層状構造が発達したリチウム含有遷移金属複合酸化物が再現良く製造できる。
【0034】
+3価のマンガンを含むマンガン化合物としては、特に制限されないが、例えば、Mn、MnOOH、Mn等が例示されるが、γ−MnOOHを用いた場合には、副反応の進行を抑制する効果が高く、より好ましい。
【0035】
本発明で用いるリチウム化合物としては、特に制限されないが、例えば、水酸化リチウム、酸化リチウム、炭酸リチウム、硝酸リチウム、塩化リチウム、硫酸リチウム、酢酸リチウム、ヨウ化リチウム、過酸化リチウム、アルキルリチウム等が例示される。
【0036】
本発明で用いるニッケル化合物としては、特に制限されないが、例えば、水酸化ニッケル、ニッケル酸化物(NiO,Ni等)、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル、酢酸ニッケル、オキシ水酸化ニッケル(NiOOH)等が例示される。
【0037】
本発明で用いるコバルト化合物としては、特に制限されないが、例えば、水酸化コバルト、コバルト酸化物(CoO,Co,Co等)、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト、酢酸コバルト、オキシ水酸化コバルト(CoOOH)が例示される。
【0038】
なお、リチウム化合物及びニッケル化合物には、反応系を塩基性とした場合に、生成したNi3+のNi2+への還元反応が抑制されることから、それぞれの水酸化物を用いることがより好ましい。
【0039】
さらに、リチウム化合物及びニッケル化合物には、それぞれ水和物、無水物のいづれを用いても特に問題はない。
【0040】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物の製造方法においては、リチウム化合物と遷移金属化合物との熱処理を、450℃から900℃の範囲で行うことが好ましい。
【0041】
何故ならば、熱処理温度が450℃未満の場合、岩塩構造ではあるが絶縁体で電気化学的不活性な層状構造のLiMnOが生成し易く、最終的に十分な充放電特性を示す正極材料を得ることが難しいし、また、熱処理温度が900℃を超えると、リチウムの反応系外への放出が起こり易くなり、このためNiの+3価が+2価に還元されて、電気化学的に不活性なNiOの生成が起こり易くなること、及び複合化するマンガンの+2価への還元反応起こり易くなることから、層状構造に規則配列した高性能の化合物を得ることが困難となるからである。
【0042】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物の製造においては、2段以上の熱処理をすることが好ましい。さらに、順次高い温度で、2段以上の熱処理をすることが特に好ましい。
【0043】
何故ならば、1段の熱処理では、層状構造の発達したリチウムニッケルマンガン複合酸化物を製造するためには、700℃を超える高い温度での熱処理が必要となり、リチウム化合物と遷移金属化合物との複合化反応の進行と共に、ニッケル自身の還元反応が起こり易くなり、岩塩型構造のNiOが一部生成した化合物となり、電気化学容量が低下するからである。
【0044】
これに対して、2段以上の熱処理、即ち、低温での熱処理でニッケル自身の還元反応を抑えた状態で、リチウムと遷移金属との複合化反応を進めた後、層状構造を発達さるための高い温度で熱処理を行う場合には、固相内部に発生する僅かな温度分布による反応の不均一性の増加や、局部的な原料組成のズレによる副反応の発生を緩和することができ、いわゆる副反応の進行が抑制され、遷移金属の平均原子価が+3価で、電気化学容量が高く結晶性の良い層状構造が発達したLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物が再現良く製造できる。
【0045】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物の製造においては、熱処理する過程で降温過程を設け、この降温過程で反応物を粉砕、混合することが望ましい。
【0046】
何故ならば、熱処理する過程で降温過程を設け、この降温過程で反応物を粉砕、混合することによって、熱処理の間に発生する、固相内部の僅かな温度分布による反応の不均一性や、局部的な原料組成のズレによる副反応の発生を抑制することができるからである。
【0047】
降温の条件に関しては特に制限されるものではないが、大気中で水分が表面等に吸着しない温度まで降温することが望ましい。
【0048】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物の製造において、出発原料に固体の化合物を用いる場合には、混合した原料を成型体に成型して熱処理することが好ましい。
【0049】
何故ならば、成型体とするにより、各原料間の接触が良好となり、前述の反応の不均一性を解消することができるからである。
【0050】
成型体の形状や成型条件については、特に制限されるものではないが、原料間の接触が十分に保てる状態であることが望ましい。
【0051】
本発明の、マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物の製造においては、熱処理の雰囲気は、酸化雰囲気とすることが好ましい。
【0052】
何故ならば、酸化雰囲気とすることで、上記のニッケル及びマンガンの還元反応を起こりにくくすることができるからである。特に、この酸化雰囲気には、酸素を用いることが望ましく、酸素雰囲気で熱処理することで、ニッケル及びマンガンの還元反応を、より起こりにくくすることができる。
【0053】
本発明のリチウム二次電池の正極には、本発明のリチウム含有遷移金属複合酸化物の製造方法により得られた層状構造のリチウム含有遷移金属複合酸化物を用いることが必須である。
【0054】
上記化合物を正極に用いることで、高容量で高エネルギー密度の二次電池が構成可能となる。
【0055】
また、これまでの層状のリチウムニッケル酸化物やリチウムマンガンニッケル複合酸化物を用いた場合に較べて、サイクル特性に優れた二次電池となる。
【0056】
本発明のリチウム二次電池で用いる負極としては、リチウム金属、リチウム合金またはリチウムを吸蔵放出可能な化合物を用いることができる。リチウム合金としては、例えばリチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金等が例示される。また、リチウムを吸蔵放出可能な化合物としては、グラファイトや黒鉛等の炭素質材料や、FeO、Fe、Fe等の酸化鉄、CoO、Co、Co等の酸化コバルト等の金属酸化物が例示される。
【0057】
また、本発明のリチウム二次電池で用いる電解質としては、特に制限されないが、例えば、炭酸プロピレン、炭酸ジエチル等のカーボネート類や、スルホラン、ジメトキシエタン等のスルホラン類、γ−ブチロラクトン等のラクトン類、ジメトキシエタン等のエーテル類の少なくとも1種類以上の有機溶媒中に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩の少なくとも1種類以上を溶解したものや、無機系又は有機系のリチウムイオン導電性の固体電解質を用いることができる。
【0058】
本発明の、リチウム化合物とニッケル化合物と、+3価のマンガンから成るマンガン化合物とを熱処理して製造したLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<00.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の層状構造のリチウム含有遷移金属複合酸化物を正極活物質に用いて、図1に示す電池を構成した。
【0059】
図中において、1:正極用リード線、2:正極集電用メッシュ、3:正極、4:セパレータ、5:負極、6:負極集電用メッシュ、7:負極用リード線、8:容器、を示す。
【0060】
以下に、本発明の具体例として実施例を示すが、本発明はこれらの実施例により限定されるものではない。
【0061】
【実施例】
実施例1
[Li1.0 Mn0.2 Co0.3 Ni0.5
実施例1として、Li1.0 Mn0.2 Co0.3 Ni0.5 を以下の方法により製造した。
【0062】
水酸化リチウム一水和物(試薬特級)とγ−MnOOH(東ソー株式会社製)と四三酸化コバルト(試薬特級)と水酸化ニッケル(試薬特級)とをモル比でLi:Mn:Co:Niが1.0:0.2:0.3:0.5になるように混合した後、錠剤に成型し、酸素雰囲気下600℃の温度で24時間、第1の熱処理を施した。次にこれを室温まで降温した後に、乳鉢で粉砕、混合し、再度錠剤に成型し、酸素雰囲気下850℃の温度で20時間、第2の熱処理を施した。
【0063】
得られた化合物のX線回折及び化学分析の結果から、この化合物は層状構造を持つ、Li1.0 Mn0.2 Co0.3 Ni0.5 であることが分った。
【0064】
図2にX線回折図、表1に化学分析結果を示した。
【0065】
【表1】

Figure 0003550783
【0066】
層状構造の発達程度を表すX線回折ピークの強度比、{I(006)+I(102)}/I(101)の値が0.5以下であることから、Li面へのNi、Co及びMnの進入が殆どないことが分った。
【0067】
[電池の構成]
得られた層状構造のLi1.0 Mn0.2 Co0.3 Ni0.5 と、導電剤のポリテトラフルオロエチレンとアセチレンブラックの混合物(商品名:TAB−2)を、重量比で2:1の割合で混合した。混合物75mgを1ton/cmの圧力で、20mmφのメッシュ(SUS 316)上にペレット状に成型した後、200℃で5時間、減圧乾燥処理を行った。これを図1の3の正極に用いて、図1の5の負極にはリチウム箔(厚さ0.2mm)から切り抜いたリチウム片を用いて、電解液には六フッ化リン酸リチウムを1mol/dmの濃度で溶解したプロピレンカーボネートとジエチルカーボネートの体積比1:4の混合溶媒に溶解したものを図1の4のセパレーターに含浸させて、断面積2.5cmの図1に示した電池を構成した。
【0068】
[電池特性の評価]
上記方法で作成した電池を用いて、0.4mA/cmの一定電流で、電池電圧が4.3Vから3.0Vの間で充放電を繰り返した。結果を表2に示した。
【0069】
【表2】
Figure 0003550783
【0070】
25サイクル目の放電容量は150mAh/gを示し、1サイクル目の放電容量に対して96%の容量を維持していた。
【0071】
実施例2
[Li1.1 Mn0.2 Co0.05Ni0.75
実施例2として、水酸化リチウム一水和物(試薬特級)とγ−MnOOH(東ソー株式会社製)と四三酸化コバルト(試薬特級)と水酸化ニッケル(試薬特級)とをモル比でLi:Mn:Co:Niが1.1:0.2:0.05:0.75になるように混合した以外は、実施例1と同様にして、リチウム含有遷移金属複合酸化物を製造した。
【0072】
得られた化合物のX線回折及び化学分析の結果から、この化合物は層状構造を持つ、Li1.1 Mn0.2 Co0.05Ni0.75であることが分った。
【0073】
図2にX線回折図、表1に化学分析結果を示した。
【0074】
層状構造の発達程度を表すX線回折ピークの強度比、{I(006)+I(102)}/I(101)の値は0.5以下であり、Li面へのNi、Co及びMnの進入が殆どないことが分った。
【0075】
次に、このLi1.1 Mn0.2 Co0.05Ni0.75を正極に使用する以外は、実施例1と同様に電池を構成して評価し、その結果を表2に示した。
【0076】
25サイクル目の放電容量を161mAh/gを示し、1サイクル目の放電容量の96%を維持していた。
【0096】
比較例1
比較例1として、Li1.0 Mn0.2 Ni0.8 を以下の方法により製造した。
【0097】
水酸化リチウム一水和物(試薬特級)と水酸化ニッケル(試薬特級)と二酸化マンガン(国際標準サンプル、IC−17)をモル比でLi:Mn:Niが1.0:0.2:0.8になるように混合した後、錠剤に成型し、酸素雰囲気下450℃の温度で10時間、第1の熱処理を施した。次にこれを室温まで降温した後、乳鉢で粉砕、混合し、再度錠剤に成型し、酸素雰囲気下750℃の温度で24時間、第2の熱処理を施した。
【0098】
得られた化合物のX線回折の結果から、この化合物は、LiMnOとLiNiO型の層状構造を持つ化合物の複合体であることが分った。図2にX線回折図、表1に化学分析結果を示した。
【0099】
層状構造の発達程度を表すX線回折ピークの強度比、{I(006)+I(102)}/I(101)の値は、0.593であり、0.5以上であることから、Li面へ一部Ni及びMnが挿入していることが分った。
【0100】
次に、これを図1の3の正極に用いた以外は、実施例1と同様な電池を構成し、評価した。結果を図3に示した。
【0101】
25サイクル目の放電容量は130mAh/gを示し、1サイクル目の放電容量に対して85%の容量しか維持していなかった。
【0102】
比較例2
比較例2として、層状構造のLiNiOを以下の方法により作成した。
【0103】
水酸化リチウム一水和物(試薬特級)と水酸化ニッケル(試薬特級)をモル比でLi:Niが1.0:1.0になるように混合した後、錠剤に成型し、酸素中で750℃の温度で16時間、第1の熱処理を施した。次にこれを室温まで降温した後、乳鉢で粉砕、混合し、再度錠剤に成型し、酸素雰囲気下750℃の温度で24時間、第2の熱処理を施した。得られた化合物のX線回折及び化学分析の結果から、この化合物は層状構造を持つ、LiNiOであることが分った。図2にX線回折図を、表1に化学分析結果を示した。
【0104】
層状構造の発達程度を表すX線回折ピークの強度比、{I(006)+I(102)}/I(101)の値が0.379で、Li面へのNi及びMnの進入が殆どないことが分った。
【0105】
次に、これを図1の3の正極に用いた以外は、実施例1と同様な電池を構成し、評価した。結果を図3に示した。
【0106】
25サイクル目の放電容量は120mAh/gを示し、1サイクル目の放電容量に対して70%の容量しか維持していなかった。
【0107】
【発明の効果】
以上述べてきたとおり、本発明によってリチウム含有遷移金属複合酸化物を再現良く製造することが可能となる。
【0108】
さらに、これを正極に用いることで、安定した充放電サイクル特性を示し、従来にはない高容量で高エネルギー密度の高性能なリチウム二次電池が構成可能になる。
【図面の簡単な説明】
【図1】実施例1〜及び比較例1〜2で構成した電池の実施態様を示す断面図である。
【符号の説明】
1 正極リード線
2 正極集電用メッシュ
3 正極
4 セパレータ
5 負極
6 負極集電用メッシュ
7 負極用リード線
8 容器
【図2】実施例1〜及び比較例1〜2で作成した化合物のX線回折図を示す。[0001]
[Industrial applications]
The present invention relates to a novel method for producing a lithium-containing transition metal composite oxide and a lithium secondary battery using the same, and more specifically, a lithium compound, a nickel compound,Contains trivalent manganeseA manganese compound and a cobalt compound are heat-treated to give LixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. The present invention relates to a method for producing a lithium nickel manganese composite oxide having a layered structure, and a lithium secondary battery using the same for a positive electrode.
[0002]
A lithium-containing transition metal oxide having a layered structure is a material that is expected to function as a lithium host compound because it has a migration path and an accommodation site for lithium ions in a crystal structure. Further, lithium in the crystal structure can be electrochemically contained and released from the redox ability of the transition metal, and is attracting attention as an active material of a lithium secondary battery.
[0003]
A lithium secondary battery is a new type of secondary battery that is expected to be put to practical use as a high energy density battery.
[0004]
[Prior art]
LiMO with a rock salt type structure and a layered structure in which lithium and transition metals are regularly arranged on the (111) plane index2Type oxides (M is a transition metal) have attracted attention as a positive electrode active material for lithium secondary batteries.
[0005]
Among them, lithium cobalt oxide (LiCoO)2) And lithium nickel oxide (LiNiO)2) Shows a high discharge voltage of 4V class when used as a positive electrode active material of a lithium secondary battery, and a wide range of researches from basics to practical use of these two compounds have been actively conducted. I have.
[0006]
Already, ion-type lithium secondary batteries using lithium cobalt oxide for the positive electrode active material and carbon material for the negative electrode have been put into practical use. However, due to resource constraints and cost of the cobalt raw material, lithium nickel oxide Attention is focused on the practical use of things.
[0007]
Lithium nickel oxide is a cathode active material that can be expected to have a discharge capacity higher than that of lithium cobalt oxide in the 4V class. However, there are significant differences in discharge performance depending on the manufacturing method, and materials that exhibit constant charge and discharge characteristics with good reproducibility. In order to manufacture, it is necessary to set extremely strict manufacturing conditions, and even with the obtained material, the charge / discharge characteristics are significantly deteriorated with the increase in the number of charge / discharge cycles. Therefore, it has not been put to practical use until now.
[0008]
The cause is considered as follows.
[0009]
Generally, for nickel compounds, Ni2+Is stable, and when various nickel compounds are heat-treated, NiO having a rock salt type structure is easily generated.
[0010]
When the molar ratio of the nickel compound and the lithium compound is not completely stoichiometric, it is easy to take a structure in which Ni is mixed on the Li surface, and the LiNiO layer having a layered structure is developed.2Difficult to generate.
[0011]
It has long been known that the generation of NiO and the irregular arrangement of Ni on the Li surface significantly reduce the charge / discharge characteristics. Therefore, it is originally required to produce a material exhibiting constant charge / discharge characteristics with good reproducibility. Have difficulty. As a solution, for example, Ni3+From Ni2+In order to prevent the reduction reaction to oxidization, it is necessary to perform heat treatment in an oxidizing atmosphere.
[0012]
Further, even when lithium nickel oxide having a layered structure can be synthesized by the above method, there are the following essential problems with respect to the charge / discharge reaction.
[0013]
Ni in layered lithium nickel oxide3+The ions have a low spin type electron configuration (3d7: T2g 6・ Eg 1)have. Ni by charging3+One electron of ion is removed and Ni4+Is generated. At this time, two energetically different orbits forming a 3d orbit (t2g 6And eg 1) Of the upper eg 1Since one electron is removed from the orbit, the crystal field changes, causing a change in the crystal structure.
[0014]
Ohzuku et al. Have confirmed that the crystal structure change of lithium nickel oxide due to charging changes from hexagonal to monoclinic to hexagonal by X-ray diffraction (J. Electrochem. Soc., Vol. 140, pp-1862 (1993)).
[0015]
According to Arai et al., The charge eventually changes into two hexagonal crystals whose C-axis lengths are greatly increased, causing an irreversible decomposition reaction of a part of the crystal structure, and reinsertion of lithium. It is considered that the discharge capacity is reduced due to the impossibility of the above (34th Battery Symposium, Lecture No .: 2A09, Abstracts of Publications, p. 49 (1993)).
As described above, it is considered that it is difficult to promote a reversible charge / discharge reaction due to an irreversible change in crystal structure based on the intrinsic properties of nickel accompanying the charge / discharge reaction.
[0016]
As described above, lithium nickel oxide is a positive electrode active material that can be expected to have a discharge capacity higher than that of lithium cobalt oxide in the 4V class, but has not yet been put to practical use.
[0017]
For this reason, for practical use, in order to solve problems relating to production and electrochemical characteristics due to the intrinsic physical properties of nickel, studies are being made on changes in basic physical properties due to complexation with other transition metals.
[0018]
Japanese Patent Application Laid-Open No. 5-283076 proposes a method of improving charge / discharge cycle characteristics by complexing with another transition metal.
[0019]
This is because the energy level of the 3d orbit is changed to Ni by the complexation of nickel and another transition metal.3+By changing the energy level of the 3d orbit so as to suppress the change of the crystal field during charge and discharge, thereby improving the reproducibility of synthesis and improving the charge and discharge cycle characteristics. This is a proposal for improvement.
[0020]
However, according to our study, under the manufacturing conditions in which the heat treatment is performed in a single step at a high temperature of 700 ° C. to 900 ° C. as proposed in this proposal, the reduction reaction of nickel itself is likely to occur together with the complexation with the transition metal, As a result, a part of NiO having a rock salt type structure is generated, so that it is difficult to produce a compound having sufficient charge / discharge cycle characteristics.
[0021]
On the other hand, Japanese Patent Application Laid-Open No. 6-96768 proposes a method for producing a material exhibiting constant charge / discharge characteristics with good reproducibility by performing heat treatment in oxygen in two steps using manganese dioxide as a transition metal to be complexed. are doing.
[0022]
This proposal proposes a layered structure of lithium nickel manganese oxide with stable charge-discharge cycle characteristics through an intermediate composed of lithium, manganese, and nickel, which can be easily converted to a layered structure by heating. It is intended to propose a method of combining.
[0023]
However, according to our study, when a mixture of a lithium compound, a nickel compound and manganese dioxide is subjected to a heat treatment as described in this patent, a rock salt structure but an insulator and an electrochemically inactive layered structure are obtained. Li2MnO3Are easily generated, and it is difficult to obtain a positive electrode material having sufficient charge / discharge characteristics.
[0024]
As described above, various studies have been made on the change in basic physical properties due to complexing with other transition metals for the purpose of solving the problems related to production and electrochemical properties, but the physical properties inherent in nickel have been studied. Due to the cause considered to be caused by the above, it has not yet been put to practical use.
[0025]
On the other hand, with the recent spread of portable devices for personal use, there is a strong demand for the development of a small, lightweight, and high energy density secondary battery.
[0026]
As a secondary battery that can meet this demand, a lithium secondary battery using lithium or a substance capable of inserting and extracting lithium as a negative electrode has been proposed.
[0027]
Until now, ion-type lithium secondary batteries using lithium cobalt oxide as the positive electrode active material have been put into practical use. Attention has been focused on the practical use of nickel oxide and even lithium manganese oxide.
[0028]
[Problems to be solved by the invention]
An object of the present invention relates to improvement of a lithium-containing transition metal composite oxide, and more specifically, proposes a new method for producing a lithium-containing transition metal composite oxide having a novel layered structure with good reproducibility, and further uses this compound as a positive electrode. It is an object of the present invention to provide a 4V-class lithium secondary battery having an unprecedented high output and high energy density.
[0029]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, and as a result, heat-treated a lithium compound and a transition metal compound to obtain a novel Li compound.xMnyCozNi1- (y + z)O2(Where x is 0.9 <x ≦ 1.2, and y and z are 0.0 <y <0.5 and 0.0 ≦ z <0.5 and 0.0 <y + z ≦ 0.5)). A lithium-containing transition metal composite oxide having a layered structure of 0.5) can be produced with good reproducibility. Further, when this is used for a positive electrode, stable charge / discharge cycle characteristics are exhibited, which has not been achieved conventionally. The present inventors have found that a lithium secondary battery having a high capacity and a high energy density can be constructed, and have completed the present invention.
[0030]
[Action]
Hereinafter, the present invention will be described specifically.
[0031]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. The layered lithium-containing transition metal composite oxide according to (1) is a layered structure LiNiO.TwoHas the same space group R-3m structure as More specifically, it is a compound having a layered structure in which a surface containing nickel and manganese in a predetermined molar ratio with a lithium surface is regularly arranged along a plane index (111) plane of a rock salt type structure. As a manganese compound used for the synthesis of this compound, it is essential to use a manganese compound containing manganese of +3 valence.
[0032]
Although the details are unknown, when a manganese compound consisting of +4 manganese is used, the reaction between +4 manganese and lithium tends to occur in the early stage of the reaction, and although it has a rock salt structure, it is an insulator and has conductivity. Bad layered structure Li2MnO3Is likely to be generated. Conversely, when a manganese compound composed of +2 manganese is used, the oxidation reaction of manganese itself occurs partially in the heat treatment process, which is a factor that promotes the reduction reaction of nickel, thereby producing NiO having poor conductivity. Is likely to occur.
[0033]
On the other hand, when a manganese compound containing +3 manganese is used, the progress of the above complex reaction is suppressed, the average valence of the transition metal is +3, the electrochemical capacity is large, and a layered structure having good crystallinity is obtained. A lithium-containing transition metal composite oxide having a developed structure can be produced with good reproducibility.
[0034]
The manganese compound containing +3 manganese is not particularly limited.2O3, MnOOH, Mn3O4However, when γ-MnOOH is used, the effect of suppressing the progress of the side reaction is high, which is more preferable.
[0035]
The lithium compound used in the present invention is not particularly limited, and examples thereof include lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate, lithium chloride, lithium sulfate, lithium acetate, lithium iodide, lithium peroxide, and alkyl lithium. Illustrated.
[0036]
Although the nickel compound used in the present invention is not particularly limited, for example, nickel hydroxide, nickel oxide (NiO, Ni2O3Etc.), nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate, nickel oxyhydroxide (NiOOH) and the like.
[0037]
Although the cobalt compound used in the present invention is not particularly limited, for example, cobalt hydroxide, cobalt oxide (CoO, Co2O3, Co3O4Etc.), cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate, cobalt acetate, cobalt oxyhydroxide (CoOOH).
[0038]
When the reaction system was made basic, the lithium compound and the nickel compound produced Ni Ni.3+Ni2+It is more preferable to use each of the hydroxides, since the reduction reaction to is suppressed.
[0039]
Further, there is no particular problem even if hydrate or anhydride is used for the lithium compound and the nickel compound, respectively.
[0040]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. In the method for producing a lithium-containing transition metal composite oxide having a layered structure, the heat treatment of the lithium compound and the transition metal compound is preferably performed in the range of 450 ° C to 900 ° C.
[0041]
This is because when the heat treatment temperature is lower than 450 ° C., the Li salt having a rock salt structure but an insulator and an electrochemically inert layer structure is formed.2MnO3Is easily generated, and it is difficult to finally obtain a positive electrode material exhibiting sufficient charge / discharge characteristics. Further, when the heat treatment temperature exceeds 900 ° C., release of lithium to the outside of the reaction system is liable to occur. Since the +3 valence of Ni is reduced to +2 and the generation of electrochemically inactive NiO is likely to occur, and the reduction reaction of the composite manganese to +2 is likely to occur. This is because it becomes difficult to obtain an array of high-performance compounds.
[0042]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. In the production of the lithium-containing transition metal composite oxide having the layered structure of the above), it is preferable to perform heat treatment in two or more stages. Further, it is particularly preferable to perform two or more heat treatments at successively higher temperatures.
[0043]
Because, in the one-step heat treatment, a heat treatment at a high temperature exceeding 700 ° C. is required in order to produce a lithium nickel manganese composite oxide having a layered structure, and the complex of a lithium compound and a transition metal compound is required. This is because the reduction reaction of nickel itself is likely to occur with the progress of the conversion reaction, and the rock salt type NiO becomes a partially generated compound, and the electrochemical capacity decreases.
[0044]
On the other hand, in a state where the reduction reaction of nickel itself is suppressed by heat treatment at two or more stages, that is, a low-temperature heat treatment, a composite reaction of lithium and a transition metal is advanced, and then a layered structure is developed.LetWhen the heat treatment is performed at a high temperature, it is possible to reduce the non-uniformity of the reaction due to the slight temperature distribution generated inside the solid phase and to reduce the occurrence of side reactions due to local deviation of the raw material composition. Li, in which the progress of so-called side reactions is suppressed, the average valence of the transition metal is +3, the electrochemical capacity is high, and a layered structure with good crystallinity is developed.xMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. The lithium-containing transition metal composite oxide having the layered structure of (a) can be produced with good reproducibility.
[0045]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. In the production of the layer-structured lithium-containing transition metal composite oxide according to (1), it is desirable to provide a temperature lowering step during the heat treatment step, and pulverize and mix the reactants during the temperature lowering step.
[0046]
Because, during the heat treatment, a temperature lowering process is provided, and during this temperature lowering process, the reactants are crushed and mixed, thereby causing a non-uniform reaction due to a slight temperature distribution inside the solid phase, which occurs during the heat treatment, This is because it is possible to suppress the occurrence of a side reaction due to local deviation of the raw material composition.
[0047]
Although there are no particular restrictions on the temperature lowering conditions, it is desirable to lower the temperature in the atmosphere to a temperature at which moisture does not adsorb to the surface or the like.
[0048]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. In the case of using a solid compound as a starting material in the production of the lithium-containing transition metal composite oxide having the layered structure of the above-mentioned), it is preferable that the mixed raw material is formed into a molded body and heat-treated.
[0049]
The reason for this is that by forming a molded body, the contact between the raw materials becomes good, and the above-mentioned non-uniformity of the reaction can be eliminated.
[0050]
The shape and molding conditions of the molded body are not particularly limited, but it is desirable that the contact between the raw materials is sufficiently maintained.
[0051]
Of the present invention,Synthesized using a compound containing trivalent manganese as a manganese raw materialLixMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <0.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. In the production of the layer-structured lithium-containing transition metal composite oxide according to (2), the atmosphere for the heat treatment is preferably an oxidizing atmosphere.
[0052]
This is because the reduction reaction of nickel and manganese can be made less likely to occur by using an oxidizing atmosphere. In particular, it is desirable to use oxygen for the oxidizing atmosphere. By performing the heat treatment in the oxygen atmosphere, the reduction reaction of nickel and manganese can be made more difficult to occur.
[0053]
For the positive electrode of the lithium secondary battery of the present invention, it is essential to use the lithium-containing transition metal composite oxide having a layered structure obtained by the method for producing a lithium-containing transition metal composite oxide of the present invention.
[0054]
By using the above compound for the positive electrode, a secondary battery having a high capacity and a high energy density can be configured.
[0055]
In addition, a secondary battery having excellent cycle characteristics is obtained as compared with the case where a layered lithium nickel oxide or lithium manganese nickel composite oxide is used.
[0056]
As the negative electrode used in the lithium secondary battery of the present invention, lithium metal, a lithium alloy, or a compound capable of inserting and extracting lithium can be used. Examples of the lithium alloy include a lithium / aluminum alloy, a lithium / tin alloy, and a lithium / lead alloy. Compounds capable of inserting and extracting lithium include carbonaceous materials such as graphite and graphite, FeO, Fe2O3, Fe3O4Such as iron oxide, CoO, Co2O3, Co3O4And metal oxides such as cobalt oxide.
[0057]
The electrolyte used in the lithium secondary battery of the present invention is not particularly limited, for example, propylene carbonate, carbonates such as diethyl carbonate, sulfolane, sulfolane such as dimethoxyethane, lactones such as γ-butyrolactone, In an organic solvent of at least one kind of ether such as dimethoxyethane, at least one kind of lithium salt such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, etc. Or an inorganic or organic lithium ion conductive solid electrolyte can be used.
[0058]
Li prepared by heat-treating a lithium compound, a nickel compound, and a manganese compound composed of +3 manganese according to the present invention.xMnyCozNi1- (y + z)OTwo(Where x is 0.9 <x ≦ 1.2, and y and z are respectively 0.0 <y <00.5 and 0.0<z <0.5 and 0.0 <y + z ≦ 0.5. The battery shown in FIG. 1 was constructed using the lithium-containing transition metal composite oxide having the layered structure of the above) as the positive electrode active material.
[0059]
In the figure, 1: positive electrode lead wire, 2: positive electrode current collecting mesh, 3: positive electrode, 4: separator, 5: negative electrode, 6: negative electrode current collecting mesh, 7: negative electrode lead wire, 8: container, Is shown.
[0060]
Examples are shown below as specific examples of the present invention, but the present invention is not limited to these examples.
[0061]
【Example】
Example 1
[Li1.0Mn0.2Co0.3Ni0.5O2]
As Example 1, Li1.0Mn0.2Co0.3Ni0.5O2Was produced by the following method.
[0062]
Li: Mn: Co: Ni by molar ratio of lithium hydroxide monohydrate (special grade reagent), γ-MnOOH (manufactured by Tosoh Corporation), cobalt trioxide (special grade reagent), and nickel hydroxide (special grade reagent) Was mixed so as to be 1.0: 0.2: 0.3: 0.5, then molded into tablets, and subjected to a first heat treatment at 600 ° C. for 24 hours in an oxygen atmosphere. Next, after the temperature was lowered to room temperature, it was pulverized and mixed in a mortar, molded again into tablets, and subjected to a second heat treatment at a temperature of 850 ° C. for 20 hours in an oxygen atmosphere.
[0063]
From the results of X-ray diffraction and chemical analysis of the obtained compound, this compound has a layered structure.1.0Mn0.2Co0.3Ni0.5O2It turned out to be.
[0064]
FIG. 2 shows the X-ray diffraction pattern, and Table 1 shows the results of the chemical analysis.
[0065]
[Table 1]
Figure 0003550783
[0066]
Since the value of the intensity ratio of the X-ray diffraction peak, {I (006) + I (102)} / I (101), which indicates the degree of development of the layer structure, is 0.5 or less, Ni, Co, and It was found that there was almost no ingress of Mn.
[0067]
[Battery configuration]
Li of layered structure obtained1.0Mn0.2Co0.3Ni0.5O2And a mixture of a conductive agent, polytetrafluoroethylene and acetylene black (trade name: TAB-2) were mixed at a weight ratio of 2: 1. 75 mg of the mixture is 1 ton / cm2After being formed into a pellet on a 20 mmφ mesh (SUS 316) at a pressure of, a vacuum drying treatment was performed at 200 ° C. for 5 hours. This was used for the positive electrode 3 in FIG. 1, the negative electrode 5 in FIG. 1 was a piece of lithium cut out from a lithium foil (thickness 0.2 mm), and the electrolyte was 1 mol of lithium hexafluorophosphate. / Dm31 was dissolved in a mixed solvent of propylene carbonate and diethyl carbonate at a concentration of 1: 4 in a volume ratio of 1: 4, and impregnated into the separator of FIG.2The battery shown in FIG.
[0068]
[Evaluation of battery characteristics]
0.4 mA / cm using the battery prepared by the above method.2The charging / discharging was repeated at a constant current of 4.3 V and a battery voltage of 4.3 V to 3.0 V. The results are shown in Table 2.
[0069]
[Table 2]
Figure 0003550783
[0070]
The discharge capacity at the 25th cycle was 150 mAh / g, and was 96% of the discharge capacity at the 1st cycle.
[0071]
Example 2
[Li1.1Mn0.2Co0.05Ni0.75O2]
In Example 2, lithium hydroxide monohydrate (special grade reagent), γ-MnOOH (manufactured by Tosoh Corporation), cobalt trioxide (special grade reagent), and nickel hydroxide (special grade reagent) were used in a molar ratio of Li: A lithium-containing transition metal composite oxide was produced in the same manner as in Example 1 except that Mn: Co: Ni was mixed so as to be 1.1: 0.2: 0.05: 0.75.
[0072]
From the results of X-ray diffraction and chemical analysis of the obtained compound, this compound has a layered structure.1.1Mn0.2Co0.05Ni0.75O2It turned out to be.
[0073]
FIG. 2 shows the X-ray diffraction pattern, and Table 1 shows the results of the chemical analysis.
[0074]
The value of the intensity ratio of the X-ray diffraction peak, {I (006) + I (102)} / I (101), which indicates the degree of development of the layered structure, is 0.5 or less, and Ni, Co and Mn on the Li surface It turned out that there was almost no approach.
[0075]
Next, this Li1.1Mn0.2Co0.05Ni0.75O2A battery was constructed and evaluated in the same manner as in Example 1, except that was used for the positive electrode. The results are shown in Table 2.
[0076]
The discharge capacity at the 25th cycle was 161 mAh / g, and 96% of the discharge capacity at the first cycle was maintained.
[0096]
Comparative Example 1
As Comparative Example 1, Li1.0Mn0.2Ni0.8O2Was produced by the following method.
[0097]
Li: Mn: Ni is 1.0: 0.2: 0 in a molar ratio of lithium hydroxide monohydrate (reagent grade), nickel hydroxide (reagent grade) and manganese dioxide (international standard sample, IC-17). After that, the mixture was molded into tablets, and subjected to a first heat treatment at 450 ° C. for 10 hours in an oxygen atmosphere. Next, after the temperature was lowered to room temperature, it was pulverized and mixed in a mortar, molded again into tablets, and subjected to a second heat treatment at 750 ° C. for 24 hours in an oxygen atmosphere.
[0098]
From the result of X-ray diffraction of the obtained compound, this compound was found to be Li2MnO3And LiNiO2It was found to be a complex of compounds having a layered structure of the type. FIG. 2 shows the X-ray diffraction pattern, and Table 1 shows the results of the chemical analysis.
[0099]
The value of the intensity ratio of the X-ray diffraction peak, {I (006) + I (102)} / I (101), which indicates the degree of development of the layered structure, is 0.593, which is 0.5 or more. It was found that Ni and Mn were partially inserted into the surface.
[0100]
Next, a battery similar to that of Example 1 was constructed and evaluated except that this was used for the positive electrode of 3 in FIG. The results are shown in FIG.
[0101]
The discharge capacity at the 25th cycle was 130 mAh / g, and only 85% of the discharge capacity at the first cycle was maintained.
[0102]
Comparative Example 2
As Comparative Example 2, LiNiO having a layered structure was used.2Was prepared by the following method.
[0103]
Lithium hydroxide monohydrate (special grade reagent) and nickel hydroxide (special grade reagent) are mixed at a molar ratio of Li: Ni of 1.0: 1.0, then molded into tablets, and then mixed with oxygen. The first heat treatment was performed at a temperature of 750 ° C. for 16 hours. Next, after the temperature was lowered to room temperature, it was pulverized and mixed in a mortar, molded again into tablets, and subjected to a second heat treatment at 750 ° C. for 24 hours in an oxygen atmosphere. From the results of X-ray diffraction and chemical analysis of the obtained compound, this compound has a layered structure.2It turned out to be. FIG. 2 shows an X-ray diffraction pattern, and Table 1 shows the results of chemical analysis.
[0104]
The intensity ratio of the X-ray diffraction peak representing the degree of development of the layered structure, {I (006) + I (102)} / I (101), is 0.379, and there is almost no penetration of Ni and Mn into the Li surface. I understood that.
[0105]
Next, a battery similar to that of Example 1 was constructed and evaluated except that this was used for the positive electrode of 3 in FIG. The results are shown in FIG.
[0106]
The discharge capacity at the 25th cycle was 120 mAh / g, and only 70% of the discharge capacity at the first cycle was maintained.
[0107]
【The invention's effect】
As described above, the present invention makes it possible to produce a lithium-containing transition metal composite oxide with good reproducibility.
[0108]
Furthermore, by using this as the positive electrode, a stable high-capacity, high-energy-density, high-performance lithium secondary battery exhibiting stable charge / discharge cycle characteristics can be constructed.
[Brief description of the drawings]
FIG. 1 Example 12FIG. 3 is a cross-sectional view illustrating an embodiment of the battery configured in Comparative Examples 1 and 2.
[Explanation of symbols]
1 Positive lead wire
2 Mesh for positive electrode current collection
3 Positive electrode
4 separator
5 Negative electrode
6 Negative electrode current collector mesh
7 Lead wire for negative electrode
8 containers
FIG. 2 Example 12And X-ray diffraction diagrams of the compounds prepared in Comparative Examples 1 and 2.

Claims (3)

マンガン原料として+3価のマンガンを含む化合物を使用して合成されたLixMnyCozNi1-(y+z)2(式中xは、0.9<x≦1.2で、yおよびzはそれぞれ、0.0<y<0.5及び0.0z<0.5で且つ0.0<y+z≦0.5である。)の化学式から成る層状構造のリチウム含有遷移金属複合酸化物。 Li x Mn y Co z Ni 1- (y + z) O 2 ( wherein x, which is synthesized using a compound containing a trivalent manganese as manganese starting material, at 0.9 <x ≦ 1.2, y and z are 0.0 <y <0.5 and 0.0 < z <0.5 and 0.0 <y + z ≦ 0.5, respectively.) Metal composite oxide. 請求項に記載の+3価のマンガンから成るマンガン化合物として、γ−MnOOHを使用することを特徴とする請求項1の層状構造のリチウム含有遷移金属複合酸化物の製造方法。The process according to claim as a manganese compound consisting of trivalent manganese according to 1, lithium-containing transition metal composite oxide of a layered structure of claim 1, wherein the use of gamma-MnOOH. 請求項1に記載のリチウム含有遷移金属複合酸化物を正極に用いるリチウム二次電池。A lithium secondary battery using the lithium-containing transition metal composite oxide according to claim 1 for a positive electrode.
JP05881795A 1994-05-16 1995-03-17 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof Expired - Fee Related JP3550783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05881795A JP3550783B2 (en) 1994-05-16 1995-03-17 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-100997 1994-05-16
JP10099794 1994-05-16
JP05881795A JP3550783B2 (en) 1994-05-16 1995-03-17 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JPH0837007A JPH0837007A (en) 1996-02-06
JP3550783B2 true JP3550783B2 (en) 2004-08-04

Family

ID=26399827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05881795A Expired - Fee Related JP3550783B2 (en) 1994-05-16 1995-03-17 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP3550783B2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099328B2 (en) * 1996-08-12 2012-12-19 戸田工業株式会社 Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery
JP4760805B2 (en) * 1996-08-12 2011-08-31 戸田工業株式会社 Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JP3281829B2 (en) * 1997-01-16 2002-05-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3524762B2 (en) 1998-03-19 2004-05-10 三洋電機株式会社 Lithium secondary battery
US6682850B1 (en) 1998-08-27 2004-01-27 Nec Corporation Nonaqueous electrolyte solution secondary battery using lithium-manganese composite oxide for positive electrode
JP4650648B2 (en) * 2000-04-20 2011-03-16 株式会社豊田中央研究所 Method for producing lithium manganese composite oxide
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
US20020053663A1 (en) * 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP5034136B2 (en) 2000-11-14 2012-09-26 株式会社Gsユアサ Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
AU2002214289A1 (en) 2000-11-16 2002-05-27 Hitachi Maxell, Ltd. Lithium-containing composite oxide and nonaqueous secondary cell using the same,and method for manufacturing the same
DE60237441D1 (en) * 2001-04-20 2010-10-07 Gs Yuasa Corp ÜR, ANODE FOR USE IN A SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP5211416B2 (en) * 2001-05-17 2013-06-12 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP4717276B2 (en) * 2001-07-06 2011-07-06 株式会社Kri Non-aqueous secondary battery and manufacturing method thereof
WO2003044882A1 (en) * 2001-11-20 2003-05-30 Tdk Corporation Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
JP4813450B2 (en) * 2001-11-22 2011-11-09 日立マクセルエナジー株式会社 Lithium-containing composite oxide and non-aqueous secondary battery using the same
KR100959115B1 (en) * 2002-03-08 2010-05-25 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
EP2367224B1 (en) * 2002-03-25 2013-01-09 Sumitomo Chemical Company, Limited Method for preparing positive electrode active material for non-aqueous secondary battery
JP4639573B2 (en) * 2002-03-25 2011-02-23 住友化学株式会社 Method for producing positive electrode active material for non-aqueous secondary battery
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
KR100629129B1 (en) * 2003-03-14 2006-09-27 세이미 케미칼 가부시끼가이샤 Positive electrode active material powder for lithium secondary battery
JP4061648B2 (en) 2003-04-11 2008-03-19 ソニー株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
CN100381365C (en) * 2003-04-17 2008-04-16 清美化学股份有限公司 Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR100560540B1 (en) * 2003-07-18 2006-03-15 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
JP4237074B2 (en) 2004-02-16 2009-03-11 ソニー株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2062858A4 (en) * 2006-09-12 2013-05-29 Sumitomo Chemical Co Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
JP5176441B2 (en) * 2006-09-12 2013-04-03 住友化学株式会社 Lithium composite metal oxide and non-aqueous electrolyte secondary battery
JP5481786B2 (en) 2007-07-03 2014-04-23 住友化学株式会社 Lithium composite metal oxide
JP5405091B2 (en) * 2008-12-01 2014-02-05 三洋電機株式会社 Non-aqueous electrolyte battery
WO2010134156A1 (en) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 Cathode active substance powder material for a lithium ion secondary cell
JP5076038B1 (en) * 2009-12-27 2012-11-21 シェンヅェン ヅェンファ ニュー マテリアル カンパニー リミテッド High manganese polycrystalline cathode material, method for producing the same, and power lithium ion battery
KR20110136002A (en) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 Positive active material precursor for rechargeable lithium battery, positive active material using same and rechargeable lithium battery including the positive active material
KR102650871B1 (en) 2011-06-03 2024-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing electrode
JP2013004401A (en) * 2011-06-20 2013-01-07 Kri Inc Positive electrode active material for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
KR20190139332A (en) 2011-09-30 2019-12-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Anode, lithium secondary battery, electric vehicle, hybrid vehicle, moving bodies, system, and electrical devices
CN103035922B (en) 2011-10-07 2019-02-19 株式会社半导体能源研究所 Electrical storage device
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP6016597B2 (en) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 Method for producing positive electrode for lithium ion secondary battery
JP5719859B2 (en) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 Power storage device
CN104220378B (en) 2012-04-05 2017-07-18 东曹株式会社 Mangano-manganic oxide Composite particle and its manufacture method containing metal
KR101426148B1 (en) * 2012-10-18 2014-08-01 삼성정밀화학 주식회사 Lithium-metal oxide and lithium rechargeable battery using the same
JP6159228B2 (en) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 Method for producing positive electrode for non-aqueous secondary battery
JP5614441B2 (en) * 2012-11-07 2014-10-29 三菱化学株式会社 Layered lithium nickel manganese composite oxide
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
DE112014002346B4 (en) 2013-05-10 2021-07-29 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese oxide composite storage battery and its use
JP6070421B2 (en) 2013-05-31 2017-02-01 ソニー株式会社 Batteries, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
US9293236B2 (en) 2013-07-15 2016-03-22 Semidonconductor Energy Laboratory Co., Ltd. Lithium—manganese composite oxide, secondary battery, and electric device
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
CN105594028B (en) 2013-10-04 2020-05-19 株式会社半导体能源研究所 Lithium manganese composite oxide, secondary battery, electronic device, and method for producing layer
CN105612123B (en) 2013-10-24 2018-06-08 陶氏环球技术有限责任公司 Improved lithium metal oxide positive electrode and the method for preparing it
JP6156078B2 (en) 2013-11-12 2017-07-05 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015079372A1 (en) 2013-11-29 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Lithium-manganese composite oxide and secondary battery
JP6524651B2 (en) 2013-12-13 2019-06-05 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20220148309A (en) 2014-05-09 2022-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
JP6693736B2 (en) 2014-12-26 2020-05-13 株式会社半導体エネルギー研究所 Power storage device
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2017208894A1 (en) * 2016-05-30 2017-12-07 日立金属株式会社 Positive-electrode active material for lithium ion secondary cell, and lithium ion secondary cell using same
DE112017002507T5 (en) 2016-07-05 2019-03-07 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for producing the positive electrode active material and secondary battery
KR20230101939A (en) 2016-10-12 2023-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
KR20240046314A (en) 2017-05-12 2024-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particles
CN117096337A (en) 2017-05-19 2023-11-21 株式会社半导体能源研究所 Lithium ion secondary battery
KR102588500B1 (en) 2017-06-26 2023-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of positive active material and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112929B2 (en) * 1987-02-25 1995-12-06 日立マクセル株式会社 Synthesis method of lithium manganese oxide solid solution
JPH05299092A (en) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JP3042128B2 (en) * 1992-01-22 2000-05-15 松下電器産業株式会社 Synthesis method of electrode material
JP3334179B2 (en) * 1992-09-14 2002-10-15 松下電器産業株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP3064655B2 (en) * 1992-02-07 2000-07-12 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3082117B2 (en) * 1992-10-23 2000-08-28 松下電器産業株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0837007A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
Kim et al. Electrochemical performance of Li [LixNi (1− 3x)/2Mn (1+ x)/2] O2 cathode materials synthesized by a sol–gel method
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH0746607B2 (en) Non-aqueous secondary battery
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
JPH11507171A (en) Positive electrode material for rechargeable electrochemical cell and method of making the same
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
US6270925B1 (en) Lithium battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2013125798A1 (en) Method for manufacturing cathode active material for lithium secondary battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP3921697B2 (en) Lithium manganese spinel, method for producing the same, and use thereof
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP2001143704A (en) Method of manufacturing positive electrode material for lithiun secondary battery
JP3611133B2 (en) Method for producing positive electrode active material for non-aqueous battery
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

LAPS Cancellation because of no payment of annual fees