JP3549949B2 - Low oxygen incubator - Google Patents

Low oxygen incubator Download PDF

Info

Publication number
JP3549949B2
JP3549949B2 JP17034495A JP17034495A JP3549949B2 JP 3549949 B2 JP3549949 B2 JP 3549949B2 JP 17034495 A JP17034495 A JP 17034495A JP 17034495 A JP17034495 A JP 17034495A JP 3549949 B2 JP3549949 B2 JP 3549949B2
Authority
JP
Japan
Prior art keywords
concentration
concentrator
storage tank
automatic valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17034495A
Other languages
Japanese (ja)
Other versions
JPH0856646A (en
Inventor
重雄 佐藤
正義 難波
和潔 高野
Original Assignee
山陽電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽電子工業株式会社 filed Critical 山陽電子工業株式会社
Priority to JP17034495A priority Critical patent/JP3549949B2/en
Publication of JPH0856646A publication Critical patent/JPH0856646A/en
Application granted granted Critical
Publication of JP3549949B2 publication Critical patent/JP3549949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【産業上の利用分野】
微生物または動植物の細胞の培養器の改良に関する。
【0002】
【従来の技術】
微生物の培養,動植物の細胞の培養はその対象物に合わせて温度、培養室のガス濃度及び組成,培養液,培地pH等さまざまの要因によりその成育が影響され変わってくる。
特に培地と培地pHと培養室内のO濃度とCO濃度が重要である。
CO濃度は培地のpHを一定に保つ上から重要であり、Oは微生物の好気性,嫌気性の性質上から、また細胞の種類によりその濃度管理は重要である。今まで培養室を恒温に保ち、温度変化が少なくなるよう温湯を壁面内に入れる構造のものがあり、また培地は重曹を含む緩衝液を用いてそのpHが変わりにくいようにCOの濃度を高めている。また、別のものではCO導入口,N導入口を設けてCOボンベ又はNボンベのガスを減圧弁にて減圧して配管にて接続して導入している。そして該培養室内のO濃度,CO濃度を測定し、指定の値よりずれると当該配管より手動又は自動的にこれらのガスを導入しながら該培養室内のガス濃度を一定に保つようにして培養実験を続けている。しかし培養には長時間を要し、その間、ボンベのガス切れ等により各ガスの濃度等に変化があるとせっかくの実験が失敗することが多々発生している。
【0003】
とCOの消費量は各々の設定濃度により異なるが一般的にNの方が多い。そして実験をする人はボンベの残量に気をつけながら無くなれば重いボンベの交換作業を行わなければならない等の余分な苦労がある。
また、実験の過程で扉を開いて一時的に培養物を観察する場合はその扉の開と同時にまわりの空気が流れ込み、O濃度が21%に上がり、CO濃度は0.03%まで下がる。扉の閉とともに大量のN,COを流入させ、短時間に元の環境に戻し、被培養物に与える影響を最小限にする必要がある。
【0004】
【発明が解決しようとする課題】
研究者の労力を最小にすべく大気中にあるNを自動的に集めて供給し、O濃度を自動的に一定にする(但し、21%以下とする)ようにし、Nボンベの交換を不用にする。しかし、COは自然に大量に存在するものではないので、別に生成したガスを持ってくる必要があるためCOボンベは別に付加する。
【0005】
【課題を解決するための手段】
壁面に温湯ジャケット2と前面に扉3を有する気密の培養室であって該培養室にはN及びCOを導入する導入口と一定封止圧を有する逆止弁25を設けた大気放出口と室内ガス濃度を検出するOセンサー及び/又はCOセンサーと扉の開閉状態を検出する開閉センサーを有し、このO濃度及び/又はCO濃度と開閉信号は電気信号に変換されて制御部29に伝えられる。
該培養室のCO導入口は自動弁V19を介してCO供給源(ボンベ)から調圧弁を用いて調圧したCOが供給されるよう配管接続され、N導入口には自動弁V20を介してN供給源が配管接続される。N供給源は空気中のNを自動的に濃縮するN濃縮器とNの貯留タンクであって、N透過膜により濃縮する膜式のものとカーボンモレキュラーシーブス(CMS)の活性炭分子篩を用いたPSA方式の濃縮器(公知の技術)がある。これ等の濃縮器により濃縮されたNは自動弁V21を介してNの貯留タンク23に接続され、これに貯留した後、配管にて該培養室のN供給口に自動弁V20を介して接続される。Nの貯留タンク23には圧力センサー18が設置されているのでガスの圧力が測定され、この圧力信号は電気信号に変換され制御部29に伝えられる。N濃縮器は貯留タンクの圧力が一定値Pまで低下したとき該制御部29よりコンプレッサーを起動してN濃度が一定濃度に達した後又は一定時間経過後に自動弁Vを開いて貯留タンクにガスを供給する。そして貯留タンクの圧力が一定値Pまで上昇したとき停止する。Nの貯留タンクから培養室にNガスを供給する自動弁V20は該培養室のO濃度が、一定値以上になった信号により制御部が開閉して制御し、O濃度を目標の一定値に保つように構成したものである。すなわち自動弁V20が開になるときは該培養室のO濃度が一定値以上になったときであり、同じく閉になるときは当該濃度が設定値に達したときである。
【0006】
このようにO濃度が上昇すると自動弁V20が開となりNが充填され、これによりO濃度が低下する。しかし該培養室の内部圧力が上昇しないよう作動圧力が約0.1kgf/cm・Gの逆止弁を付設した大気放出口より余剰のガスは大気に放出される。またCO濃度が低下したときはその信号により制御部はCO供給源のひとつであるボンベよりCOガスを自動弁V19を開として導入する。COセンサーの信号によりCOが設定値に達すると制御部29により自動弁V19は閉となりCOの導入が止められる。制御部には該培養室内のCO濃度及びO濃度を目標値に設定する設定器及び温度を目標値に設定する設定器が設けられている。しかし温度については、本発明の主要課題でないので省略する。この自動弁V,Vの制御は、制御部29が設定器で設定される目標値になるようOセンサー及び/又はCOセンサーの検出信号を監視しながら該自動弁V,Vの開閉制御を行うが、目標値と検出信号の差が大きいときは開の状態を連続するが、ある基準値以内に近づくと弁を一定時間間隔で開閉を繰り返しながら目標値になるよう制御する。
【0007】
【実施例】
図1に本発明の好適な1実施例のフロー図を示す。
壁面内に温湯ジャケット2と前面に扉3を有する気密の培養室1がある、扉3はヒンジ4で開閉できる。その開閉状態が開閉センサー5のボタン6を押圧するか否かで検出し、その信号を信号線7により制御部29に伝える。また該培養室1にはN及びCOを導入する導管27と28を有し、培養室の内圧が高くなりすぎないよう一定封止圧を有する逆止弁25を付設し導管26により大気放出口が設けられている。
該培養室1内の雰囲気ガス濃度、特にO及びCO濃度の検出を行うOセンサー9,COセンサー9′を有する。この濃度信号は電気信号に変換されて制御部29に伝えられる。
【0008】
COを導入する導管28には自動弁V19を介してCOボンベ22が接続され高圧を調圧弁を用いて低圧に調圧されたCOが供給される。N導入管27には自動弁V20を介してN供給源が配管接続される。N供給源は空気中のNを自動的に濃縮するPSA式のN濃縮器24(濃縮されたNはアルゴンを含んだ濃度で99.9〜99.99%の濃度まで濃縮することが出来る)とNの貯留タンク23であり、N濃縮器24により濃縮生成されたNガスを自動弁V21を介して、Nの貯留タンク23に接続し貯留した後、自動弁V20を介してNの導管27にて培養室1にNが導入できるよう接続する。N濃縮器は圧縮空気供給部と濃縮部を持っており、濃縮器が起動されると、まず圧縮空気供給部により大気が取り込まれて圧縮されて窒素濃縮部に送り込まれ窒素ガスが濃縮されるが装置が起動されて所定の高濃度に達するまで一定の時間が必要であり、起動当初は低い濃度である。特にPSA式濃縮器の場合は数分を要する。このため初期の低濃度の窒素ガスをNの貯留タンク23に送り込まないようN濃度が濃縮器起動後一定時間を経た後、自動弁V21を開にするよう制御部29が制御している。またN濃縮器は膜式もPSA式も供給空気量に対して、取出ガスの量を増やすと濃度は低下することが判っている。培養室の濃度を一定に保つためには、N濃縮器から得られる窒素ガスの濃度を目標濃度以上の高濃度(これを酸素濃度でいえば低濃度)にしなければいけない。前述のN濃縮器の起動初期の濃縮ガスは一定時間を経て高濃度に達した後に自動弁V21を開けることにより達成されるが我々はこればかりでなく、自動弁V21を開にした時、低圧になっているNの貯留タンクにN濃縮器より、一時に大量にNが流入することにより、濃縮ガスの一時的な低濃度化が発生し、培養室の濃度を乱すことが判った。このためN濃縮器とNの貯留タンクの間に流量制限手段30を付設し、両者間の圧力差に変化が生じても一定の流量しか流れない定流量弁かあるいは前記の両者間に圧力差が生じたときでもN濃縮器から供給するガスの濃度が目標濃度で得られる所定の流量しか流れない流量制限手段(オリフィス等)を入れることが重要であることを見出した。この流量制限手段30をN濃縮器24とNの貯留タンク23を接続する配管経路中に設ける。
【0009】
貯留タンク23はNが該培養室の扉が開閉されたとき、急速に定状濃度に回復するよう大量のガスが短時間に供給できるようN濃縮器は小型であっても多くのNを貯留できるようNを吸着保持する能力を持つゼオライトを充填している。こうすることにより通常のタンクの容積で同じ圧力に対して3倍以上のNを貯留できる。但し、ゼオライトのNの吸着保持能力は水分により劣化するので水分を含まないN濃縮器により生成された含水率の低いガスと組み合わさないと良い結果が得られない。膜式の濃縮器もCMSによるPSA式濃縮器による濃縮窒素ガスも水分の少ない乾燥したガスが得られる。またNの貯留タンク23には圧力センサー18を付設して、ガスの圧力が測定され信号線17により制御部29に伝えられる。圧力は貯えられたガスの容量が少なくなると圧力が下がり、貯えられたガスの容量が多いと高い圧力を示す。該培養室内のO濃度が設定値より外れ高くなるとその信号により制御部29は自動弁V20を開とし、Nを供給するのでタンク内のガスが消費される。PSA式のN濃縮器24は貯留タンク23の圧力が圧力センサー18により一定値Pまで低下したことを検出し、それを信号線17により制御部29に伝えると制御部29は信号線16によりN濃縮器24を起動する。
【0010】
また被培養物は、培養研究の過程で該培養室より取り出し、途中で研究観察を行ない、続いてまた収納して培養を続ける場合も度々ある。このようなとき扉を開にして取り出すと外気が倍容器内に入り、O2濃度、CO2濃度がコントロールされていた環境が崩れてしまうので、扉が閉じられた後、直ちに元の環境へ復帰させる必要がある。このため扉が開となり続いて閉となった状況を開閉センサー5により検出し、信号線7により制御部29に伝え、N2濃縮器24を起動し、自動弁 V1 を直に開にする。扉の開閉を行なった直後は大幅な濃度変化があるためN2を多く必要とするので、貯留タンク23内のガスの放出に続いてPSA式N2濃縮器からの生成供給が必要となるためである。O2濃度が一定値に低下した後、CO2ガスの濃度を高める方がO2濃度を下げるためN2ガスの供給を続けながらCO2の供給も同時に行う方法よりCO2消費量を少なくすることが出来る。但し、被培養物の性質と培養液のpHの変動等により許容される環境条件の乱れた状態の続く時間の長さは個々によって変わるのでN2とCO2の供給を同時に行われなければならないものもある。
【0011】
自動弁V21が閉となるときは、貯留タンクの圧力が一定値Pに上昇したときであり、自動弁V20が開になるときは該培養室内のO濃度が設定値以上になったときであり、同じく閉になるときは当該濃度が設定値に達したときである。このようにOセンサー9やCOセンサー9′により検出される該培養室1内のO濃度が上昇すると制御部29により自動弁V20が開となり、Nが貯留タンク23より放出され、該培養室1内のO濃度が低下する。しかし該培養室1の内部圧が上昇しないよう逆止弁25を付設した導管26により、大気放出口より余剰ガスとして放出される。またCO濃度がOセンサー9やCOセンサー9′によって低下が検出されCO濃度を伝える信号線11により制御部29に伝えられると制御部29は信号線13により自動弁V19を開にしてCOボンベ22のCOを該培養室1内に放出し、CO濃度の上昇を図る。Oセンサー9,COセンサー9′によりCO濃度が設定値に達することが検出されると制御部29は自動弁V19を閉としてCOの導入を止める。尚、制御部29には該培養室内のCO濃度及びO濃度を目標値に設定する設定器を持つ。また温湯ジャケット2の温度を制御部29より電線12によりヒーター8をオンオフしてコントロールして目標温度に設定するがその目標設定値にするための目標値を入力するための設定器の図示は同図中では省略している。
【0012】
【発明の効果】
本発明を実施することにより、低酸素雰囲気の培養器のNの供給源として、大気中に約79%あるNを99%以上に濃縮したものが使用できるので、Nボンベ等有限の供給源のようにガス切れの配慮が不要となる。さらに見かけ上の体積は小型ながら、Nを吸着する吸着剤を充填した貯留タンクに、外観容量の数倍のNを貯留することができるので、一時に大量のNを供給することが出来る。
【図面の簡単な説明】
【図1】本発明の好適な1実施例のフロー図である。
【符号の説明】
1 培養器
2 温湯ジャケット
3 扉
4 ヒンジ
5 開閉センサー
6 ボタン
8 ヒータ
9 Oセンサー
9′ COセンサー
7,10,11,13,17 信号線
12 電線
18 圧力センサー
19 自動弁V
20 自動弁V
21 自動弁V
22 COボンベ
23 貯留タンク
24 N濃縮器
25 逆止弁
26,27,28 導管
29 制御部
30 流量制限手段
[0001]
[Industrial applications]
The present invention relates to an improvement of an incubator for cells of microorganisms or animals and plants.
[0002]
[Prior art]
The growth of microorganisms and the culture of animals and plants are influenced by various factors such as temperature, gas concentration and composition of the culture chamber, culture solution, medium pH, and the like, depending on the object, and the growth is changed.
Particularly, the medium, the medium pH, the O 2 concentration and the CO 2 concentration in the culture chamber are important.
The CO 2 concentration is important from the viewpoint of keeping the pH of the medium constant, and the concentration control of O 2 is important from the aerobic and anaerobic properties of microorganisms and the type of cells. Until now keeping the culture chamber in a constant temperature, there is a structure to take into hot water through the wall so that the temperature change is reduced, also the medium the concentration of CO 2 so that the pH is less likely change with a buffer containing sodium bicarbonate Is increasing. In another example, a CO 2 introduction port and an N 2 introduction port are provided, and the gas in the CO 2 cylinder or the N 2 cylinder is decompressed by a pressure reducing valve and connected by a pipe for introduction. Then, the concentration of O 2 and CO 2 in the culture chamber is measured, and when the concentration deviates from a specified value, the gas concentration in the culture chamber is maintained constant while introducing these gases manually or automatically from the pipe. Culture experiments are ongoing. However, culturing takes a long time, and during that time, if the concentration of each gas changes due to the exhaustion of the gas in the cylinder, etc., the experiment often fails.
[0003]
Although the consumption amounts of N 2 and CO 2 vary depending on the set concentrations, N 2 is generally larger. The experimenter has extra troubles, such as having to replace a heavy cylinder if the cylinder is lost while paying attention to the remaining amount.
When the culture is temporarily observed by opening the door in the course of the experiment, the surrounding air flows simultaneously with the opening of the door, the O 2 concentration rises to 21%, and the CO 2 concentration rises to 0.03%. Go down. When the door is closed, a large amount of N 2 and CO 2 needs to flow in, return to the original environment in a short time, and minimize the effect on the culture.
[0004]
[Problems to be solved by the invention]
Effort researchers automatically collect supplied to N 2 in the atmosphere in order to minimize, O 2 concentration to automatically constant (provided that at most 21%) as the, the N 2 gas cylinder Eliminate exchanges. However, since CO 2 is not naturally present in a large amount, it is necessary to bring a separately generated gas, so a CO 2 cylinder is added separately.
[0005]
[Means for Solving the Problems]
An airtight culture chamber having a hot water jacket 2 on the wall surface and a door 3 on the front side, wherein the culture chamber is provided with an inlet for introducing N 2 and CO 2 and a check valve 25 having a constant sealing pressure. a closing sensor for detecting the open or closed state of the O 2 sensors and / or CO 2 sensor and door for detecting the outlet and the indoor gas concentration, the switching signal the O 2 concentration and / or CO 2 concentration is converted into an electrical signal To the control unit 29.
CO 2 inlet of the culture chamber is a pipe connected to the CO 2 pressure was adjusted using a pressure regulating valve from the CO 2 source (bomb) via the automatic valve V 3 19 is supplied to the N 2 inlet is An N 2 supply is piped via an automatic valve V 2 20. The N 2 supply sources are an N 2 concentrator for automatically concentrating N 2 in the air and a N 2 storage tank, a membrane type for concentrating by an N 2 permeable membrane and activated carbon of carbon molecular sieves (CMS). There is a PSA-type concentrator using a molecular sieve (known technology). N 2 concentrated by the concentration device such as this is connected to the storage tank 23 of the N 2 through the automatic valve V 1 21, after stored to the automatic valves in the N 2 supply port of the culture chamber by a pipe Connected via V 2 20. Since the pressure sensor 18 is installed in the N 2 storage tank 23, the gas pressure is measured, and this pressure signal is converted into an electric signal and transmitted to the control unit 29. N 2 concentrator opens the automatic valve V 1 after the lapse or a predetermined time after start the compressor from the controller 29 N 2 concentration reaches a certain concentration when the pressure of the storage tank has dropped to a predetermined value P L Supply gas to the storage tank. And stopped when the pressure of the storage tank rises to a predetermined value P H. Automatic valve V 2 20 for supplying N 2 gas from the storage tank to the culture chamber of the N 2 is the O 2 concentration of the culture chamber, the control unit controls to open and close by a signal a certain value or more, the O 2 concentration Is maintained at a target constant value. That is, when the automatic valve V 2 20 is opened, it is when the O 2 concentration in the culture chamber has reached a certain value or more, and when it is closed, it is when the concentration has reached the set value.
[0006]
Thus the O 2 concentration when rises becomes automatic valve V 2 20 is opened N 2 is filled, thereby the O 2 concentration is reduced. However, surplus gas is discharged to the atmosphere from an air discharge port provided with a check valve having an operating pressure of about 0.1 kgf / cm 2 · G so that the internal pressure of the culture chamber does not increase. Also, when the CO 2 concentration is lowered to introduce CO 2 gas from the bomb control unit is one of the CO 2 source by the signal automatic valve V 3 19 is opened. Automatic valve V 3 19 by the CO 2 sensor signal and CO 2 reaches the set value control unit 29 is stopped the introduction of CO 2 becomes closed. The control unit is provided with a setter for setting the CO 2 and O 2 concentrations in the culture chamber to target values and a setter for setting the temperature to the target values. However, the temperature is not the main subject of the present invention and will not be described. The control of automatic valves V 3, V 2, the control unit 29 so that becomes the target value set by the setter O 2 sensors and / or CO 2 the automatic valve V 3 while monitoring the sensor detection signal, V performing a second opening and closing control, but is when the difference between the target value and the detected signal is large continuous open state, controlled to be the valve approaches within a certain reference value to the target value while repeating the opening and closing at predetermined time intervals I do.
[0007]
【Example】
FIG. 1 shows a flowchart of a preferred embodiment of the present invention.
There is an airtight culture chamber 1 having a hot water jacket 2 and a door 3 on the front surface in the wall. The door 3 can be opened and closed by a hinge 4. The open / closed state is detected based on whether or not the button 6 of the open / close sensor 5 is pressed, and the signal is transmitted to the control unit 29 via the signal line 7. The culture chamber 1 has conduits 27 and 28 for introducing N 2 and CO 2 , and a check valve 25 having a constant sealing pressure to prevent the internal pressure of the culture chamber from becoming too high. An outlet is provided.
The culture chamber 1 has an O 2 sensor 9 and a CO 2 sensor 9 ′ for detecting an atmospheric gas concentration, particularly, an O 2 and CO 2 concentration. This density signal is converted into an electric signal and transmitted to the control unit 29.
[0008]
The conduit 28 for introducing a CO 2 CO 2 pressure regulated to a low pressure by using a pressure regulating valve the pressure is connected CO 2 cylinder 22 through an automatic valve V 3 19 is supplied. N 2 supply source is connected by piping via a automatic valve V 2 20 The N 2 inlet tube 27. N 2 source is concentrated to 99.9 to 99.99% of the concentration of N 2, which is N 2 concentrator 24 (concentration of PSA type which automatically concentrated N 2 at concentrations containing argon in air it is possible) and a storage tank 23 of the N 2, N 2 gas produced concentrated by N 2 concentrator 24 via the automatic valve V 1 21, after which stores connected to the storage tank 23 of the N 2, N 2 is connected to be introduced into the culture chamber 1 via the automatic valve V 2 20 in N 2 conduit 27. N 2 concentrator has a rectifying section and the compressed air supply unit, the concentrator is activated, the nitrogen gas fed into the compressed incorporated atmospheric nitrogen-enriched portion is concentrated by first compressed air supply However, a certain period of time is required until the device is activated and reaches a predetermined high concentration, and the concentration is low at the beginning of activation. In particular, it takes several minutes in the case of a PSA type concentrator. After the N 2 concentration to not sent Therefore the initial low concentration of nitrogen gas in the storage tank 23 of the N 2 through the fixed time after concentrator activated, the control unit 29 to the automatic valve V 1 21 to open controls ing. Also, it has been found that the concentration of the N 2 concentrator decreases with an increase in the amount of gas taken out with respect to the supply air amount in both the membrane type and the PSA type. In order to keep the concentration in the culture room constant, the concentration of nitrogen gas obtained from the N 2 concentrator must be higher than the target concentration (this is a low concentration in terms of oxygen concentration). Although initial start enrichment gas of the aforementioned N 2 concentrator is achieved by opening the automatic valve V 1 21 after reaching a high concentration through a certain time we not only this, the automatic valve V 1 21 Open when you, by from N 2 concentrator to the storage tank of the N 2 that is a low pressure, is temporarily large amount N 2 flows, temporary reduction in the concentration of enriched gas is generated, the concentration of the culture chamber Was disturbed. For this reason, a flow rate restricting means 30 is provided between the N 2 concentrator and the N 2 storage tank, and a constant flow rate valve that flows only a constant flow rate even if a pressure difference between the two flows, or between the two. It has been found that it is important to provide a flow restricting means (orifice or the like) that allows only a predetermined flow rate at which the concentration of the gas supplied from the N 2 concentrator can be obtained at a target concentration even when a pressure difference occurs. This flow restricting means 30 is provided in a piping path connecting the N 2 concentrator 24 and the N 2 storage tank 23.
[0009]
When the reservoir tank 23 in which N 2 door of the culture chamber has been opened and closed, rapidly N 2 concentrator as a large amount of gas to recover steady-concentration can be supplied in a short period of time of at most a small N 2 is filled with zeolite capable of adsorbing and holding N 2 so that N 2 can be stored. Three times or more N 2 can stored for the same pressure in a volume of normal tank by way. However, good results cannot be obtained unless the zeolite is combined with a low water content gas generated by an N 2 concentrator that does not contain water, because the ability of the zeolite to absorb and retain N 2 is deteriorated by water. Both a membrane type concentrator and a concentrated nitrogen gas obtained by a PSA type concentrator using CMS can provide a dry gas with low moisture. A pressure sensor 18 is attached to the N 2 storage tank 23, and the pressure of the gas is measured and transmitted to the control unit 29 via the signal line 17. The pressure decreases as the volume of the stored gas decreases, and indicates higher pressure as the volume of the stored gas increases. When the O 2 concentration in the culture chamber becomes higher than the set value and becomes higher than the set value, the control unit 29 opens the automatic valve V 2 20 according to the signal and supplies N 2 , so that the gas in the tank is consumed. N 2 concentrator 24 of PSA expression detects that the pressure of the storage tank 23 has fallen to a predetermined value P L by the pressure sensor 18, which through a signal line 17 and transmitted to the control unit 29 control unit 29 signal line 16 to start the N 2 concentrator 24 by.
[0010]
In some cases, the culture is removed from the culture chamber during the course of the culture research, followed by research observation on the way, and then stored again to continue the culture. In such a case, if the door is opened and taken out, the outside air enters the double container, and the environment where the O2 concentration and CO2 concentration were controlled collapses, so immediately return to the original environment after the door is closed There is a need. For this reason, the situation where the door is opened and subsequently closed is detected by the open / close sensor 5, transmitted to the control unit 29 via the signal line 7, the N2 concentrator 24 is activated, and the automatic valve V1 is directly opened. Immediately after opening and closing the door, there is a large change in concentration, so a large amount of N2 is required, so it is necessary to generate and supply from the PSA N2 concentrator following the release of gas in the storage tank 23. . After the O2 concentration has decreased to a certain value, increasing the CO2 gas concentration lowers the O2 concentration, so that the CO2 consumption can be reduced as compared with the method of simultaneously supplying N2 gas and simultaneously supplying CO2. However, the length of time during which the environmental conditions are disturbed due to the nature of the culture object and fluctuations in the pH of the culture solution, etc., varies depending on the individual, so some N2 and CO2 must be supplied simultaneously. is there.
[0011]
When the automatic valve V 1 21 is closed is when the pressure in the storage tank rises to a predetermined value P H, O 2 concentration in the room the culture than the set value when the automatic valve V 2 20 is opened , And when it closes, the density has reached the set value. As described above, when the O 2 concentration in the culture chamber 1 detected by the O 2 sensor 9 or the CO 2 sensor 9 ′ increases, the automatic valve V 2 20 is opened by the control unit 29 and N 2 is discharged from the storage tank 23. As a result, the O 2 concentration in the culture chamber 1 decreases. However, a surplus gas is discharged from the atmosphere discharge port through a conduit 26 provided with a check valve 25 so that the internal pressure of the culture chamber 1 does not increase. The CO 2 concentration O 2 sensor 9 and CO 2 sensor 9 'and transmitted to the control unit 29 by a signal line 11 for transmitting a reduction is detected CO 2 concentration by the controller 29 to the automatic valve V 3 19 by a signal line 13 of CO 2 CO 2 cylinder 22 and discharged into the culture chamber 1 in the open, achieving an increase in CO 2 concentration. O 2 sensor 9, CO 2 sensor 9 'by CO 2 concentration control unit 29 to be detected to reach a set value to stop the introduction of the CO 2 automatic valve V 3 19 is closed. The control unit 29 has a setting device for setting the CO 2 concentration and the O 2 concentration in the culture chamber to target values. Further, the temperature of the hot water jacket 2 is controlled by turning on and off the heater 8 by the electric wire 12 from the control unit 29 and set to the target temperature. The setting device for inputting the target value for achieving the target set value is also shown. It is omitted in the figure.
[0012]
【The invention's effect】
By carrying out the present invention, as a source of the incubator of N 2 in the low-oxygen atmosphere, since the N 2 with about 79% in the atmosphere can be used those concentrated above 99%, N 2 gas cylinder or the like finite There is no need to worry about running out of gas like a supply source. While more volume the apparent small, the storage tank filled with an adsorbent to adsorb N 2, since the multiple of N 2 appearance capacity can be stored, it is possible to supply a large amount of N 2 to a temporary I can do it.
[Brief description of the drawings]
FIG. 1 is a flowchart of a preferred embodiment of the present invention.
[Explanation of symbols]
1 incubator 2 hot water jacket 3 door 4 hinged 5 closing sensor 6 button 8 heater 9 O 2 sensor 9 'CO 2 sensor 7,10,11,13,17 signal line 12 wire 18 a pressure sensor 19 the automatic valve V 3
20 automatic valve V 2
21 Automatic valve V 1
22 CO 2 cylinder 23 Storage tank 24 N 2 concentrator 25 Check valve 26,27,28 Conduit 29 Control unit 30 Flow rate limiting means

Claims (6)

扉を有する気密の培養室にN2導入口とCO2導入口と培養室内ガス濃度を検出するO2センサーCO2センサーを有し、検出された濃度信号は電気信号により制御部に伝えられ、N2導入口には自動弁V2を介してN2供給源が、CO2導入口には自動弁V3を介してCO2供給源が配管接続され、該O2センサーとCO2センサーの信号により制御部より自動弁V2,自動弁V3を開閉してN2、CO2を導入して培養室内ガス濃度を目標の一定濃度に保つようにする低酸素培養器において、N2供給源は空気中のN2を自動的に濃縮するN2濃縮器と貯留タンクとで構成し、N2濃縮器で濃縮したN2を自動弁V1を介して該貯留タンクに接続して貯留し、該貯留タンクには圧力センサーが設置され、貯留したN2圧力を測定し、制御部に伝え、該制御部により該貯留タンク圧力が一定値PLまで低下したときN2濃縮器を起動し、N2を濃縮し一定時間経過後に自動弁V1を開にしてN2を貯留タンクに供給し、貯留タンク圧力が一定値Pmまで上昇したときに自動弁V1を閉にしてN2濃縮器を停止して該N2供給源のN2とすることを特徴とする低酸素培養器。The airtight culture room with a door has an N2 inlet, a CO2 inlet, and an O2 sensor that detects the gas concentration in the culture room.The detected concentration signal is transmitted to the control unit by an electric signal, and is sent to the N2 inlet. Is connected to the N2 supply source via the automatic valve V2, and the CO2 inlet is connected to the CO2 supply source via the automatic valve V3 via a pipe.The control unit controls the automatic valves V2 and V3 based on the signals from the O2 sensor and the CO2 sensor. N2 and CO2 are introduced and N2 and CO2 are introduced to keep the gas concentration in the culture chamber at the target constant concentration.In a low oxygen incubator, the N2 supply source is a N2 concentrator that automatically concentrates N2 in air and a storage. It is composed of a tank and N2 concentrated by an N2 concentrator is connected to the storage tank via an automatic valve V1 and stored.A pressure sensor is installed in the storage tank, and the stored N2 pressure is measured and controlled. The storage unit pressure is reduced to a certain value PL by the control unit, the N2 concentration After the elapse of a certain time, the automatic valve V1 is opened to supply N2 to the storage tank, and when the storage tank pressure rises to a certain value Pm, the automatic valve V1 is closed and the N2 concentrator is started. A hypoxic incubator, which is stopped to use N2 as the N2 supply source. N2貯留タンクにN2を吸着するゼオライトを充填してあることを特徴とする請求項1記載の低酸素培養器。2. The low oxygen incubator according to claim 1, wherein the N2 storage tank is filled with zeolite that adsorbs N2. 扉の開閉状態を検出する開閉センサーを設け、N2濃縮器の起動をN2貯留タンクの一定圧PLまで低下した場合に加えて、扉の開閉を検出して起動を行い、N2濃縮を開始するように構成したことを特徴とする請求項1乃至請求項2記載の低酸素培養器。An open / close sensor that detects the open / closed state of the door is provided so that, in addition to the case where the N2 concentrator is started up to a certain pressure PL of the N2 storage tank, the door is opened and closed to start up and N2 enrichment is started. 3. The hypoxic incubator according to claim 1, wherein the incubator is configured as follows. 扉の開閉を検出してN2濃縮器を起動した場合は自動弁V1をN2濃縮起動後直ちに開にするよう制御することを特徴とする請求項1乃至請求項3記載の低酸素培養器。4. The low oxygen incubator according to claim 1, wherein when the N2 concentrator is started by detecting opening and closing of the door, the automatic valve V1 is controlled to be opened immediately after the N2 concentration is started. N2濃縮器とN2貯留タンクへの接続管路上に流量制限手段を設けたことを特徴とする請求項1乃至請求項4記載の低酸素培養器。5. The hypoxic incubator according to claim 1, wherein a flow restricting means is provided on a connection line between the N2 concentrator and the N2 storage tank. N2濃縮器とN2貯留タンクへの接続管路上に定流量弁を設けたことを特徴とする請求項1乃至請求項5記載の低酸素培養器。6. The hypoxic incubator according to claim 1, wherein a constant flow valve is provided on a connection line between the N2 concentrator and the N2 storage tank.
JP17034495A 1994-06-17 1995-06-12 Low oxygen incubator Expired - Fee Related JP3549949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17034495A JP3549949B2 (en) 1994-06-17 1995-06-12 Low oxygen incubator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15916294 1994-06-17
JP6-159162 1994-06-17
JP17034495A JP3549949B2 (en) 1994-06-17 1995-06-12 Low oxygen incubator

Publications (2)

Publication Number Publication Date
JPH0856646A JPH0856646A (en) 1996-03-05
JP3549949B2 true JP3549949B2 (en) 2004-08-04

Family

ID=26486043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17034495A Expired - Fee Related JP3549949B2 (en) 1994-06-17 1995-06-12 Low oxygen incubator

Country Status (1)

Country Link
JP (1) JP3549949B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1495108A2 (en) * 2002-04-08 2005-01-12 Millenium Biologix Inc. Automated tissue engineering system
JP4730000B2 (en) * 2005-07-01 2011-07-20 株式会社ニコン incubator
KR102546681B1 (en) 2017-09-01 2023-06-22 론차 콜로그네 게엠베하 End-to-End Cell Therapy Automation
US11772039B2 (en) 2018-09-25 2023-10-03 Sekisui Chemical Co., Ltd. Gas treatment method and gas treatment apparatus
JP2022514761A (en) 2018-12-21 2022-02-15 ロンザ ウォーカーズヴィル,インコーポレーテッド Automatic production method of viral vector
EP3898932A4 (en) 2018-12-21 2022-08-03 Octane Biotech Inc. Carousel for modular biologic production units
CA3123458A1 (en) 2018-12-28 2020-07-02 Octane Biotech Inc. Cell culture and tissue engineering systems with controlled environmental zones
KR20210125510A (en) 2019-02-08 2021-10-18 론자 워커스빌 아이엔씨. Cell Concentration Methods and Apparatus for Use in Automated Bioreactors
US10900010B1 (en) * 2019-09-04 2021-01-26 Barry E. Rothenberg Incubator with air curtain
CN114467778B (en) * 2022-01-15 2022-12-27 四川大学华西医院 Air circulation device and method for animal laboratory

Also Published As

Publication number Publication date
JPH0856646A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
US4648888A (en) Oxygen concentrator
JP3549949B2 (en) Low oxygen incubator
US8727031B2 (en) System and method for preventing or extinguishing fire
US5316905A (en) Culture medium supplying method and culture system
EP0932439B1 (en) Closed-loop feedback control for oxygen concentrator
RU2009114310A (en) METHOD AND DEVICE FOR MEASURING GAS PERMEABILITY THROUGH FILM OR WALLS
US9004187B2 (en) Inerting method for preventing and/or extinguishing fire as well as inerting system to realize the method
CA2347323C (en) Gas generating systems with multi-rate charging feature
AU2014264756B9 (en) Inertization method and system for oxygen reduction
AU2014264756B2 (en) Inertization method and system for oxygen reduction
TW201124180A (en) Oxygen enrichment device
CA2797056A1 (en) Initiating startup of pressure swing adsorption assemblies in hydrogen-processing systems
JPH04346774A (en) Storage apparatus for regulating atmosphere
JPS61254220A (en) Apparatus for removing co2
JP3769741B2 (en) Ozone concentration storage device and control method thereof
CN113813752A (en) Metering control system, gas separation device, control method, and storage medium
JP3342844B2 (en) Operation control device for oxygen concentrator and operation control method for oxygen concentrator
JPH0441315A (en) Storage device
JPS6356163B2 (en)
JPH11128652A (en) Humidity regulation in hollow fiber membrane moistening device
JP2011153183A (en) Combustible gas concentrator
EP0175607B1 (en) Process and plant for the culture of microorganisms
JPH04922B2 (en)
CN216024042U (en) Metering control system and pressure swing adsorption gas separation device
JPH03131504A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040422

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees