JP3548349B2 - Structural steel sheet with excellent brittle fracture resistance after plastic deformation - Google Patents

Structural steel sheet with excellent brittle fracture resistance after plastic deformation Download PDF

Info

Publication number
JP3548349B2
JP3548349B2 JP26664296A JP26664296A JP3548349B2 JP 3548349 B2 JP3548349 B2 JP 3548349B2 JP 26664296 A JP26664296 A JP 26664296A JP 26664296 A JP26664296 A JP 26664296A JP 3548349 B2 JP3548349 B2 JP 3548349B2
Authority
JP
Japan
Prior art keywords
steel sheet
plastic deformation
brittle fracture
steel
structural steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26664296A
Other languages
Japanese (ja)
Other versions
JPH1088280A (en
Inventor
忠 石川
修一 地主
行人 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26664296A priority Critical patent/JP3548349B2/en
Publication of JPH1088280A publication Critical patent/JPH1088280A/en
Application granted granted Critical
Publication of JP3548349B2 publication Critical patent/JP3548349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船体等の大型構造物同士が衝突等により大規模な塑性変形を受けた場合でも、鋼板の耐脆性破壊性能のうち特に重要であるアレスト性能が塑性変形を受けていない場合に比べて大幅に劣化することなく、前記衝突等の非常時の脆性破壊に対する安全性を確保できる構造用鋼板に関するものである。
【0002】
【従来の技術】
鋼板が塑性変形すると機械的性質の変化として、特に鋼板の靭性が劣化することが一般に知られており、塑性変形時の鋼板の使用性能評価として歪時効シャルピー試験等が広く実施されている。しかしながら、この歪時効特性の支配因子は未だ不明な点が多く、構造物同士が衝突した場合等の安全性を確保する観点からは、重大な問題である。
一般に、歪時効特性は、鋼中に固溶しているC元素やN元素が歪付与により導入された転位と相互作用をおこし、転位の動きを妨げるために、降伏点が上昇し、その結果、脆化がおこると説明されている。
【0003】
また、脆性破壊の伝播を阻止する性能であるアレスト性能は、鋼板が大規模な塑性変形を受けると大幅に劣化することが、(財)シップエンドオーシャンの平成6年度報告書に記載されており、予期しない大型船体同士の衝突等で生じる塑性損傷に対して、通常の設計時よりも高いアレスト性能を具備させることにより、塑性変形を受けてアレスト性能が劣化した場合でも必要最低限の安全性が確保できる鋼材が紹介されている。大規模な塑性変形を受けるような非常時の安全性を確保するためには、前述のように劣化代を考慮した高い耐脆性破壊性能を具備させる方法と、大規模な塑性変形を受けても劣化しくにい鋼材を提供する方法の二つの方法が考えられる。しかしながら、特にアレスト性能に関しては、その向上方法がやっと明かになりつつある段階であり、塑性変形後の劣化現象を最小に抑制しようとする技術は未だ明かになっていない。
【0004】
【発明が解決しようとする課題】
本発明は、塑性変形による耐脆性破壊性能の劣化代をできるだけ最小限に抑えた鋼板を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、上記課題を達成するためになされたもので、その手段は下記の通りである。
【0006】
(1) 重量%で、C:0.04〜0.08%、Si:0.05〜0.5%、Mn:0.3〜2.0%、A1:0.005〜0.1%、フリ−N:5〜20PPM、残部Feおよび不可避不純物からなる鋼板において、集合組織発達程度を示す(110)面のX線面強度比が2以上を有し、かつ構成する結晶粒の円相当径が20μm以上の粗大粒の面積率が3〜10%であることを特徴とする塑性変形後の耐脆性破壊伝播停止特性の優れた構造用鋼板。
【0007】
(2) 更に、重量%で、Ti:0.005〜0.10%、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Nb:0.005〜0.05%、V:0.005〜0.05%、Mo:0.05〜0.5%、B:0.0002〜0.0015%の1種または2種以上を含むことを特徴とする上記(1)記載の塑性変形後の耐脆性破壊伝播停止特性の優れた構造用鋼板
【0011】
本発明における各成分元素とその添加理由は以下の通りである。
【0012】
Cは鋼の強度を向上させる有効な成分として一般に利用されており、強度確保のために0.04%以上添加するものであるが、本発明においては、塑性歪後のアレスト性能の劣化を抑制させるために0.08%以下に規制する。
【0013】
Siは溶鋼の脱酸元素として必要であり、強度増加元素として有用であるが、0.5%を超えると鋼の加工性や溶接部の靭性か劣化し、0.05%未満では脱酸効果が不十分なため、添加量を0.05〜0.5%に規制する。
【0014】
Mnは鋼材の強度を向上する成分として0.3%以上の添加が必要であるが、Mnの添加は変態温度を下げるので、過剰の添加は本発明のポイントである2相域圧延の温度が低下しすぎてしまい、変形抵抗が上昇し、圧延が困難となるので2.0%を上限とする。
【0015】
Alは鋼中のNと結合してAl窒化物を形成し、塑性歪により導入された転位と相互作用を生じて転位の動きを妨げるフリー窒素を低減させる効果を有するため添加するが、添加しすぎると素材の靭性を劣化させるので、0.005〜0.10%に、規制する。
【0016】
Nは不可避不純物として含有されるが、フリーNは、塑性変形により導入させる転位と相互作用を生じ、コットレル雰囲気と呼ばれる変形を妨げる現象を招くので、フリーNは5〜20ppm以下に規制する。
【0017】
以上が、本発明が対象とする鋼の基本成分であるが、母材強度を上昇させるために
Cu:0.05〜0.5%
Ni:0.05〜0.5%
Nb:0.005〜0.05%
V:0.005〜0.05%
Mo:0.05〜0.5%
の1種または2種以上を使用してもよい。上記元素を含有させた場合、継手靭性の劣化が懸念されることがあり、継手靭性を向上させるために、
Ti:0.005〜0.10%
B:0.0002〜0.0015%
の1種または2種を使用できる。
【0018】
上記添加元素の下限値は、強度あるいは継手靭性を向上させるための効果を発揮させるために最低限必要な量であり、上限値はそれ以上含有させると、継手靭性および母材靭性が劣化してしまうために規制するものである。
【0019】
【発明の実施の形態】
本発明者らは、塑性歪が鋼板に付与された場合の鋼材の機械的性質の変化を実験により検討し、その機構解明を行い、塑性歪付与によるアレスト性能の劣化代の少ない鋼板を製造するための因子を検討した。
【0020】
塑性歪が鋼板に付与された後、時効処理を行った場合にVノッチシャルピー衝撃試験により求められた靭性が劣化する現象は、広く知られているが、塑性歪が付与された後、時効処理なしの場合の鋼板の靭性劣化現象に関する機構は明確にされていない。
【0021】
また、アレスト性能の指標である温度勾配型ESSO試験により求められるKCa値と、Vノッチシャルピー衡撃試験の結果には、一対一の相関関係は認められず、破壊機構が違うのでその支配因子も異なることが知られている。
【0022】
まず、塑性歪を受けた鋼板において脆性亀裂が伝播した破面の詳細観察を行った結果、壁開破面の単位として定義されるファセットの周囲に形成されるティアリッジ(延性破壊を呈するファセット周辺の破面の領域を呼ぶ)や、ファセット周辺の延性破壊領域が減少していることを知見した。この現象は、壁開破壊したファセット間の狭い領域で変形が拘束された状況下での微視的な領域での延性の低下であると解釈できる。そこで、塑性歪を受けた鋼板から切り欠き付き引張試験片を供試し、化学成分と塑性歪付与後の延性特性の関係を調査した。その結果、フリーNとCの延性特性の寄与が大きく、フリーN量が20ppm以下、およびC量が0.08%以下では図lに示すように顕著な伸び量の低下は起こさないことが判明した。尚、実験ではフリーNが30ppmであっても、C量が0.03%では伸び量低下は起こさないが、C量を0.03%にすると鋼板の強度確保のためにNi等の強化元素を多量に添加しなければならず経済的ではない。
【0023】
次に、微視的な延性低下の生じない成分範囲であるC量を0.06%、フリーN量をl5ppm含有した鋼板を試作し、温度勾配型ESSO試験を実施した結果、KCa値は低下することが判った。この理由を考察すると、延性は低下しないが、塑性歪の付与により降伏強度が上昇し、亀裂先端の応力が限界微視的破壊応力に達することにより、脆性破壊するためであると想定させる。したがって、亀裂先端の応力をなんらかの手段で低下させることが塑性歪付与後の脆性破壊を抑制するために重要であることが明確になった。
【0024】
そこで、集合組織を発達させて、鋼板の板厚方向と平行にセパレーションという縦割れを亀裂先端に生じさせることにより、亀裂あるいは切欠先端の拘束を解放させ、亀裂先端の応力を低下させる方法を活用することとした。
【0025】
限界微視的破壊応力に局所応力が達する以前に、必ずセパレーションを発生させるためには、鋼板の限界破壊応力がセパレーション発生応力に比べ高いことが必要である。しかし、実際のフェライトーオーステナイト2相域で圧延された鋼板において、塑性変形の支配的な温度域では、破壊に先立ちセパレーションを発生するが、低温域では脆性破壊を呈する。
【0026】
これは、低温になると鋼材の降伏点が上昇し、亀裂先端の塑性域が小さくなるためにセパレーションの発生に必要な結晶方位の異なるコロニー間での塑性異方性による局部変形が生じないためであると考えられる。そこで表1および表2に示す一般的な構造用鋼を用いて、種々の実験を行った。
【0027】
【表1】

Figure 0003548349
【0028】
【表2】
Figure 0003548349
まず、セパレーションを発生させるために必要な集合組織の組織形態を定量化するため、二相域圧延条件を変化させて種々の結晶方位を有する集合組織レベルの異なる鋼板を製造した。そして、種々の集合組織形態を、X線による面強度比測定を行い、図2に示すように(110)面の面強度比と板厚方向の限界破壊応力との間に相関関係が見られ、(110)面強度比が2以上である集合組織の限界破壊応力は、集合組織のない((110)面強度比が約1)ものの1/2以下となることを知見した。
【0029】
この結果より、(110)面の結晶方位を有する集合組織の発達が板厚方向の限界破壊応力を低下させるために有効であることがわかる。
【0030】
板厚断面方向の限界破壊応力が板厚方向の限界破壊応力より常に高ければ板厚断面に存在する亀裂が脆性破壊を発生する前に板厚方向にて微小破壊が生じ(セパレーション)、その結果板厚断面の亀裂が脆性破壊に移行することは確実に阻止できることになる。
【0031】
しかしながら、(110)面強度比を大きくしすぎると、板厚断面方向の靭性が低下しすぎてしまい、板厚断面方向に応力が作用する構造物に適用した場合鋼板が剥離することも懸念され問題である。そこで、板厚断面方向の限界破壊応力を向上させる必要がある。
【0032】
集合組織を発達させるために実施する二相域圧延材では、二相域圧延前のオーステナイト組織を微細化しておかないと、二相域圧延中に局部的に粒成長を起こし、粗大な結晶粒が混粒する現象が知られている。
【0033】
板厚断面方向の限界破壊応力と組織の関係を種々調査した結果、そして、この粗大な粒が限界破壊応力の低下の原因であることを新たに知見し、図3に示すように粒径が円相当径で20μm以上の粗大粒の存在を面積率で3〜10%以下に抑える必要を明らかにした。
【0034】
粒径が円相当径で20μm以上の粗大粒の存在を面積率で10%以下に抑える製造条件として、二相域圧延前のオーステナイト粒径を微細化させて、変態により生成するフェライト粒を微細化する方法を検討した。まず粗圧延段階で十分な再結晶を促進させて細粒化し、さらに未再結晶域での圧延により転位を十分導入させる条件を種々検討した結果、粗圧延と未再結晶域圧延を組み合わせた方が、全圧下率が小さくできることを見いだし、未再結晶域圧延の圧下率が20%以上必要であることが判明した。その条件下において、未再結晶域圧延を30%以上実施すれば、必要面強度比を得るのに必要な二相域圧延圧下率が30%以上の圧延においても、粗大フェライトが生成しないことが判明した。
【0035】
【実施例】
実施例の供試鋼の成分を表1に、製造条件および得られた材質を表2に比較例と共に示す。
【0036】
塑性歪10%の付与方法は、ESSO試験片(幅500mm×長さ500mm×板厚)を採取できる供試鋼板をESSO試験を実施するときに使用する横型大型引張試験機にて引張荷重を与えて塑性歪を付加し、負荷中は試験片に取り付けた伸び計により歪量をモニターし、負荷した後試験片に卦がいておいた標線の引張負荷前と負荷後の間隔の変化より塑性歪量を求めた。塑性歪付与材と素材のVノッチシャルピー衝撃試験を実施し、そのvTr値の比較を行った。また、ほぼ同一の塑性歪を負荷したESSO試験片を3体温度勾配型の脆性亀裂伝播停止試験を行い、亀裂の停止温度とそのときのK値より、Kca値と温度の関係をもとめ、Kca値が6000N/mm1.5を示す温度を求めた。
【0037】
本発明例の試験番号1〜12および比較例の試験番号13〜15の化学成分は、それぞれ鋼種1〜7でC量が0.08%以下であり、かつフリーN量も20ppm以下であり、本発明の規定内である。一方、比較例の試験番号16〜19はそれぞれ鋼種8〜11を用いたものであり、鋼種8、9はC量が所要量以上であり、鋼種10はフリーN量が所定量以上であり、綱種11はC量、N量とも所定量以上であり、いずれも本発明の成分規定量から外れるものである。
【0038】
試験番号1〜12,16〜19は、粗圧延、未再結晶域圧延、二相域圧延とも所定の圧延条件で実施したが、化学成分が所定の範囲にない試験番号16〜19は塑性歪によるvTrsの変化、Kca=6000N/mm1.5を示す温度の変化が共に本発明例である試験番号1〜12より大きかった。
【0039】
試験番号13,14,15は、所定の化学成分範囲の供試鋼を用いているが、試験番号13は二相域圧延を適用しなかった場合であり、試験番号14は二相域圧延は実施しているがその前の未再結晶域圧延が不十分であった場合であり、試験番号15は粗圧延せずに未再結晶域圧延のみ適用したものである。これら3つの例も、本発明例よりも塑性歪によるvTrsおよびKca=6000N/mm1.5を示す温度の変化が大きかった。
【0040】
【発明の効果】
本発明は上記した手段及び作用を利用したものであり、C量とN量が所定の範囲である鋼板に所定の粗圧延、未再結晶域圧延、二相域圧延を適用することによって塑性歪を受けた場合でもアレスト性能の劣化が小さい構造用鋼板の提供を可能とするものある。
【図面の簡単な説明】
【図1】化学成分と塑性歪付与後の拘束付き引張試験結果の関係を示す図である。
【図2】X線による(110)面強度比と板厚方向の限界破壊応力の関係を示す図である。
【図3】粗大粒の面積率と板厚断面方向の限界破壊応力の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a steel plate having a large structure, such as a hull or the like, which undergoes large-scale plastic deformation due to collision or the like. without significantly degraded Te, but about the structural steel which can ensure safety against brittle fracture of emergency of the collision.
[0002]
[Prior art]
It is generally known that when a steel sheet undergoes plastic deformation, mechanical properties change, and in particular, the toughness of the steel sheet deteriorates. A strain-aged Charpy test and the like are widely performed to evaluate the use performance of a steel sheet during plastic deformation. However, there are still many unknown factors governing the strain aging characteristics, and this is a serious problem from the viewpoint of ensuring safety in the case where structures collide with each other.
In general, the strain aging characteristic is such that the C element or N element dissolved in steel interacts with dislocations introduced by applying strain and hinders the movement of the dislocations, so that the yield point rises. Is described as embrittlement.
[0003]
In addition, the arrest performance, which is the ability to prevent the propagation of brittle fracture, significantly deteriorates when a steel sheet undergoes large-scale plastic deformation, according to the Ship End Ocean's 1994 report. In order to prevent plastic damage caused by unexpected collisions between large hulls, by providing higher arrest performance than normal design, the minimum necessary safety even if arrest performance deteriorates due to plastic deformation Steel materials that can be secured are introduced. In order to ensure safety in an emergency such as undergoing large-scale plastic deformation, a method of providing high brittle fracture resistance in consideration of the degradation allowance as described above, and even if subjected to large-scale plastic deformation There are two methods of providing a steel material that is hard to deteriorate. However, especially with regard to arrest performance, a method for improving the arrest performance is finally being clarified, and a technique for minimizing the deterioration phenomenon after plastic deformation has not yet been clarified.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel sheet in which the amount of deterioration of brittle fracture resistance due to plastic deformation is minimized as much as possible.
[0005]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the means are as follows.
[0006]
(1) In weight%, C: 0.04 to 0.08%, Si: 0.05 to 0.5%, Mn: 0.3 to 2.0%, A1: 0.005 to 0.1% , Free N: 5 to 20 PPM, the balance being Fe and the inevitable impurities, the X-ray plane intensity ratio of the (110) plane showing the degree of texture development is 2 or more, and equivalent to the circle of the constituting crystal grains A structural steel sheet having excellent brittle fracture arrestability after plastic deformation, characterized in that the area ratio of coarse grains having a diameter of 20 μm or more is 3 to 10%.
[0007]
(2) Further, by weight%, Ti: 0.005 to 0.10%, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Nb: 0.005 to 0.5%. Characterized in that it contains one or more of 0.05%, V: 0.005 to 0.05%, Mo: 0.05 to 0.5%, and B: 0.0002 to 0.0015%. (1) Structural steel sheet having excellent brittle fracture arrestability after plastic deformation described in (1) .
[0011]
The constituent elements in the present invention and the reasons for their addition are as follows.
[0012]
C is generally used as an effective component for improving the strength of steel, and is added in an amount of 0.04% or more to secure the strength. In the present invention, however, deterioration of arrest performance after plastic strain is suppressed. It is regulated to 0.08% or less in order to make it.
[0013]
Si is necessary as a deoxidizing element for molten steel and is useful as a strength increasing element. However, if it exceeds 0.5%, the workability of the steel or the toughness of the welded part deteriorates, and if it is less than 0.05%, the deoxidizing effect. Is insufficient, the addition amount is regulated to 0.05 to 0.5%.
[0014]
Mn needs to be added in an amount of 0.3% or more as a component for improving the strength of the steel material. However, the addition of Mn lowers the transformation temperature. Since it is too low, deformation resistance increases and rolling becomes difficult, the upper limit is 2.0%.
[0015]
Al is combined with N in the steel to form an Al nitride, which has an effect of reducing free nitrogen which interacts with dislocations introduced by plastic strain and hinders the movement of dislocations. If it is too much, the toughness of the material is deteriorated, so the content is restricted to 0.005 to 0.10%.
[0016]
Although N is contained as an unavoidable impurity, free N interacts with dislocations introduced by plastic deformation to cause a phenomenon called Cottrell atmosphere, which hinders deformation. Therefore, free N is restricted to 5 to 20 ppm or less.
[0017]
The above are the basic components of the steel targeted by the present invention. In order to increase the base metal strength, Cu: 0.05 to 0.5%
Ni: 0.05-0.5%
Nb: 0.005 to 0.05%
V: 0.005 to 0.05%
Mo: 0.05-0.5%
One or more of these may be used. When the above elements are contained, there is a concern that deterioration of the joint toughness, in order to improve the joint toughness,
Ti: 0.005 to 0.10%
B: 0.0002-0.0015%
One or two types can be used.
[0018]
The lower limit of the additive element is the minimum amount required to exhibit the effect of improving the strength or the joint toughness, and if the upper limit is more than that, the joint toughness and the base material toughness deteriorate. It is regulated to get rid of it.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have studied experimentally the change in mechanical properties of a steel material when plastic strain is applied to a steel sheet, clarified the mechanism thereof, and manufactured a steel sheet with less arrest performance deterioration due to plastic strain application. Factors were studied.
[0020]
The phenomenon that the toughness determined by the V-notch Charpy impact test is deteriorated when plastic strain is applied to a steel sheet and then subjected to aging treatment is widely known, but after plastic strain is applied, aging treatment is performed. The mechanism regarding the toughness degradation phenomenon of the steel sheet in the case without it has not been clarified.
[0021]
In addition, there is no one-to-one correlation between the KCa value obtained by the temperature gradient type ESSO test, which is an index of arrest performance, and the result of the V-notch Charpy striking test. It is known to be different.
[0022]
First, as a result of detailed observation of the fracture surface where a brittle crack propagated in a steel plate subjected to plastic strain, the tear ridge formed around the facet defined as the unit of the wall fracture surface (around the facet showing ductile fracture) And the area of the ductile fracture around the facet was reduced. This phenomenon can be interpreted as a decrease in ductility in a microscopic region in a situation where deformation is constrained in a narrow region between facets that have undergone open-wall fracture. Therefore, a notched tensile test piece was provided from a steel plate subjected to plastic strain, and the relationship between a chemical composition and ductility characteristics after plastic strain was applied was investigated. As a result, it was found that the contribution of the ductility characteristics of free N and C was large, and when the free N amount was 20 ppm or less and the C amount was 0.08% or less, a remarkable decrease in elongation did not occur as shown in FIG. did. In experiments, even if free N is 30 ppm, the elongation does not decrease when the C content is 0.03%, but when the C content is 0.03%, a reinforcing element such as Ni is used to secure the strength of the steel sheet. Must be added in large amounts, which is not economical.
[0023]
Next, a steel plate containing 0.06% of C and 15 ppm of free N, which are components in which microscopic ductility does not decrease, was prototyped, and a temperature gradient ESSO test was performed. I found out. Considering the reason, it is assumed that although the ductility does not decrease, the yield strength increases due to the application of plastic strain, and the stress at the tip of the crack reaches the limit microscopic fracture stress, thereby causing brittle fracture. Therefore, it has been clarified that it is important to reduce the stress at the crack tip by some means in order to suppress brittle fracture after plastic strain is applied.
[0024]
Therefore, utilizing the method of developing the texture and causing a vertical crack called separation in the crack tip parallel to the thickness direction of the steel sheet to release the constraint on the crack or notch tip and reduce the stress at the crack tip It was decided to.
[0025]
In order to ensure that separation occurs before the local stress reaches the critical microscopic fracture stress, it is necessary that the critical fracture stress of the steel sheet be higher than the separation initiation stress. However, in an actual steel sheet rolled in a ferrite-austenite two-phase region, separation occurs prior to fracture in a temperature region where plastic deformation is dominant, but brittle fracture occurs in a low temperature region.
[0026]
This is because at low temperatures, the yield point of the steel material rises, and the plastic region at the crack tip becomes smaller, so that local deformation due to plastic anisotropy between colonies with different crystal orientations required for the occurrence of separation does not occur. It is believed that there is. Therefore, various experiments were performed using general structural steels shown in Tables 1 and 2.
[0027]
[Table 1]
Figure 0003548349
[0028]
[Table 2]
Figure 0003548349
First, in order to quantify the texture morphology of the texture required to cause separation, steel sheets having various crystal orientations and different texture levels were produced by changing the two-phase rolling conditions. Then, the surface strength ratio of various texture forms was measured by X-ray. As shown in FIG. 2, a correlation was found between the surface strength ratio of the (110) plane and the critical fracture stress in the sheet thickness direction. It has been found that the critical fracture stress of the texture having a (110) plane strength ratio of 2 or more is 1 / or less of that having no texture (the (110) plane strength ratio is about 1).
[0029]
From this result, it can be seen that the development of a texture having a crystal orientation of the (110) plane is effective for reducing the critical fracture stress in the sheet thickness direction.
[0030]
If the critical fracture stress in the thickness direction is always higher than the critical fracture stress in the thickness direction, micro-fracture occurs in the thickness direction before the cracks existing in the thickness direction cause brittle fracture (separation). It is possible to reliably prevent the crack in the plate thickness section from shifting to brittle fracture.
[0031]
However, if the (110) plane strength ratio is too large, the toughness in the cross-section in the thickness direction is too low, and there is a concern that the steel plate may peel when applied to a structure in which stress acts in the cross-section in the thickness direction. It is a problem. Therefore, it is necessary to improve the critical fracture stress in the thickness direction.
[0032]
Unless the austenite structure before the two-phase region rolling is refined, grain growth occurs locally during the two-phase region rolling, and coarse grain It is known that particles are mixed.
[0033]
As a result of various investigations on the relationship between the critical fracture stress and the microstructure in the thickness direction, it was newly found that the coarse grains were the cause of the decrease in the critical fracture stress. As shown in FIG. It was clarified that the presence of coarse particles having an equivalent circle diameter of 20 μm or more should be suppressed to an area ratio of 3 to 10% or less.
[0034]
As a manufacturing condition for suppressing the presence of coarse particles having a circle equivalent diameter of 20 μm or more to an area ratio of 10% or less, the austenite particle size before the dual-phase rolling is reduced to reduce the ferrite particles generated by transformation. We considered how to make it. First, in the rough rolling stage, sufficient recrystallization was promoted to refine the grains, and furthermore, various conditions for sufficiently introducing dislocations by rolling in the non-recrystallized region were examined. However, it was found that the total rolling reduction could be reduced, and it was found that the rolling reduction in the non-recrystallization zone rolling was required to be 20% or more. Under these conditions, if the unrecrystallized zone rolling is performed at 30% or more, coarse ferrite is not formed even at a rolling reduction of 30% or more in the two-phase zone rolling required to obtain the required surface strength ratio. found.
[0035]
【Example】
Table 1 shows the components of the test steels of the examples, and Table 2 shows the production conditions and the obtained materials together with comparative examples.
[0036]
The method of imparting a plastic strain of 10% is to apply a tensile load to a test steel plate from which an ESSO test piece (width 500 mm × length 500 mm × plate thickness) can be sampled using a horizontal large-sized tensile tester used when conducting an ESSO test. During the loading, the strain was monitored by an extensometer attached to the test piece during loading, and after loading, the test piece was marked with trigrams. The amount of distortion was determined. A V-notch Charpy impact test was performed on the plastic strain imparting material and the material, and their vTr values were compared. Further, an ESSO test piece loaded with almost the same plastic strain was subjected to a three-body temperature gradient type brittle crack propagation stop test, and the relationship between the Kca value and the temperature was determined from the crack stop temperature and the K value at that time. The temperature at which the value showed 6000 N / mm 1.5 was determined.
[0037]
The chemical components of Test Nos. 1 to 12 of the present invention and Test Nos. 13 to 15 of Comparative Examples are steel types 1 to 7, respectively, the C amount is 0.08% or less, and the free N amount is 20 ppm or less, Within the provisions of the present invention. On the other hand, the test numbers 16 to 19 of the comparative examples use steel types 8 to 11, respectively, and the steel types 8 and 9 have a C amount equal to or more than a required amount, and the steel type 10 has a free N amount equal to or more than a predetermined amount, In the class 11, both the C amount and the N amount are equal to or more than a predetermined amount, and both are out of the specified amount of the component of the present invention.
[0038]
Test Nos. 1 to 12, 16 to 19 were carried out under predetermined rolling conditions in each of rough rolling, unrecrystallized zone rolling, and two-phase zone rolling. And the change in temperature indicating Kca = 6000 N / mm 1.5 were larger than those of Test Nos. 1 to 12 of the present invention.
[0039]
Test Nos. 13, 14, and 15 used test steels having a predetermined chemical composition range, but Test No. 13 was a case where two-phase zone rolling was not applied. Test No. 14 was a case where two-phase zone rolling was not performed. Test No. 15 applies only the non-recrystallized region rolling without performing rough rolling, although the previous unrecrystallized region rolling was insufficient. These three examples also, the change in temperature showing a vTrs and Kca = 6000N / mm 1.5 by plastic strain than invention sample was large.
[0040]
【The invention's effect】
The present invention utilizes the above-described means and effects, and applies a predetermined rough rolling, a non-recrystallized region rolling, and a two-phase region rolling to a steel sheet having a C amount and an N amount within a predetermined range, whereby a plastic strain is obtained. In some cases, it is possible to provide a structural steel sheet with little deterioration in arrest performance even when the steel sheet is subjected to the arrest performance.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between chemical components and the results of a restricted tensile test after plastic strain has been applied.
FIG. 2 is a view showing a relationship between a (110) plane strength ratio by X-rays and a critical fracture stress in a plate thickness direction.
FIG. 3 is a diagram showing a relationship between an area ratio of coarse grains and a critical fracture stress in a sheet thickness cross-sectional direction.

Claims (2)

重量%で、
C:0.04〜0.08%
Si:0.05〜0.5%
Mn:0.3〜2.0%
A1:0.005〜0.1%
フリ−N:5〜20PPM
残部Feおよび不可避不純物からなる鋼板において、集合組織発達程度を示す(110)面のX線面強度比が2以上を有し、かつ構成する結晶粒の円相当径が20μm以上の粗大粒の面積率が3〜10%であることを特徴とする塑性変形後の耐脆性破壊伝播停止特性の優れた構造用鋼板。
In weight percent,
C: 0.04 to 0.08%
Si: 0.05-0.5%
Mn: 0.3-2.0%
A1: 0.005 to 0.1%
Pretend -N: 5~ 20PPM
In a steel sheet comprising the balance of Fe and unavoidable impurities, the area of coarse grains having an X-ray plane intensity ratio of (110) plane showing texture development degree of 2 or more, and constituting a crystal grain having a circle equivalent diameter of 20 μm or more. A structural steel sheet having excellent brittle fracture arrestability after plastic deformation characterized by having a modulus of 3 to 10%.
更に、重量%で、
Ti:0.005〜0.10%
Cu:0.05〜0.5%
Ni:0.05〜0.5%
Nb:0.005〜0.05%
V:0.005〜0.05%
Mo:0.05〜0.5%
B:0.0002〜0.0015%
の1種または2種以上を含むことを特徴とする請求項1記載の塑性変形後の耐脆性破壊伝播停止特性の優れた構造用鋼板
Furthermore, in weight%,
Ti: 0.005 to 0.10%
Cu: 0.05-0.5%
Ni: 0.05-0.5%
Nb: 0.005 to 0.05%
V: 0.005 to 0.05%
Mo: 0.05-0.5%
B: 0.0002-0.0015%
The structural steel sheet excellent in brittle fracture propagation arrestability after plastic deformation according to claim 1, characterized by containing one or more of the following.
JP26664296A 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation Expired - Fee Related JP3548349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26664296A JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26664296A JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Publications (2)

Publication Number Publication Date
JPH1088280A JPH1088280A (en) 1998-04-07
JP3548349B2 true JP3548349B2 (en) 2004-07-28

Family

ID=17433671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26664296A Expired - Fee Related JP3548349B2 (en) 1996-09-18 1996-09-18 Structural steel sheet with excellent brittle fracture resistance after plastic deformation

Country Status (1)

Country Link
JP (1) JP3548349B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099318A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
WO2013099319A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
KR20130114239A (en) 2011-02-08 2013-10-16 제이에프이 스틸 가부시키가이샤 Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
KR20140113974A (en) 2011-12-27 2014-09-25 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034392B2 (en) * 2006-09-12 2012-09-26 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5217391B2 (en) * 2006-11-30 2013-06-19 Jfeスチール株式会社 Steel sheet having a thickness of 50 mm or more and excellent in brittle crack propagation stopping characteristics in the thickness direction, and method for producing the same
JP4985086B2 (en) * 2006-12-28 2012-07-25 Jfeスチール株式会社 High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5061649B2 (en) * 2007-02-28 2012-10-31 Jfeスチール株式会社 Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics
JP4946512B2 (en) * 2007-02-28 2012-06-06 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5618044B2 (en) * 2009-03-17 2014-11-05 Jfeスチール株式会社 Thick steel plate with excellent fatigue crack propagation characteristics in the thickness direction and method for producing the same
CN102766809B (en) * 2012-07-17 2013-11-20 东北大学 Hot rolled strip steel with yield strength higher than 800MPa for mine rescue capsule and preparation method of hot rolled strip steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130114239A (en) 2011-02-08 2013-10-16 제이에프이 스틸 가부시키가이샤 Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
WO2013099318A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
WO2013099319A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
KR20140094022A (en) 2011-12-27 2014-07-29 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
KR20140097463A (en) 2011-12-27 2014-08-06 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
KR20140113974A (en) 2011-12-27 2014-09-25 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor

Also Published As

Publication number Publication date
JPH1088280A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US11946112B2 (en) High-strength steel sheet and method for producing same
KR102590078B1 (en) High-strength steel plate and manufacturing method thereof
EP3553195B1 (en) High mn steel sheet and method for producing same
EP2392682B1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
EP1870484B1 (en) High-strength steel plate and process for production thereof, and high-strength steel pipe
EP2305850B1 (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
WO2011142356A1 (en) High-strength steel sheet and method for producing same
WO2010032428A1 (en) High-strength steel plate and process for producing same
JP2004339606A (en) High strength hot rolled steel plate and manufacturing method
WO2020045220A1 (en) High-strength steel plate and method for producing same
JP3548349B2 (en) Structural steel sheet with excellent brittle fracture resistance after plastic deformation
US4931106A (en) Hot rolled steel sheet having high resistances against secondary-work embrittlement and brazing embrittlement and adapted for ultra-deep drawing and a method for producing the same
JP5348382B2 (en) A steel plate for high toughness linepipe with a low yield stress reduction due to the Bauschinger effect and a method for producing the same.
JP5257289B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JPS62205230A (en) Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP3825623B2 (en) High-tensile steel with excellent fracture resistance of welds
JP3567726B2 (en) Structural steel excellent in earthquake resistance and method of manufacturing the same
JP2002060890A (en) Ni-CONTAINING STEEL HAVING EXCELLENT TOUGHNESS IN WELD ZONE AFTER STRESS RELIEF ANNEALING
JPH0344126B2 (en)
JP3384318B2 (en) Oxide dispersed low thermal expansion alloy
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees