JP3545245B2 - Common mode filter - Google Patents

Common mode filter Download PDF

Info

Publication number
JP3545245B2
JP3545245B2 JP04710299A JP4710299A JP3545245B2 JP 3545245 B2 JP3545245 B2 JP 3545245B2 JP 04710299 A JP04710299 A JP 04710299A JP 4710299 A JP4710299 A JP 4710299A JP 3545245 B2 JP3545245 B2 JP 3545245B2
Authority
JP
Japan
Prior art keywords
pair
common mode
grounding conductor
conductors
mode filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04710299A
Other languages
Japanese (ja)
Other versions
JP2000252124A (en
Inventor
康裕 貝崎
文史郎 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Sanyo Electric Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP04710299A priority Critical patent/JP3545245B2/en
Publication of JP2000252124A publication Critical patent/JP2000252124A/en
Application granted granted Critical
Publication of JP3545245B2 publication Critical patent/JP3545245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平衡系通信伝送路に用いられるフィルタに係り、さらに詳しくは、平衡伝送路で発生する電磁雑音の原因となるコモンモード電流を抑圧するフィルタに関する。
【0002】
【従来の技術】
2本の伝送線路を用いる平衡伝送系において、機器間を伝送する信号は2本の伝送線に逆方向の電流が流れ、このような電流成分をディファレンシャルモード(平衡成分)と称する。これとは別に、2本の伝送線に同一方向の電流成分が流れ、基準の接地板を帰路として電流が流れることがあり、これをコモンモード(不平衝成分)電流と称する。高周波においては、このコモンモード電流が大きな電流ループを形成し、電磁雑音の発生源となる。また、このコモンモード電流が駆動源となり、外部ケーブル等が接続された場合にアンテナとして電磁雑音を発生させることがある。
【0003】
そのため、従来、このコモンモード電流を低減する方法として、コモンモードチョークコイルと本発明者が特願平10−296237号で提案したコモンモードフィルタがある。
【0004】
コモンモードチョークコイルは、数百MHz以下の比較的低周波の領域で使われるもので、リング状のフェライト等に2本の平衡線路を巻き付けた構造で、コモンモード電流に対しては2本の伝送線路によって発生する磁束の向きが同じになるため高インピーダンスになり、ディファレンシャルモード電流に対しては2本の伝送線路によって発生する磁束の向きが反対方向で打ち消し合うため低インピーダンスになる。
【0005】
本発明者提案になるコモンモードフィルタは、数百MHz以上の高周波領域で使われるもので、積層型誘電基板において、上下面にグランド接地されるべき接地用導体層を有する誘電体内に、接地用導体層で形成されたグランド面に垂直な軸方向に相重なる様に2本の伝送線路として一対のライン状導体を設けた構造を備え、前記一対のライン状導体は、上側の接地用導体層に近接かつ平行にスパイラル状もしくはミアンダ状パターンが形成された導体部と、下側の接地用導体層に近接かつ平行に先ほど形成したパターンと同一方向に周回するスパイラル状もしくはミアンダ状パターンが形成された導体部とを互いに電気的に接続した構成である。
【0006】
この構造で、一対のライン状導体にコモンモード電流が流れた場合、一対のライン状導体間に磁気壁が形成されるため、一対のライン状導体間の容量成分(キャパシタ成分)は発生せず、1本の伝送線路として見なせる。このとき、前記した下部のスパイラル状もしくはミアンダ状パターンの導体部と下側の接地用導体層間、前記した上部のスパイラル状もしくはミアンダ状パターンと上側の接地用導体層間、及び上下スパイラル状もしくはミアンダ状パターン間に分布定数的な容量成分が発生し、これらとスパイラル状もしくはミアンダ状パターンにより発生するインダクタ成分を組み合わせるとπ型の低域通過フィルタが形成され、あらかじめ設定された高周波側のコモンモード電流成分を減衰させる。
【0007】
コモンモードチョークコイルがコモンモードとディファレンシャルモード時のインダクタ成分の差違を利用するのに対して、コモンモードフィルタは容量成分の差違を利用するものである。
【0008】
【発明が解決しようとする課題】
前記コモンモードフィルタでは、伝送線路をスパイラル状にして磁束を集中する構造にしてもセラミック等の誘電体の透磁率は1であるためインダクタ相互誘導の効果は限られる。
【0009】
本発明は、上記の点に鑑み、そのインダクタ相互誘導の効果をコモンモードフィルタに持たせることにより、コモンモード電流の減衰量増加とディファレンシャルモード電流の損失低減を図ったコモンモードフィルタを提供することを目的とする。
【0010】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、上下一対の接地用導体層を誘電体を挟んで形成し、前記誘電体内でかつ前記一対の接地用導体層間に、並行して一対のライン状導体を設けた構造を備え、前記一対のライン状導体の各々は、前記一対の接地用導体層の一方に近接かつ平行にパターンが形成された導体部と、前記一対の接地用導体層の他方に近接かつ平行にパターンが形成された導体部とを互いに電気的に接続した構成であるコモンモードフィルタであって、前記一対のライン状導体の電流による磁束の磁路の少なくとも一部となる磁性体を前記一対の接地用導体層間に配したことを特徴としている。
【0012】
前記コモンモードフィルタにおいて、前記磁性体が、前記接地用導体層と前記誘電体との間に配された磁性体層を少なくとも有する連続した構造体であるとよい。
【0013】
前記誘電体中に形成される前記一対のライン状導体の各導体部が中心軸を同じくする1周以上のスパイラル状のパターンで、なおかつ、前記中心軸に沿って前記磁性体の少なくとも一部が配されている構成としてもよい。
【0014】
【発明の実施の形態】
以下、本発明に係るコモンモードフィルタの実施の形態を図面に従って説明する。
【0015】
図1は本発明の第1の実施の形態によるコモンモードフィルタ部分の斜視図(透視図)、図2はその断面形状であり、積層回路基板内部に組み込まれた状態でのコモンモードフィルタ機能部分を表したものである。これらの図において、1,2,3,4,5は誘電体基板であり、積層されて積層回路基板を構成するものである。6,7は積層された誘電体基板の上下面を全面的に導体で覆った接地用導体層(接地されるべきグランド層)である。8,9,10,11は一対の伝送線路としてのライン状導体を構成するスパイラル状パターンの導体部をそれぞれ配置する層である。ここでは、誘電体基板1,5同士を同一厚さ、誘電体基板2,4同士を同一厚さとした。
【0016】
このコモンモードフィルタは、上下一対の接地用導体層6,7間に並行して(相互に平行に対向させて)2本伝送線路となる一対のライン状導体LN1,LN2を設けた構造を備えている。一方のライン状導体LN1は、誘電体基板1,2間の層8に形成された導体部12と、誘電体基板3,4間の層10に形成された導体部14とを同一方向に周回するスパイラル状パターンとなる如く層間接続用導体部16で電気的に接続したものである。他方のライン状導体LN2は、誘電体基板2,3間の層9に形成された導体部13と、誘電体基板4,5間の層11に形成された導体部15とを同一方向に周回するスパイラル状パターンとなる如く層間接続用導体部17で電気的に接続したものである。前記層間接続用導体部16,17は誘電体基板2,3,4に貫通孔、もしくは切り欠きを設けることにより形成する。前記導体部12,13は接地用導体層6に近接かつ平行にパターンが形成されており、前記導体部14,15は接地用導体層7に近接かつ平行にパターンが形成されている。ここでは、接地用導体層6,7が積層誘電体基板の表裏面(上下面)に形成されて平行であるから、接地用導体層6,7と各導体部12,13,14,15とは相互に平行な関係を保っている。そして、接地用導体層6,7で形成されるグランド面の垂直方向からみた各導体部は相重なる配置で、そのパターン幅が同じである。換言すれば、接地用導体層6,7に垂直な軸方向に相重なる様に2本の伝送線路としてのライン状導体LN1,LN2を同幅で形成している。
【0017】
さらに、下側及び上側の接地用導体層6,7間において、スパイラル状パターンの各導体部12,13,14,15のスパイラルの中心軸に沿って、高周波領域に適用可能なNi−Zn系フェライト等の円柱状の磁性体(より正確に表現すれば強磁性体)18が配置されている。図2のように、この磁性体18は接地用導体層6,7間の積層誘電体基板で構成された誘電体内に埋設されている。
【0018】
この第1の実施の形態で、一対の伝送線路つまり一対のライン状導体LN1,LN2に同一方向の電流が流れるコモンモードの場合、ライン状導体LN1,LN2間に磁気壁が形成されるため、ライン状導体LN1,LN2間の容量成分は発生せず、1本の伝送線路として見なせる。このとき、下部スパイラル状パターンの導体部12,13と下側接地用導体層6間、上部スパイラル状パターンの導体部14,15と上側接地用導体層7間、及び、上下導体部間に分布定数的な容量成分が発生する。これらと各導体部のスパイラル状パターン及び層間接続用導体部16,17により発生するインダクタンス成分を組み合わせることによりπ型の低域通過フィルタが形成される。
【0019】
さらに、本例では磁性体18を設けて磁束が通る磁路の一部を構成させており、スパイラル状パターンの各導体部12,13,14,15から発生する磁束が磁性体18に集中する。一対の伝送線路、つまり一対のライン状導体LN1,LN2に同一方向の電流が流れるコモンモードの場合、図3に示すように、一本のライン状導体の発生する磁束H1(実線)ともう一本のライン状導体が発生する磁束H2(破線)の向きが同じになるため、コモンモード電流に対するインダクタ成分が強め合い、コモンモード電流に対するインピーダンスが高くなり、コモンモード電流の減衰量増加を図ることができる。
【0020】
一方、一対のライン状導体LN1,LN2に逆方向の電流が流れるディファレンシャルモードの場合、一対のライン状導体LN1,LN2間に電気壁が形成され、ライン状導体LN1,LN2間にキャパシタ成分が発生し、先の接地用導体層6,7間とのキャパシタ成分の影響は小さくなり、ディファレンシャルモード電流の減衰には影響しない。なおかつ、図4に示すように、一本のライン状導体が発生する磁束H1(実線)ともう一本のライン状導体が発生する磁束H2(破線)の向きが逆で打ち消し合うため、ディファレンシャルモード電流に対するインダクタ成分は小さくなり、ディファレンシャルモード電流に対するインピータンスは小さくなり、この点でもディファレンシャルモード電流の減衰には影響しないようにできる。
【0021】
この第1の実施の形態によれば、次の通りの効果を得ることができる。
【0022】
(1) 積層誘電体基板内において、一対の接地用導体層6,7間に、並行して一対のライン状導体LN1,LN2を設け、さらに、一対のライン状導体LN1,LN2は接地用導体層6に近接かつ平行にスパイラル状パターンが形成された導体部12,13と、接地用導体層7に近接かつ平行に先の導体部と同一方向に周回するスパイラル状パターンが形成された導体部14,15とを互いに電気的に接続し、スパイラル状パターンの中心部に磁性体18を配置した構成であり、コモンモード電流に対してπ型低域通過フィルタを構成でき、しかも磁性体18で各導体部による磁束を集束することで、コモンモード電流に対して高インピーダンスを呈するようにでき、コモンモード電流に対する減衰量のいっそうの増大を図ることができる。
【0023】
(2) 一対のライン状導体LN1,LN2を構成する各導体部12,13,14,15のパターンが同一方向に周回するスパイラル状のパターンであり、製品形状の小型化に適する。
【0024】
(3) 一対のライン状導体LN1,LN2を構成する各導体部12,13,14,15のパターンが接地用導体層6,7に平行で当該接地用導体層の垂直方向からみた各導体部が相重なりそのパターン幅が同じであるため、π型低域通過フィルタとしてみたときの入出力インピーダンスを揃えることができる。
【0025】
図5は本発明の第2の実施の形態によるコモンモードフィルタの斜視図(透視図)、図6はその断面形状である。本実施の形態では、誘電体基板1,2,3,4,5を積層した積層回路基板からなる誘電体と、接地用導体層(接地されるべきグランド層)6,7との間に、磁性体層19,20を設けて円柱状磁性体18の上下端面と物理的に接触させている。さらに、一対の伝送線路としてのライン状導体LN1,LN2と接触しない誘電体外周部(側面)を覆い磁性体層19,20を短絡(接続)するように磁性体壁21,22を接地用導体層6,7間に設けて連続した構造体としている(各磁性体で閉磁路を構成している)。
【0026】
なお、その他の構成は前述した第1の実施の形態と同様であり、同一又は相当部分に同一符号を付して説明を省略する。
【0027】
この第2の実施の形態で一対のライン状導体LN1,LN2に同一方向の電流が流れるコモンモードの場合、図7に示すように、一本のライン状導体が発生する磁束H1(実線)ともう一本のライン状導体が発生する磁束H2(破線)の向きが同じになるため、コモンモード電流に対するインダクタ成分が強め合い、コモンモード電流に対するインピーダンスが高くなる。
【0028】
一方、一対のライン状導体LN1,LN2に逆方向の電流が流れるディファレンシャルモードの場合、図8に示すように一本のライン状導体が発生する磁束H1(実線)ともう一本のライン状導体が発生する磁束H2(破線)の向きが逆で打ち消し合うため、ディファレンシャルモード電流に対するインダクタ成分は小さくなり、ディファレンシャルモード電流に対するインピーダンスは小さくなる。なお、一対のライン状導体LN1,LN2による容量成分に起因する作用は第1の実施の形態で説明した通りである。
【0029】
本実施の形態では、スパイラル状のライン状導体から発生する磁束の閉ループが磁性体中に閉じ込められるため磁束の損失が少なく、電磁誘導の効果が大きくなる。従って、コモンモード電流に対するインピーダンスのいっそうの増大、ひいては減衰量の増大を図ることができる。
【0030】
これらの実施の形態では、誘電体基板としてセラミック、樹脂系誘電体の他に、Si等の単結晶半導体、GaAs等の化合物半導体等、電気的に絶縁される誘電体を用いて差し支えない。また磁性体には高周波領域に適用可能なNi−Zn系フェライトや、絶縁処理された金属系磁性材料等(例えば、Fe−Ni系材料)を用いる。
【0031】
また、積層誘電体基板の側壁に電極を設け、それぞれの導体部12、13、14、15の端部を電気的に接続してチップ状のコモンモードフィルタを構成してもよい。
【0032】
これらの実施の形態は、回路基板内部への組み込み用途、回路基板上の任意の位置へ設置する対策部品、平衡伝送ケーブルヘの対策部品として使用することができる。
【0033】
さらに、誘電体基板の表裏面に接地用導体膜を形成する代わりに、誘電体基板内に上下一対の接地用導体層を形成し、該上下一対の接地用導体層間に、並行して一対のライン状導体を設ける構造としてもよい。
【0034】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0035】
【発明の効果】
以上説明したように、本発明に係るコモンモードフィルタによれば、電磁雑音源となるコモンモード電流を任意の周波数帯域で減衰でき、なおかつディファレンシャルモード電流の損失を最小に抑えることができる。
【図面の簡単な説明】
【図1】本発明に係るコモンモードフィルタの第1の実施の形態であって、内部構造を透視して示す斜視図である。
【図2】第1の実施の形態の断面図である。
【図3】第1の実施の形態のコモンモードにおける磁束方向を示す説明図である。
【図4】第1の実施の形態のディファレンシャルモードにおける磁束方向を示す説明図である。
【図5】本発明の第2の実施の形態であって、内部構造を透視して示す斜視図である。
【図6】第2の実施の形態の断面図である。
【図7】第2の実施の形態のコモンモードにおける磁束方向を示す説明図である。
【図8】第2の実施の形態のディファレンシャルモードにおける磁束方向を示す説明図である。
【符号の説明】
1,2,3,4,5 誘電体基板
6,7 接地用導体層
12,13,14,15 導体部
16,17 層間接続用導体部
18 磁性体
19,20 磁性体層
21,22 磁性体壁
LN1,LN2 ライン状導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filter used in a balanced communication transmission line, and more particularly, to a filter that suppresses a common mode current that causes electromagnetic noise generated in a balanced transmission line.
[0002]
[Prior art]
In a balanced transmission system using two transmission lines, in a signal transmitted between devices, currents in opposite directions flow through two transmission lines, and such a current component is called a differential mode (balanced component). Apart from this, a current component in the same direction may flow through two transmission lines, and a current may flow through a reference ground plane as a return path. This is referred to as a common mode (unbalanced component) current. At high frequencies, this common mode current forms a large current loop, and becomes a source of electromagnetic noise. In addition, the common mode current serves as a drive source, and may generate electromagnetic noise as an antenna when an external cable or the like is connected.
[0003]
Therefore, conventionally, as a method of reducing the common mode current, there are a common mode choke coil and a common mode filter proposed by the present inventors in Japanese Patent Application No. 10-296237.
[0004]
A common mode choke coil is used in a relatively low frequency region of several hundred MHz or less, and has a structure in which two balanced lines are wound around a ring-shaped ferrite or the like. Since the directions of the magnetic fluxes generated by the transmission lines are the same, the impedance becomes high, and the differential mode current has a low impedance because the directions of the magnetic fluxes generated by the two transmission lines cancel each other in opposite directions.
[0005]
The common mode filter proposed by the present inventor is used in a high frequency region of several hundred MHz or more. In a laminated dielectric substrate, a grounding conductor layer is provided on the upper and lower surfaces of a grounding conductor layer. A structure in which a pair of line-shaped conductors are provided as two transmission lines so as to overlap in an axial direction perpendicular to a ground plane formed by the conductor layer, wherein the pair of line-shaped conductors is an upper grounding conductor layer; A conductor portion having a spiral or meandering pattern formed in proximity to and parallel to the conductor portion, and a spiral or meandering pattern circling in the same direction as the pattern formed earlier in proximity to and parallel to the lower grounding conductor layer is formed. And electrically connected conductor portions to each other.
[0006]
With this structure, when a common mode current flows through a pair of linear conductors, a magnetic wall is formed between the pair of linear conductors, so that no capacitance component (capacitor component) is generated between the pair of linear conductors. , Can be regarded as one transmission line. At this time, the lower spiral or meander pattern conductor and the lower ground conductor layer, the upper spiral or meander pattern and the upper ground conductor layer, and the upper or lower spiral or meander pattern A distributed constant capacitance component is generated between the patterns, and when these are combined with an inductor component generated by a spiral or meander pattern, a π-type low-pass filter is formed, and a preset high-frequency common mode current is set. Attenuate components.
[0007]
While the common mode choke coil uses the difference in the inductor component between the common mode and the differential mode, the common mode filter uses the difference in the capacitance component.
[0008]
[Problems to be solved by the invention]
In the common mode filter, the effect of inductor mutual induction is limited because the permeability of a dielectric such as ceramics is 1 even when the transmission line is formed in a spiral shape to concentrate magnetic flux.
[0009]
The present invention has been made in view of the above points, and provides a common mode filter that increases the attenuation of a common mode current and reduces the loss of a differential mode current by giving the effect of inductor mutual induction to the common mode filter. With the goal.
[0010]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of forming a pair of upper and lower grounding conductor layers with a dielectric therebetween, and a pair of line-shaped conductors in parallel in the dielectric and between the pair of grounding conductor layers. Each of the pair of linear conductors is provided with a conductor portion in which a pattern is formed close to and parallel to one of the pair of grounding conductor layers, and the other of the pair of grounding conductor layers. What is claimed is: 1. A common mode filter having a configuration in which conductors having a pattern formed in proximity and parallel to each other are electrically connected to each other, wherein a magnetic body that becomes at least a part of a magnetic path of a magnetic flux due to current of said pair of linear conductors Are disposed between the pair of grounding conductor layers.
[0012]
In the common mode filter, the magnetic body may be a continuous structure having at least a magnetic layer disposed between the grounding conductor layer and the dielectric.
[0013]
Each conductor portion of the pair of linear conductors formed in the dielectric has a spiral pattern of one or more turns having the same central axis, and at least a part of the magnetic material extends along the central axis. It may be configured to be arranged.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a common mode filter according to the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a perspective view (perspective view) of a common mode filter portion according to a first embodiment of the present invention, and FIG. 2 is a sectional view of the common mode filter portion, showing a common mode filter function portion incorporated in a multilayer circuit board. Is represented. In these figures, reference numerals 1, 2, 3, 4, and 5 denote dielectric substrates, which are stacked to form a laminated circuit board. Reference numerals 6 and 7 denote grounding conductor layers (ground layers to be grounded) in which the upper and lower surfaces of the stacked dielectric substrates are entirely covered with conductors. Reference numerals 8, 9, 10, and 11 are layers in which conductors of a spiral pattern constituting a pair of line-shaped conductors as transmission lines are arranged. Here, the dielectric substrates 1 and 5 have the same thickness, and the dielectric substrates 2 and 4 have the same thickness.
[0016]
This common mode filter has a structure in which a pair of linear conductors LN1 and LN2 serving as two transmission lines are provided between a pair of upper and lower grounding conductor layers 6 and 7 in parallel (to face each other in parallel). ing. One linear conductor LN1 circulates in the same direction around a conductor portion 12 formed on the layer 8 between the dielectric substrates 1 and 2 and a conductor portion 14 formed on the layer 10 between the dielectric substrates 3 and 4 in the same direction. Are electrically connected by the interlayer connection conductor 16 so as to form a spiral pattern. The other linear conductor LN2 circulates in the same direction around a conductor portion 13 formed on the layer 9 between the dielectric substrates 2 and 3 and a conductor portion 15 formed on the layer 11 between the dielectric substrates 4 and 5. Are electrically connected by the interlayer connection conductor 17 so as to form a spiral pattern. The conductor portions 16 and 17 for interlayer connection are formed by providing through holes or cutouts in the dielectric substrates 2, 3 and 4. The conductors 12 and 13 have a pattern formed close to and parallel to the grounding conductor layer 6, and the conductors 14 and 15 have patterns formed close to and parallel to the grounding conductor layer 7. Here, since the grounding conductor layers 6 and 7 are formed on the front and back surfaces (upper and lower surfaces) of the laminated dielectric substrate and are parallel to each other, the grounding conductor layers 6 and 7 and the conductor portions 12, 13, 14, and 15 are formed. Maintain a parallel relationship with each other. The conductor portions viewed from the vertical direction of the ground plane formed by the grounding conductor layers 6 and 7 are arranged so as to overlap with each other and have the same pattern width. In other words, two line-shaped conductors LN1 and LN2 as transmission lines are formed with the same width so as to overlap in the axial direction perpendicular to the grounding conductor layers 6 and 7.
[0017]
Further, between the lower and upper grounding conductor layers 6 and 7, the Ni—Zn-based material applicable to the high-frequency region along the central axis of the spiral of each of the conductor portions 12, 13, 14, and 15 of the spiral pattern. A columnar magnetic body (ferromagnetic body, more precisely) 18 such as ferrite is arranged. As shown in FIG. 2, the magnetic body 18 is buried in a dielectric composed of a laminated dielectric substrate between the grounding conductor layers 6 and 7.
[0018]
In the first embodiment, in a common mode in which currents in the same direction flow through a pair of transmission lines, that is, a pair of linear conductors LN1 and LN2, a magnetic wall is formed between the linear conductors LN1 and LN2. No capacitance component occurs between the line-shaped conductors LN1 and LN2, and it can be regarded as one transmission line. At this time, the distribution is made between the lower spiral conductors 12 and 13 and the lower grounding conductor layer 6, between the upper spiral conductors 14 and 15 and the upper grounding conductor layer 7, and between the upper and lower conductors. A constant capacitance component is generated. By combining these with the spiral pattern of each conductor and the inductance components generated by the conductors 16 and 17 for interlayer connection, a π-type low-pass filter is formed.
[0019]
Furthermore, in this example, the magnetic body 18 is provided to constitute a part of the magnetic path through which the magnetic flux passes, and the magnetic flux generated from each of the conductors 12, 13, 14, 15 in the spiral pattern concentrates on the magnetic body 18. . In the case of a common mode in which currents in the same direction flow through a pair of transmission lines, that is, a pair of linear conductors LN1 and LN2, as shown in FIG. 3, a magnetic flux H1 (solid line) generated by one linear conductor and another magnetic flux H1 (solid line) are generated. Since the directions of the magnetic fluxes H2 (broken lines) generated by the linear conductors are the same, the inductor component for the common mode current is strengthened, the impedance for the common mode current is increased, and the attenuation of the common mode current is increased. Can be.
[0020]
On the other hand, in a differential mode in which currents in opposite directions flow through the pair of linear conductors LN1 and LN2, an electric wall is formed between the pair of linear conductors LN1 and LN2, and a capacitor component is generated between the linear conductors LN1 and LN2. However, the influence of the capacitor component between the ground conductor layers 6 and 7 becomes small, and does not affect the attenuation of the differential mode current. In addition, as shown in FIG. 4, the direction of the magnetic flux H1 (solid line) generated by one linear conductor and the direction of the magnetic flux H2 (dashed line) generated by the other linear conductor are reversed and cancel each other. The inductor component with respect to the current is reduced, and the impedance with respect to the differential mode current is reduced. In this regard, the attenuation of the differential mode current is not affected.
[0021]
According to the first embodiment, the following effects can be obtained.
[0022]
(1) In the laminated dielectric substrate, a pair of linear conductors LN1 and LN2 are provided in parallel between the pair of ground conductor layers 6 and 7, and the pair of linear conductors LN1 and LN2 is a ground conductor. Conductor portions 12 and 13 in which a spiral pattern is formed close to and parallel to layer 6, and a conductor portion in which a spiral pattern circling in the same direction as the previous conductor portion close to and parallel to grounding conductor layer 7 14 and 15 are electrically connected to each other, and a magnetic body 18 is arranged at the center of the spiral pattern. A π-type low-pass filter can be formed for a common mode current. By concentrating the magnetic flux by each conductor, it is possible to exhibit high impedance with respect to the common mode current, and it is possible to further increase the amount of attenuation with respect to the common mode current.
[0023]
(2) The pattern of the conductors 12, 13, 14, 15 constituting the pair of linear conductors LN1, LN2 is a spiral pattern that circulates in the same direction, and is suitable for miniaturization of the product shape.
[0024]
(3) The pattern of the conductors 12, 13, 14, 15 constituting the pair of linear conductors LN1, LN2 is parallel to the grounding conductor layers 6, 7, and each conductor is viewed from the vertical direction of the grounding conductor layer. Overlap and have the same pattern width, so that the input and output impedances when viewed as a π-type low-pass filter can be made uniform.
[0025]
FIG. 5 is a perspective view (perspective view) of a common mode filter according to a second embodiment of the present invention, and FIG. 6 is a sectional view thereof. In the present embodiment, between a dielectric composed of a laminated circuit board in which dielectric substrates 1, 2, 3, 4, and 5 are laminated, and grounding conductor layers (ground layers to be grounded) 6, 7, Magnetic layers 19 and 20 are provided to physically contact the upper and lower end surfaces of the columnar magnetic body 18. Further, the magnetic material walls 21 and 22 are grounded so that the magnetic material layers 19 and 20 are short-circuited (connected) by covering the outer peripheral portions (side surfaces) of the dielectric material not in contact with the linear conductors LN1 and LN2 as a pair of transmission lines. A continuous structure is provided between layers 6 and 7 (each magnetic body forms a closed magnetic circuit).
[0026]
The other configuration is the same as that of the above-described first embodiment, and the same or corresponding portions are denoted by the same reference characters and description thereof will be omitted.
[0027]
In the case of the common mode in which a current in the same direction flows through the pair of linear conductors LN1 and LN2 in the second embodiment, as shown in FIG. 7, the magnetic flux H1 (solid line) generated by one linear conductor and the magnetic flux H1 (solid line) are generated. Since the direction of the magnetic flux H2 (broken line) generated by the other linear conductor becomes the same, the inductor component for the common mode current reinforces and the impedance for the common mode current increases.
[0028]
On the other hand, in a differential mode in which currents in opposite directions flow through a pair of linear conductors LN1 and LN2, a magnetic flux H1 (solid line) generated by one linear conductor and another linear conductor are generated as shown in FIG. Is generated, the directions of the magnetic fluxes H2 (broken lines) are reversed and cancel each other, so that the inductor component with respect to the differential mode current becomes small and the impedance with respect to the differential mode current becomes small. The operation of the pair of linear conductors LN1 and LN2 due to the capacitance component is as described in the first embodiment.
[0029]
In the present embodiment, since the closed loop of the magnetic flux generated from the spiral line-shaped conductor is confined in the magnetic material, the loss of the magnetic flux is small, and the effect of electromagnetic induction is increased. Therefore, it is possible to further increase the impedance with respect to the common mode current and further increase the attenuation.
[0030]
In these embodiments, an electrically insulated dielectric such as a single crystal semiconductor such as Si or a compound semiconductor such as GaAs may be used as the dielectric substrate in addition to the ceramic and the resin-based dielectric. Further, as the magnetic material, Ni-Zn-based ferrite applicable to a high-frequency region, an insulated metal-based magnetic material, or the like (for example, an Fe-Ni-based material) is used.
[0031]
Alternatively, an electrode may be provided on the side wall of the laminated dielectric substrate, and the ends of the conductor portions 12, 13, 14, and 15 may be electrically connected to form a chip-shaped common mode filter.
[0032]
These embodiments can be used as a countermeasure component to be installed in an arbitrary position on the circuit board, a countermeasure component to be installed in an arbitrary position on the circuit board, and a countermeasure component for the balanced transmission cable.
[0033]
Further, instead of forming the grounding conductor film on the front and back surfaces of the dielectric substrate, a pair of upper and lower grounding conductor layers are formed in the dielectric substrate, and a pair of upper and lower grounding conductor layers are formed in parallel between the pair of upper and lower grounding conductor layers. A structure in which a line-shaped conductor is provided may be used.
[0034]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims.
[0035]
【The invention's effect】
As described above, according to the common mode filter of the present invention, it is possible to attenuate the common mode current serving as an electromagnetic noise source in an arbitrary frequency band, and to minimize the loss of the differential mode current.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a common mode filter according to the present invention, showing an internal structure thereof in a see-through manner.
FIG. 2 is a cross-sectional view of the first embodiment.
FIG. 3 is an explanatory diagram illustrating a magnetic flux direction in a common mode according to the first embodiment.
FIG. 4 is an explanatory diagram illustrating a magnetic flux direction in a differential mode according to the first embodiment.
FIG. 5 is a perspective view showing a second embodiment of the present invention and showing an internal structure in a see-through manner.
FIG. 6 is a sectional view of the second embodiment.
FIG. 7 is an explanatory diagram illustrating a magnetic flux direction in a common mode according to the second embodiment.
FIG. 8 is an explanatory diagram illustrating a magnetic flux direction in a differential mode according to the second embodiment.
[Explanation of symbols]
1, 2, 3, 4, 5 Dielectric substrates 6, 7 Grounding conductor layers 12, 13, 14, 15 Conductor portions 16, 17 Interlayer connection conductor portions 18 Magnetic body 19, 20 Magnetic body layers 21, 22 Magnetic body Wall LN1, LN2 Line-shaped conductor

Claims (3)

上下一対の接地用導体層を誘電体を挟んで形成し、前記誘電体内でかつ前記一対の接地用導体層間に、並行して一対のライン状導体を設けた構造を備え、前記一対のライン状導体の各々は、前記一対の接地用導体層の一方に近接かつ平行にパターンが形成された導体部と、前記一対の接地用導体層の他方に近接かつ平行にパターンが形成された導体部とを互いに電気的に接続した構成であるコモンモードフィルタであって、前記一対のライン状導体の電流による磁束の磁路の少なくとも一部となる磁性体を前記一対の接地用導体層間に配したことを特徴とするコモンモードフィルタ。A pair of upper and lower grounding conductor layers are formed with a dielectric interposed therebetween, and a structure is provided in which a pair of linear conductors are provided in parallel in the dielectric and between the pair of grounding conductor layers. Each of the conductors is a conductor portion having a pattern formed in proximity to and parallel to one of the pair of grounding conductor layers, and a conductor portion having a pattern formed in proximity to and parallel to the other of the pair of grounding conductor layers. In a common mode filter having a configuration electrically connected to each other, wherein a magnetic body serving as at least a part of a magnetic path of a magnetic flux due to current of the pair of linear conductors is disposed between the pair of grounding conductor layers. A common mode filter characterized by the following. 前記磁性体が、前記接地用導体層と前記誘電体との間に配された磁性体層を少なくとも有する連続した構造体である請求項1記載のコモンモードフィルタ。The common mode filter according to claim 1, wherein the magnetic body is a continuous structure having at least a magnetic body layer disposed between the grounding conductor layer and the dielectric body. 前記誘電体中に形成される前記一対のライン状導体の各導体部が中心軸を同じくする1周以上のスパイラル状のパターンで、なおかつ、前記中心軸に沿って前記磁性体の少なくとも一部が配されている請求項1又は2記載のコモンモードフィルタ。Each conductor portion of the pair of linear conductors formed in the dielectric has a spiral pattern of one or more turns having the same central axis, and at least a part of the magnetic material extends along the central axis. The common mode filter according to claim 1, wherein the common mode filter is arranged.
JP04710299A 1999-02-24 1999-02-24 Common mode filter Expired - Lifetime JP3545245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04710299A JP3545245B2 (en) 1999-02-24 1999-02-24 Common mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04710299A JP3545245B2 (en) 1999-02-24 1999-02-24 Common mode filter

Publications (2)

Publication Number Publication Date
JP2000252124A JP2000252124A (en) 2000-09-14
JP3545245B2 true JP3545245B2 (en) 2004-07-21

Family

ID=12765826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04710299A Expired - Lifetime JP3545245B2 (en) 1999-02-24 1999-02-24 Common mode filter

Country Status (1)

Country Link
JP (1) JP3545245B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520214B2 (en) * 2004-04-28 2010-08-04 日置電機株式会社 Filter element
JP4670368B2 (en) * 2005-01-27 2011-04-13 株式会社村田製作所 Common mode choke coil array components
JP5005427B2 (en) * 2007-05-25 2012-08-22 日本メクトロン株式会社 Manufacturing method of multilayer printed wiring board
JP5951163B1 (en) * 2015-03-11 2016-07-13 三菱電機株式会社 Noise filter
WO2016143207A1 (en) * 2015-03-11 2016-09-15 三菱電機株式会社 Noise filter
JP6332200B2 (en) 2015-08-26 2018-05-30 株式会社村田製作所 Electronic components
US10262786B2 (en) 2016-07-26 2019-04-16 Qualcomm Incorporated Stepped-width co-spiral inductor structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101651B2 (en) * 1988-04-18 1995-11-01 富士通株式会社 Inductor structure
JPH08222438A (en) * 1995-02-16 1996-08-30 Matsushita Electric Works Ltd Inductance and transformer
JP3178990B2 (en) * 1995-06-22 2001-06-25 株式会社村田製作所 Frequency adjustment method for multilayer electronic components
JP2990652B2 (en) * 1996-03-22 1999-12-13 株式会社村田製作所 Stacked balun transformer
JP3615024B2 (en) * 1997-08-04 2005-01-26 株式会社村田製作所 Coil parts

Also Published As

Publication number Publication date
JP2000252124A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US9077061B2 (en) Directional coupler
US9000864B2 (en) Directional coupler
KR102075284B1 (en) Time delay filter
JP3245159B2 (en) Monolithic ceramic filter or duplexer with surface mount connection and transmission zero
JP5386586B2 (en) Common mode filter
JPH03114301A (en) Band filter
US11166386B2 (en) Interposer substrate, circuit module, and interposer substrate manufacturing method
US10454440B2 (en) Directional coupler and wireless communication device using the same
JP4636950B2 (en) Transmission circuit, antenna duplexer, high-frequency switch circuit
JPH0443703A (en) Symmetrical strip line resonator
JP3545245B2 (en) Common mode filter
JP4783996B2 (en) Multi-layer composite balun transformer
JP2003087074A (en) Laminated filter
JP6711471B2 (en) Multiplexer
JP3863674B2 (en) Common mode filter
US11831292B2 (en) LC composite component and communication terminal device
JP4033852B2 (en) Common mode filter
US11368135B2 (en) High-frequency module
JPH1197962A (en) High-frequency component
JPWO2016006676A1 (en) High frequency module
JP3176859B2 (en) Dielectric filter
JP4195568B2 (en) Multilayer electronic components
US11901611B2 (en) Antenna device and electronic apparatus
JP2000277335A (en) Common-mode choke coil
WO2021187083A1 (en) Coil device, circuit element module, and electronic device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term