JP3529675B2 - Semiconductor device and inverter device - Google Patents

Semiconductor device and inverter device

Info

Publication number
JP3529675B2
JP3529675B2 JP24947699A JP24947699A JP3529675B2 JP 3529675 B2 JP3529675 B2 JP 3529675B2 JP 24947699 A JP24947699 A JP 24947699A JP 24947699 A JP24947699 A JP 24947699A JP 3529675 B2 JP3529675 B2 JP 3529675B2
Authority
JP
Japan
Prior art keywords
semiconductor device
power supply
conductor
electrode side
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24947699A
Other languages
Japanese (ja)
Other versions
JP2001077260A (en
Inventor
利春 大部
研二 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24947699A priority Critical patent/JP3529675B2/en
Publication of JP2001077260A publication Critical patent/JP2001077260A/en
Application granted granted Critical
Publication of JP3529675B2 publication Critical patent/JP3529675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、小型で冷却効率が
良く、かつ配線インダクタンスが小さい半導体装置及び
インバータ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and an inverter device which are small in size, have good cooling efficiency, and have a small wiring inductance.

【0002】[0002]

【従来の技術】電気自動車ではインバータ装置の小型
化、高信頼性が要求されている。インバータ装置の小型
化、高信頼性を図るためには、冷却効率が良くかつ配線
インダクタンスが小さい電力用半導体装置が必要とな
る。以下、従来のインバータ装置の電力用半導体装置の
構造を、図9及び図10を参照して説明する。
2. Description of the Related Art In electric vehicles, miniaturization and high reliability of inverter devices are required. In order to reduce the size and increase the reliability of the inverter device, a power semiconductor device having a high cooling efficiency and a small wiring inductance is required. Hereinafter, the structure of the conventional power semiconductor device of the inverter device will be described with reference to FIGS. 9 and 10.

【0003】図9は、従来の電力用半導体装置の断面
図、図10は、従来の電力用半導体装置の冷却器への搭
載図である。図9において、電力用半導体装置は、放熱
用金属板1の上部に半導体チップ41及び131と放熱
用金属板1とを絶縁するための絶縁基板2、絶縁基板2
の上部に金属電極3、金属電極3の上部に半導体チップ
41及び131が積層され且つ接合され、半導体チップ
41及び131、金属電極3、絶縁基板2が絶縁性を有
する樹脂製パッケージ5に収納され、更に放熱用金属板
1と樹脂製パッケージ5は端部で接着されている。樹脂
製パッケージ5の内部には、絶縁性のゲル6が封入され
ている。
FIG. 9 is a sectional view of a conventional power semiconductor device, and FIG. 10 is a diagram of mounting the conventional power semiconductor device on a cooler. In FIG. 9, the power semiconductor device includes an insulating substrate 2 and an insulating substrate 2 on the heat dissipation metal plate 1 for insulating the semiconductor chips 41 and 131 from the heat dissipation metal plate 1.
The metal electrode 3 is stacked on the upper part of the metal electrode 3, the semiconductor chips 41 and 131 are stacked and bonded on the metal electrode 3, and the semiconductor chips 41 and 131, the metal electrode 3, and the insulating substrate 2 are housed in a resin package 5 having an insulating property. Further, the heat-dissipating metal plate 1 and the resin package 5 are bonded at their ends. An insulating gel 6 is enclosed in the resin package 5.

【0004】また、外部引き出し端子7及び8と半導体
チップ41及び131はワイヤボンディング9により電
気的に接続されている。このように構成された電力用半
導体装置においては、半導体チップ41及び131が通
電されたときに熱損失が発生する。半導体チップ41及
び131の上部には断熱材である絶縁性のゲル6が封入
されているので、半導体チップ41及び131で発生し
た熱損失の大部分は、下部の金属電極3に熱伝導する。
金属電極3に熱伝導した熱損失は、絶縁基板2を伝わり
放熱用金属板1に熱伝導する。放熱用金属板1は、図1
0に示すように取付けねじ11により冷却器12に加圧
接触され、熱損失が冷却器12により放熱される。
The external lead terminals 7 and 8 and the semiconductor chips 41 and 131 are electrically connected by wire bonding 9. In the power semiconductor device configured as described above, heat loss occurs when the semiconductor chips 41 and 131 are energized. Since the insulating gel 6 which is a heat insulating material is encapsulated in the upper portions of the semiconductor chips 41 and 131, most of the heat loss generated in the semiconductor chips 41 and 131 is conducted to the lower metal electrode 3.
The heat loss conducted to the metal electrode 3 propagates through the insulating substrate 2 and is conducted to the heat radiating metal plate 1. The heat radiating metal plate 1 is shown in FIG.
As shown in 0, the mounting screw 11 makes pressure contact with the cooler 12, and the heat loss is radiated by the cooler 12.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の電力用
半導体装置では、以下のような問題点がある。 (1)電力用半導体装置10の周囲にある取付けねじ1
1により放熱用金属板1を冷却器12に加圧接触させて
いるので、加圧力が放熱用金属板1全体に均等にかから
ない。そのため、接触熱抵抗は電力用半導体装置内部の
熱抵抗とほぼ同等と非常に大きくなり、冷却効率が悪
い。
The conventional power semiconductor device described above has the following problems. (1) Mounting screw 1 around the power semiconductor device 10
Since the heat-dissipating metal plate 1 is brought into pressure contact with the cooler 12 by 1, the pressing force is not evenly applied to the whole heat-dissipating metal plate 1. Therefore, the contact thermal resistance becomes very large, which is almost equal to the thermal resistance inside the power semiconductor device, and the cooling efficiency is poor.

【0006】(2)接触熱抵抗が大きく冷却効率が悪い
ため半導体チップ41及び131を密集配置できず、電
力用半導体装置が大型化する。同様に、冷却器12も大
型化する。
(2) Since the contact heat resistance is large and the cooling efficiency is poor, the semiconductor chips 41 and 131 cannot be arranged densely, and the power semiconductor device becomes large. Similarly, the cooler 12 also increases in size.

【0007】(3)半導体チップ41及び131がワイ
ヤボンディング9により電気的に接続されているので、
ワイヤボンディング9の熱応力による切断なども考えら
れ信頼性が低い。
(3) Since the semiconductor chips 41 and 131 are electrically connected by the wire bonding 9,
The reliability is low because the wire bonding 9 may be cut by thermal stress.

【0008】(4)外部引出し端子7から半導体チップ
41または131をへて外部引き出し端子8へ流れる電
流のループが広く電力用半導体装置内部の配線インダク
タンスが大きくなり、損失が増大する。更に、急峻な電
圧変化による破壊を防ぐためのスナバ回路も必要にな
る。
(4) The loop of the current flowing from the external lead-out terminal 7 to the external lead-out terminal 8 through the semiconductor chip 41 or 131 is wide, and the wiring inductance inside the power semiconductor device becomes large, resulting in an increase in loss. Further, a snubber circuit for preventing destruction due to abrupt voltage change is also required.

【0009】従って、本発明は、上記問題点を鑑み、冷
却効率を向上すると共に小型化した半導体装置及び冷却
効率を向上すると共に小型化し、半導体装置の損失を低
減し、スナバ回路を削減したインバータ装置を提供する
ことを目的とする。
Therefore, in view of the above problems, the present invention improves the cooling efficiency and downsizes the semiconductor device, and improves the cooling efficiency and downsizing, reduces the loss of the semiconductor device and reduces the snubber circuit. The purpose is to provide a device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、冷媒が通るように中空構造
を形成した液冷式冷却器と、この液冷式冷却器に接合さ
れた絶縁基板と、この絶縁基板に接合された金属電極
と、この金属電極に接合された複数の半導体チップと、
この複数の半導体チップを電気的に接続する幅広導体
と、前記半導体チップと前記絶縁基板と前記金属電極と
前記幅広導体とを収納する絶縁性を有する樹脂製パッケ
ージとを備えたことを特徴とする。従って、接触熱抵抗
がなくなり冷却効率が向上すると共に、パッケージ内部
の配線インダクタンスが低減し、信頼性も向上する。
In order to achieve the above object, the invention according to claim 1 is a liquid cooling type cooler having a hollow structure through which a refrigerant passes, and a liquid cooling type cooler joined to the liquid cooling type cooler. An insulated substrate, a metal electrode joined to the insulated substrate, a plurality of semiconductor chips joined to the metal electrode,
A wide conductor that electrically connects the plurality of semiconductor chips
And the semiconductor chip, the insulating substrate, and the metal electrode
An insulating resin package that houses the wide conductor is provided. Therefore, contact thermal resistance
Inside the package as well as improving cooling efficiency
Wiring inductance is reduced and reliability is also improved.

【0011】[0011]

【0012】[0012]

【0013】又、請求項2記載の発明は、直流電源と、
半導体装置と、直流電源平滑用コンデンサと、直流電源
と半導体装置を接続する正極側導体及び負極側導体と、
前記半導体装置を駆動制御する制御回路とを有したイン
バータ装置において、前記半導体装置は、冷媒が通るよ
うに中空構造を形成した液冷式冷却器と、この液冷式冷
却器に接合された絶縁基板と、この絶縁基板に接合され
た金属電極と、この金属電極に接合された複数の半導体
チップと、この複数の半導体チップを電気的に接続する
幅広導体と、前記半導体チップと前記絶縁基板と前記金
属電極と前記幅広導体とを収納する絶縁性を有する樹脂
製パッケージとを備えたことを特徴とする。 従って、接
触熱抵抗がなくなり冷却効率が向上すると共に、パッケ
ージ内部の配線インダクタンスが低減し、信頼性も向上
する。
The invention according to claim 2 is a DC power supply,
Semiconductor device, DC power supply smoothing capacitor, DC power supply
A conductor on the positive electrode side and a conductor on the negative electrode side that connect the semiconductor device to the semiconductor device,
An input circuit having a control circuit for driving and controlling the semiconductor device.
In the burner device, the semiconductor device allows the refrigerant to pass through.
And a liquid-cooled cooler with a hollow structure
Insulation board joined to the container and this insulation board
Metal electrode and multiple semiconductors bonded to this metal electrode
Electrically connect the chip and the semiconductor chips
Wide conductor, the semiconductor chip, the insulating substrate, and the gold
Insulating resin for housing the metal electrode and the wide conductor
And a package made by the manufacturer. Therefore,
The heat resistance is eliminated and the cooling efficiency is improved.
Wiring inductance inside the package is reduced and reliability is improved.
To do.

【0014】[0014]

【0015】[0015]

【0016】更に、請求項3記載の発明は、直流電源
と、半導体装置と、直流電源平滑用コンデンサと、直流
電源と半導体装置を接続する正極側導体及び負極側導体
と、前記半導体装置を駆動制御する制御回路とを有した
インバータ装置において、前記直流電源平滑用コンデン
サを電解コンデンサとし、且つその内部が中空で冷媒が
通る液冷式コンデンサとし、前記半導体装置に近接配置
し前記正極側導体および負極側導体と電気的に接続した
ことを特徴とする。
Further, the invention according to claim 3 is a DC power supply.
, Semiconductor device, DC power supply smoothing capacitor, DC
Positive conductor and negative conductor that connect the power supply to the semiconductor device
And a control circuit for driving and controlling the semiconductor device.
In the inverter device, the DC power supply smoothing capacitor
Is used as an electrolytic capacitor, and the inside is hollow and the refrigerant
A liquid-cooled condenser that passes through and is placed close to the semiconductor device
Electrically connected to the positive electrode side conductor and the negative electrode side conductor
It is characterized by

【0017】従って、パッケージ内部の配線インダクタ
ンスのみでなく、直流電源平滑用コンデンサまでの配線
インダクタンスも低減でき、また直流電源平滑用コンデ
ンサも小型化でき、スナバ回路が省略できる。
Therefore, not only the wiring inductance inside the package but also the wiring inductance up to the DC power supply smoothing capacitor can be reduced, the DC power supply smoothing capacitor can be downsized, and the snubber circuit can be omitted.

【0018】又、請求項4記載の発明は、直流電源と、
半導体装置と、直流電源平滑用コンデンサと、直流電源
と半導体装置を接続する正極側導体及び負極側導体と、
前記半導体装置を駆動制御する制御回路とを有したイン
バータ装置において、前記直流電源平滑用コンデンサを
電解コンデンサとし、且つ内部が中空で冷媒が通り、更
にその外周部も中空で冷媒が通る液冷式コンデンサと
し、前記半導体装置に近接配置し、前記正極側導体及び
負極側導体と電気的に接続したことを特徴とする。
The invention according to claim 4 is a DC power supply,
Semiconductor device, DC power supply smoothing capacitor, DC power supply
A conductor on the positive electrode side and a conductor on the negative electrode side that connect the semiconductor device to the semiconductor device,
An input circuit having a control circuit for driving and controlling the semiconductor device.
In the barter device, the DC power supply smoothing capacitor
It is an electrolytic capacitor, and the inside is hollow and the refrigerant passes through it.
In addition, a liquid-cooled condenser with a hollow outer periphery through which the refrigerant passes
And is arranged close to the semiconductor device, and the positive electrode side conductor and
It is characterized in that it is electrically connected to the negative electrode side conductor.

【0019】従って、パッケージ内部の配線インダクタ
ンスのみでなく、直流電源平滑用コンデンサまでの配線
インダクタンスも低減でき、また直流電源平滑用コンデ
ンサも小型化でき、スナバ回路が省略できる。
Therefore, not only the wiring inductance inside the package but also the wiring inductance up to the DC power supply smoothing capacitor can be reduced, the DC power supply smoothing capacitor can be downsized, and the snubber circuit can be omitted.

【0020】更に、請求項5記載の発明は、直流電源
と、半導体装置と、直流電源平滑用コンデンサと、直流
電源と半導体装置を接続する正極側導体及び負極側導体
と、前記半導体装置を駆動制御する制御回路とを有した
インバータ装置において、前記直流電源平滑用コンデン
サをセラミックコンデンサとし、液冷式冷却器に絶縁シ
ートを介して取付け、前記半導体装置に近接配置し、前
記正極側導体及び負極側導体と電気的に接続したことを
特徴とする。
Further, the invention according to claim 5 is a DC power supply.
, Semiconductor device, DC power supply smoothing capacitor, DC
Positive conductor and negative conductor that connect the power supply to the semiconductor device
And a control circuit for driving and controlling the semiconductor device.
In the inverter device, the DC power supply smoothing capacitor
The ceramic capacitor is used as the
Mounted via a cable, placed close to the semiconductor device, and
Make sure that the positive and negative conductors are electrically connected.
Characterize.

【0021】従って、パッケージ内部の配線インダクタ
ンスのみでなく、直流電源平滑用コンデンサまでの配線
インダクタンスも低減でき、また直流電源平滑用コンデ
ンサも小型化でき、スナバ回路が省略できる。
Therefore, not only the wiring inductance inside the package but also the wiring inductance up to the DC power supply smoothing capacitor can be reduced, the DC power supply smoothing capacitor can be downsized, and the snubber circuit can be omitted.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施の形態)まず、本発明の第1
の実施の形態について、図1乃至図3を用いて説明す
る。図1は、本実施の形態の電力用半導体装置の縦断面
図、図2は、本実施の形態の電力用半導体装置の水平断
面図、図3は、本実施の形態のインバータ装置の回路図
である。
(First Embodiment) First, the first embodiment of the present invention
Embodiments will be described with reference to FIGS. 1 to 3. 1 is a vertical cross-sectional view of a power semiconductor device according to this embodiment, FIG. 2 is a horizontal cross-sectional view of a power semiconductor device according to this embodiment, and FIG. 3 is a circuit diagram of an inverter device according to this embodiment. Is.

【0024】図1及び図2において、電力用半導体装置
は、内部が中空で冷媒流路19が構成されている冷却器
12の上部に絶縁基板2が接台され、絶縁基板2の上部
に金属電極3が接台され、金属電極3の上部に半導体チ
ップであるIGBT41〜46及びダイオード131〜
136が接合されている。
1 and 2, in the power semiconductor device, an insulating substrate 2 is attached to the upper part of a cooler 12 having a hollow interior and a coolant passage 19 formed therein, and a metal is provided on the upper part of the insulating substrate 2. The electrodes 3 are brought into contact with each other, and the IGBTs 41 to 46 and the diodes 131 to 46, which are semiconductor chips, are provided on the metal electrodes 3.
136 is joined.

【0025】更に、図1に示すように、IGBT41,
42及びダイオード131,132の上部には、熱応力
を緩衝する目的の緩衝板141〜144が接合されてい
る。緩衝板141〜144の材質は、例えばモリブデン
などである。同様に他のIGBT43〜46及びダイオ
ード133〜136にも、緩衝板が接合されている。
Further, as shown in FIG.
Buffer plates 141 to 144 for the purpose of buffering thermal stress are bonded to the upper portions of the diode 42 and the diodes 131 and 132. The material of the buffer plates 141 to 144 is, for example, molybdenum. Similarly, buffer plates are joined to the other IGBTs 43 to 46 and the diodes 133 to 136.

【0026】IGBT41、43、45及びダイオード
131、133、135は直流電源の正極側と接続する
第1の幅広導体16と緩衝板を介し接続され、IGBT
42、44、46及びダイオード132、134、13
6は直流電源の負極側と接続する第2の幅広導体17と
緩衝板を介し接続されている。更に、第1の幅広導体1
6と第2の幅広導体17は、絶緑物15を介して積層さ
れている。また、IGBT41〜46は、ゲートリード
18により駆動される。
The IGBTs 41, 43, 45 and the diodes 131, 133, 135 are connected via a buffer plate to the first wide conductor 16 connected to the positive electrode side of the DC power source, and the IGBTs are connected.
42, 44, 46 and diodes 132, 134, 13
Reference numeral 6 is connected to the second wide conductor 17 connected to the negative electrode side of the DC power source via a buffer plate. Furthermore, the first wide conductor 1
The sixth wide conductor 17 and the second wide conductor 17 are laminated with the insulating material 15 interposed therebetween. Further, the IGBTs 41 to 46 are driven by the gate lead 18.

【0027】IGBT41〜46及びダイオード131
〜136、絶縁基板2、金属電極3、緩衝板、第1の幅
広導体16、第2の幅広導体17、絶縁物15、ゲート
リード18は絶縁性を有する樹脂製パッケージ5に収納
され、更に冷却器12と樹脂製パッケージ5は端部で接
着されている。樹脂製パッケージ5の内部には、絶縁性
のゲル6が封入されている。
The IGBTs 41 to 46 and the diode 131
To 136, the insulating substrate 2, the metal electrode 3, the buffer plate, the first wide conductor 16, the second wide conductor 17, the insulator 15, and the gate lead 18 are housed in a resin package 5 having an insulating property and further cooled. The container 12 and the resin package 5 are bonded at the ends. An insulating gel 6 is enclosed in the resin package 5.

【0028】また、冷却器12の材質は、絶縁基板2と
熱膨張係数の近い金属とセラミックスの複合材料である
金属基複合材料が望ましいが、冷却効率の向上や低コス
ト化のために材質を銅やアルミニウムなどの金属とした
場合には、絶縁基板2と冷却器12を接合するはんだ層
の厚みを通常よりも厚くして熱応力を緩衝する。
The material of the cooler 12 is preferably a metal-based composite material, which is a composite material of a metal and a ceramic having a coefficient of thermal expansion close to that of the insulating substrate 2. However, the material is used to improve cooling efficiency and reduce cost. When a metal such as copper or aluminum is used, the thermal stress is buffered by making the thickness of the solder layer joining the insulating substrate 2 and the cooler 12 thicker than usual.

【0029】図1及び図2のように構成された本実施の
形態の電力用半導体装置においては、IGBT41〜4
6及びダイオード131〜136と冷却器12とが接合
されているため、従来の電力用半導体装置のような冷却
器との間の接触熱抵抗がなくなり、IGBT及びダイオ
ードから冷却器までの熱抵抗が半減し冷却効率が向上す
る。
In the power semiconductor device of the present embodiment configured as shown in FIGS. 1 and 2, IGBTs 41 to 4 are used.
6 and the diodes 131 to 136 and the cooler 12 are joined together, the contact thermal resistance between the cooler and the conventional power semiconductor device is eliminated, and the thermal resistance from the IGBT and the diode to the cooler is reduced. It is halved and the cooling efficiency is improved.

【0030】更に、第1の幅広導体16と第2の幅広導
体17が絶縁物15を介し電流の流れの向きが対抗する
ように積層されているため、インダクタンスが相殺され
てパッケージ内部の配線インダクタンスが非常に小さく
なる。
Further, since the first wide conductor 16 and the second wide conductor 17 are laminated so that the directions of the current flows through the insulator 15, the inductances are offset and the wiring inductance inside the package is increased. Becomes very small.

【0031】また更に、IGBT41〜46及びダイオ
ード131〜136が、第1の幅広導体16及び第2の
幅広導体17により接続されているので、ワイヤボンデ
ィングにより接続されている場合に比べ切断の可能性が
ほとんどなく信頼性が向上する。また、IGBT41〜
46及びダイオード131〜136の過渡的な熱耐量も
向上する。
Furthermore, since the IGBTs 41 to 46 and the diodes 131 to 136 are connected by the first wide conductor 16 and the second wide conductor 17, there is a possibility of disconnection as compared with the case where they are connected by wire bonding. There is almost no increase in reliability. Further, the IGBTs 41 to
The transient heat resistance of the diode 46 and the diodes 131 to 136 is also improved.

【0032】図1及び図2に示した構造の電力用半導体
装置においては、接触熱抵抗がなくなり冷却効率が向上
するので、IGBT及びダイオードを密集配置でき、電
力用半導体装置及び冷却器を小型化しインバータ装置を
小型化することができる。
In the power semiconductor device having the structure shown in FIGS. 1 and 2, the contact thermal resistance is eliminated and the cooling efficiency is improved, so that the IGBTs and diodes can be densely arranged, and the power semiconductor device and the cooler can be downsized. The inverter device can be downsized.

【0033】また、電力用半導体装置の信頼性が向上
し、インバータ装置の信頻性も向上する。そして、更に
電力用半導体装置内部の配線インダクタンスを低減する
ことができるので、損失が低減し、インバータ装置を小
型化、低コスト化することができる。
Further, the reliability of the power semiconductor device is improved, and the reliability of the inverter device is also improved. Further, since the wiring inductance inside the power semiconductor device can be further reduced, the loss can be reduced, and the inverter device can be downsized and the cost can be reduced.

【0034】そして、図3に示すように、電力用半導体
装置を3相インバータに適用し、直流電源を入力とし、
負荷(図示せず)に3相(U,V,W)の交流電源を給
電している。
Then, as shown in FIG. 3, the power semiconductor device is applied to a three-phase inverter, and a DC power source is used as an input,
A three-phase (U, V, W) AC power source is supplied to a load (not shown).

【0035】(第2の実施の形態)次に、本発明の第2
の実施の形態を、図4を参照して説明する。図4は、本
発明の第2の実施の形態であるインバータ装置の縦断面
図である。
(Second Embodiment) Next, the second embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 4 is a vertical cross-sectional view of the inverter device according to the second embodiment of the present invention.

【0036】図4において、インバータ装置は、直流電
源と接続する正極側導体21及び負極側導体22を、電
流の流れる方向が対抗するように平行に近接配置し樹脂
製パッケージ5で固定する。樹脂製パッケージ5の外部
では、近接配置した正極側導体21と負極側導体22の
間には絶縁シートを挿入する。また、負荷と接続する3
相出力導体24も樹脂製パッケージ5で固定する。更
に、直流電源平滑用コンデンサを電解コンデンサ20A
とし、樹脂製パッケージ5に近接配置し、且つ正極側導
体21及び負極側導体22と取付けねじ27により電気
的に接続する。このとき、電解コンデンサ20Aは、半
導体装置と平行に配置される。その他の構造は、第1の
実施の形態と同様である。
In FIG. 4, in the inverter device, the positive electrode side conductor 21 and the negative electrode side conductor 22 which are connected to the DC power source are arranged in parallel and close to each other so that the current flowing directions are opposed to each other, and are fixed by the resin package 5. On the outside of the resin package 5, an insulating sheet is inserted between the positive electrode side conductor 21 and the negative electrode side conductor 22 which are arranged close to each other. Also, connect to the load 3
The phase output conductor 24 is also fixed by the resin package 5. Further, a DC power supply smoothing capacitor is used as an electrolytic capacitor 20A.
And is arranged close to the resin package 5 and is electrically connected to the positive electrode side conductor 21 and the negative electrode side conductor 22 by the mounting screw 27. At this time, the electrolytic capacitor 20A is arranged in parallel with the semiconductor device. The other structure is similar to that of the first embodiment.

【0037】図4のように構成された本実施の形態のイ
ンバータ装置においては、第1の実施の形態に加え、電
解コンデンサ20Aが樹脂製パッケージ5に近接配置さ
れているので、正極側導体21及び負極側導体22の配
線長が短く、更に正極側導体21及び負極側導体22が
電流の流れる向きが対抗するように近接配置されている
ので配線インダクタンスが相殺される。故に、パッケー
ジ内部の配線インダクタンスのみでなく、電源平滑用コ
ンデンサまでの配線インダクタンスも非常に小さくで
き、IGBT41〜46がターンオフする場合にIGB
Tかかるスパイク電圧が非常に小さくなり、急峻な電圧
変化を抑制するためのスナバ回路が省略できる。このと
き、第1の実施の形態と同様の効果に加え、更にインバ
ータ装置を小型化、低コスト化できる。
In the inverter device of the present embodiment configured as shown in FIG. 4, in addition to the first embodiment, the electrolytic capacitor 20A is disposed close to the resin package 5, so that the positive electrode side conductor 21 is provided. The wiring lengths of the negative electrode side conductor 22 and the negative electrode side conductor 22 are short, and the positive electrode side conductor 21 and the negative electrode side conductor 22 are arranged close to each other so that the directions of current flow are opposed to each other. Therefore, not only the wiring inductance inside the package but also the wiring inductance up to the power smoothing capacitor can be made very small, and when the IGBTs 41 to 46 turn off, the IGBT
The spike voltage applied to T becomes very small, and a snubber circuit for suppressing a sharp voltage change can be omitted. At this time, in addition to the same effects as the first embodiment, the inverter device can be further downsized and the cost can be reduced.

【0038】(第3の実施の形態)次に、本発明の第3
の実施の形態を、図5を参照して説明する。図5は、本
発明の第3の実施の形態であるインバータ装置の縦断面
図である。
(Third Embodiment) Next, the third embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 5 is a vertical cross-sectional view of the inverter device according to the third embodiment of the present invention.

【0039】図5に示すように、本実施の形態において
は、第2の実施の形態における電解コンデンサ20Aを
樹脂製パッケージ5に段詰みしたことを特徴とする。そ
の際、インバータ装置は、直流電源と接続する正極側導
体21及び負極側導体22を、電流の流れる方向が対抗
するように平行に近接配置し樹脂製パッケージ5で固定
する。樹脂製パッケージ5の外部では、近接配置した正
極側導体21と負極側導体22の間には絶縁シートを挿
入する。また、負荷と接続する3相出力導体24も樹脂
製パッケージ5で固定する。更に、直流電源平滑用コン
デンサを電解コンデンサ20Aとし、樹脂製パッケージ
5に近接配置し、且つ正極側導体21及び負極側導体2
2と取付けねじ27により電気的に接続する。その他の
構造は、第1の実施の形態と同様である。
As shown in FIG. 5, the present embodiment is characterized in that the electrolytic capacitor 20A according to the second embodiment is packed in a resin package 5. At that time, in the inverter device, the positive electrode side conductor 21 and the negative electrode side conductor 22 which are connected to the DC power source are arranged in parallel close to each other so that the current flowing directions oppose each other, and are fixed by the resin package 5. On the outside of the resin package 5, an insulating sheet is inserted between the positive electrode side conductor 21 and the negative electrode side conductor 22 which are arranged close to each other. The three-phase output conductor 24 connected to the load is also fixed by the resin package 5. Further, the DC power supply smoothing capacitor is the electrolytic capacitor 20A, which is disposed close to the resin package 5 and has the positive electrode side conductor 21 and the negative electrode side conductor 2.
2 and the mounting screw 27 for electrical connection. The other structure is similar to that of the first embodiment.

【0040】図5のように構成された本実施の形態のイ
ンバータ装置においては、第1の実施の形態に加え、電
解コンデンサ20Aが樹脂製パッケージ5に近接配置さ
れているので、正極側導体21及び負極側導体22の配
線長が短く、更に正極側導体21及び負極側導体22が
電流の流れる向きが対抗するように近接配置されている
ので配線インダクタンスが相殺される。故に、パッケー
ジ内部の配線インダクタンスのみでなく、電源平滑用コ
ンデンサまでの配線インダクタンスも非常に小さくで
き、IGBT41〜46がターンオフする場合にIGB
Tかかるスパイク電圧が非常に小さくなり、急峻な電圧
変化を抑制するためのスナバ回路が省略できる。このと
き、第2の実施の形態と同様の効果を奏することができ
る。
In the inverter device of the present embodiment configured as shown in FIG. 5, in addition to the first embodiment, the electrolytic capacitor 20A is disposed close to the resin package 5, so that the positive electrode side conductor 21 is provided. The wiring lengths of the negative electrode side conductor 22 and the negative electrode side conductor 22 are short, and the positive electrode side conductor 21 and the negative electrode side conductor 22 are arranged close to each other so that the directions of current flow are opposed to each other. Therefore, not only the wiring inductance inside the package but also the wiring inductance up to the power smoothing capacitor can be made very small, and when the IGBTs 41 to 46 turn off, the IGBT
The spike voltage applied to T becomes very small, and a snubber circuit for suppressing a sharp voltage change can be omitted. At this time, the same effect as that of the second embodiment can be obtained.

【0041】(第4の実施の形態)次に、本発明の第4
の実施の形態を、図6を参照して説明する。図6は本発
明の第4の実施の形態であるインバータ装置の縦断面図
である。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 6 is a vertical sectional view of an inverter device according to a fourth embodiment of the present invention.

【0042】図6において、インバータ装置は、直流電
源平滑用コンデンサを電解コンデンサとし、且つ内部が
中空で冷媒流路19が構成され冷媒30が流れる液冷式
電解コンデンサ20Bとし、樹脂製パッケージ5に近接
配置し正極側導体21及び負極側導体22と接続ねじ2
7により電気的に接続する。その他の構造は、上述した
実施の形態と同様である。
In FIG. 6, in the inverter device, a DC power supply smoothing capacitor is used as an electrolytic capacitor, and a liquid-cooled electrolytic capacitor 20B having a hollow interior and having a refrigerant passage 19 and a refrigerant 30 flowing therein is provided in a resin package 5. Connected in close proximity to the positive electrode side conductor 21 and the negative electrode side conductor 22 and the connection screw 2
7 for electrical connection. The other structure is similar to that of the above-described embodiment.

【0043】図6のように構成されたインバータ装置に
おいては、上述した実施の形態に加え、液冷式電解コン
デンサ20Bの内部のコンデンサ素子が冷媒30により
液冷されているので、自然空冷の場合に比べ同一体積で
もより多くのリップル電流を流すことができる。また、
同一リップル電流を流す場合には、液冷式電解コンデン
サ20Bの体積を小さくすることができる。また、液冷
式電解コンデンサ20Bの体積が小さくなるので、樹脂
製パッケージ5のより近くに配置することができ、配線
インダクタンスも更に小さくなる。更に、液冷されてい
るため、コンデンサ素子の動作温度が低く寿命も向上す
る。このとき、上述した実施の形態と同様の効果に加
え、更にインバータ装置を小型化、低コスト化できる。
In the inverter device constructed as shown in FIG. 6, in addition to the above-described embodiment, since the capacitor element inside the liquid-cooled electrolytic capacitor 20B is liquid-cooled by the refrigerant 30, it is possible to cool it naturally. More ripple current can be made to flow even with the same volume as compared to. Also,
When the same ripple current flows, the volume of the liquid-cooled electrolytic capacitor 20B can be reduced. Further, since the liquid-cooled electrolytic capacitor 20B has a small volume, it can be arranged closer to the resin package 5, and the wiring inductance is further reduced. Further, since it is liquid-cooled, the operating temperature of the capacitor element is low and the life is improved. At this time, in addition to the effects similar to those of the above-described embodiment, the size and cost of the inverter device can be further reduced.

【0044】(第5の実施の形態)次に、本発明の第5
の実施の形態を、図7を参照して説明する。図7は、本
発明の第5の実施の形態であるインバータ装置の縦断面
図である。
(Fifth Embodiment) Next, the fifth embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 7 is a vertical cross-sectional view of the inverter device according to the fifth embodiment of the present invention.

【0045】図7において、インバータ装置は、直流電
源平滑用コンデンサを液冷式電解コンデンサ20Cと
し、コンデンサ素子31を取り囲むように、内部及び外
周部が中空で冷媒流路19が構成され冷媒30が通る液
冷式電解コンデンサとし、樹脂製パッケージ5に近接配
置し正極側導体21及び負極側導体22と接続ねじ27
に電気的に接続する。その他の構造は、上述した実施の
形態と同様である。図7のように構成されたインバータ
装置においては、第4の実施の形態以上にコンデンサ素
子31が効率よく冷却される。
In FIG. 7, in the inverter device, a DC power source smoothing capacitor is a liquid-cooled electrolytic capacitor 20C, and a refrigerant passage 19 is formed with a hollow inside and an outer peripheral portion so as to surround the capacitor element 31, and a refrigerant 30 is formed. A liquid-cooled electrolytic capacitor that passes through, is placed close to the resin package 5, and is connected to the positive electrode side conductor 21 and the negative electrode side conductor 22 and the connection screw 27.
Electrically connect to. The other structure is similar to that of the above-described embodiment. In the inverter device configured as shown in FIG. 7, the capacitor element 31 is cooled more efficiently than in the fourth embodiment.

【0046】(第6の実施の形態)次に、本発明の第6
の実施の形態を、図8を参照して説明する。図8は、本
発明の第6の実施の形態であるインバータ装置の縦断面
図である。
(Sixth Embodiment) Next, the sixth embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 8 is a vertical sectional view of an inverter device according to a sixth embodiment of the present invention.

【0047】図8において、インバータ装置は、直流電
源平滑用コンデンサをセラミックコンデンサ20Dと
し、内部が中空で冷媒流路19が構成されている液冷式
冷却器12に絶緑シート32を介して取付け、樹脂製パ
ッケージ5に近接配置し正極側導体21及び負極側導体
22と接続ねじ27により電気的に接続する。その他の
構造は、上述した実施の形態と同様である。
In FIG. 8, in the inverter device, a DC power supply smoothing capacitor is a ceramic capacitor 20D, and it is attached to a liquid-cooled cooler 12 having a hollow interior and a refrigerant passageway 19 through a green sheet 32. , Is arranged close to the resin package 5 and is electrically connected to the positive electrode side conductor 21 and the negative electrode side conductor 22 by the connection screw 27. The other structure is similar to that of the above-described embodiment.

【0048】図8のように構成されたインバータ装置に
おいては、電源平滑用コンデンサに同一容量で比較して
電解コンデンサよりも体積が小さいセラミックコンデン
サ20Dを用いているので、樹脂製パッケージ5のより
近くに配置でき配線インダクタンスがより小さくなる。
In the inverter device constructed as shown in FIG. 8, since the ceramic capacitor 20D having the same capacity and smaller in volume than the electrolytic capacitor is used as the power source smoothing capacitor, it is closer to the resin package 5. The wiring inductance can be reduced.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
半導体装置及びインバータ装置において冷却効率を向上
させることができると共に、小型化することができる。
また、インバータ装置において、半導体装置の損失が低
減するので、スナバ回路を削減できる。
As described above, according to the present invention,
In the semiconductor device and the inverter device, the cooling efficiency can be improved and the size can be reduced.
Further, in the inverter device, the loss of the semiconductor device is reduced, so that the snubber circuit can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態である半導体装
置を示す縦断面図。
FIG. 1 is a vertical sectional view showing a semiconductor device according to a first embodiment of the present invention.

【図2】 本発明の第1の実施の形態である半導体装
置を示す水平断面図。
FIG. 2 is a horizontal cross-sectional view showing the semiconductor device according to the first embodiment of the present invention.

【図3】 本発明の第1の実施の形態であるインバー
タ装置を示す回路図。
FIG. 3 is a circuit diagram showing an inverter device according to a first embodiment of the present invention.

【図4】 本発明の第2の実施の形態であるインバー
タ装置を示す縦断面図。
FIG. 4 is a vertical sectional view showing an inverter device according to a second embodiment of the present invention.

【図5】 本発明の第3の実施の形態であるインバー
タ装置を示す縦断面図。
FIG. 5 is a vertical sectional view showing an inverter device according to a third embodiment of the present invention.

【図6】 本発明の第4の実施の形態であるインバー
タ装置を示す縦断面図。
FIG. 6 is a vertical sectional view showing an inverter device according to a fourth embodiment of the present invention.

【図7】 本発明の第5の実施の形態であるインバー
タ装置を示す縦断面図。
FIG. 7 is a vertical sectional view showing an inverter device according to a fifth embodiment of the present invention.

【図8】 本発明の第6の実施の形態であるインバー
タ装置を示す縦断面図。
FIG. 8 is a vertical sectional view showing an inverter device according to a sixth embodiment of the present invention.

【図9】 従来の半導体装置の縦断面図。FIG. 9 is a vertical cross-sectional view of a conventional semiconductor device.

【図10】 従来の電力用半導体装置の冷却器への搭載
図。
FIG. 10 is a diagram showing how a conventional power semiconductor device is mounted on a cooler.

【符号の説明】[Explanation of symbols]

2:絶縁基板、3:金属電極、41〜46:半導体チッ
プ、5:樹脂製パッケージ、10:電力用半導体装置、
12:冷却器、131〜136:半導体チップ、141
〜144:緩衝板、15:絶縁物、16:第1の幅広導
体、17:第2の幅広導体、18:ゲートリード、1
9:冷媒流路、20:電源平滑用コンデンサ、20A:
電解コンデンサ、20B:液冷式電解コンデンサ、20
C:液冷式電解コンデンサ、20D:セラミックコンデ
ンサ、21:正極側導体、22:負極側導体、24〜2
6:3相出力導体、29:駆動/制御回路、30:冷
媒、31:コンデンサ素子、32:絶縁シート
2: Insulating substrate, 3: Metal electrodes, 41 to 46: Semiconductor chip, 5: Resin package, 10: Power semiconductor device,
12: cooler, 131-136: semiconductor chip, 141
To 144: buffer plate, 15: insulator, 16: first wide conductor, 17: second wide conductor, 18: gate lead, 1
9: Refrigerant flow path, 20: Power source smoothing capacitor, 20A:
Electrolytic capacitor, 20B: Liquid-cooled electrolytic capacitor, 20
C: Liquid-cooled electrolytic capacitor, 20D: Ceramic capacitor, 21: Positive electrode side conductor, 22: Negative electrode side conductor, 24-2
6: three-phase output conductor, 29: drive / control circuit, 30: refrigerant, 31: capacitor element, 32: insulating sheet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02M 7/48 (56)参考文献 特開 平7−231071(JP,A) 特開 平9−275170(JP,A) 特開 平9−8224(JP,A) 特開 平11−297906(JP,A) 特開2001−35982(JP,A) 特開 平9−36186(JP,A) 特開2001−36001(JP,A) 特開2000−77587(JP,A) 特開 平11−274001(JP,A) 実開 昭57−55946(JP,U) 実開 平3−50316(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01G 2/08 H01G 9/00 H01L 23/473 H01L 25/07 H02M 7/48 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H02M 7/48 (56) References JP-A-7-231071 (JP, A) JP-A 9-275170 (JP, A) Special Kaihei 9-8224 (JP, A) JP 11-297906 (JP, A) JP 2001-35982 (JP, A) JP 9-36186 (JP, A) JP 2001-36001 (JP, A) JP 2000-77587 (JP, A) JP 11-274001 (JP, A) Actual exploitation Sho 57-55946 (JP, U) Actual exploitation 3-50316 (JP, U) (58) Field (Int.Cl. 7 , DB name) H01G 2/08 H01G 9/00 H01L 23/473 H01L 25/07 H02M 7/48

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒が通るように中空構造を形成した
液冷式冷却器と、この液冷式冷却器に接合された絶縁基
板と、この絶縁基板に接合された金属電極と、この金属
電極に接合された複数の半導体チップと、この複数の半
導体チップを電気的に接続する幅広導体と、前記半導体
チップと前記絶縁基板と前記金属電極と前記幅広導体と
を収納する絶縁性を有する樹脂製パッケージとを具備し
たことを特徴とする半導体装置。
1. A liquid-cooled cooler having a hollow structure through which a refrigerant passes, an insulating substrate joined to this liquid-cooled cooler, a metal electrode joined to this insulating substrate, and this metal electrode. a plurality of semiconductor chips bonded to, the plurality of half
A wide conductor for electrically connecting the conductor chips, a resin package having an insulating property for housing the semiconductor chip, the insulating substrate, the metal electrode, and the wide conductor , Semiconductor device.
【請求項2】 直流電源と、半導体装置と、直流電源
平滑用コンデンサと、直流電源と半導体装置を接続する
正極側導体及び負極側導体と、前記半導体装置を駆動制
御する制御回路とを有したインバータ装置において、 前記半導体装置は、冷媒が通るように中空構造を形成し
た液冷式冷却器と、この液冷式冷却器に接合された絶縁
基板と、この絶縁基板に接合された金属電極と、この金
属電極に接合された複数の半導体チップと、この複数の
半導体チップを電気的に接続する幅広導体と、前記半導
体チップと前記絶縁基板と前記金属電極と前記幅広導体
とを収納する絶縁性を有する樹脂製パッケージとを具備
したことを特徴とするインバータ装置。
2. A DC power supply, a semiconductor device, and a DC power supply.
Connect smoothing capacitor, DC power supply and semiconductor device
Drive control of the positive and negative conductors and the semiconductor device.
In the inverter device having a control circuit for controlling the semiconductor device, the semiconductor device has a hollow structure through which a refrigerant passes.
Liquid cooled cooler and insulation bonded to this liquid cooled cooler
The substrate, the metal electrodes bonded to this insulating substrate, and the gold
A plurality of semiconductor chips bonded to the metal electrode,
A wide conductor for electrically connecting a semiconductor chip and the semiconductor
Body chip, the insulating substrate, the metal electrode, and the wide conductor
And a resin package having an insulating property for housing
An inverter device characterized by the above.
【請求項3】 直流電源と、半導体装置と、直流電源
平滑用コンデンサと、直流電源と半導体装置を接続する
正極側導体及び負極側導体と、前記半導体装置を駆動制
御する制御回路とを有したインバータ装置において、 前記直流電源平滑用コンデンサを電解コンデンサとし、
且つその内部が中空で冷媒が通る液冷式コンデンサと
し、前記半導体装置に近接配置し前記正極側導体および
負極側導体と電気的に接続したことを特徴とするインバ
ータ装置。
3. A DC power supply, a semiconductor device, and a DC power supply
Connect smoothing capacitor, DC power supply and semiconductor device
Drive control of the positive and negative conductors and the semiconductor device.
In an inverter device having a control circuit to control, the DC power supply smoothing capacitor is an electrolytic capacitor,
And a liquid-cooled condenser whose inside is hollow and through which the refrigerant passes
And is disposed close to the semiconductor device, and the positive electrode side conductor and
Inverter characterized by being electrically connected to the negative electrode side conductor
Data device.
【請求項4】 直流電源と、半導体装置と、直流電源
平滑用コンデンサと、直流電源と半導体装置を接続する
正極側導体及び負極側導体と、前記半導体装置を駆動制
御する制御回路とを有したインバータ装置において、 前記直流電源平滑用コンデンサを電解コンデンサとし、
且つ内部が中空で冷媒が通り、更にその外周部も中空で
冷媒が通る液冷式コンデンサとし、前記半導体装置に近
接配置し、前記正極側導体及び負極側導体と電気的に接
続したことを特徴とするインバータ装置。
4. A DC power supply, a semiconductor device, and a DC power supply.
Connect smoothing capacitor, DC power supply and semiconductor device
Drive control of the positive and negative conductors and the semiconductor device.
In an inverter device having a control circuit to control, the DC power supply smoothing capacitor is an electrolytic capacitor,
In addition, the inside is hollow and the refrigerant passes through, and the outer periphery is also hollow.
A liquid-cooled condenser through which a refrigerant passes
Placed in contact with each other and electrically connected to the positive electrode side conductor and the negative electrode side conductor.
Inverter device characterized by continuing.
【請求項5】 直流電源と、半導体装置と、直流電源
平滑用コンデンサと、直流電源と半導体装置を接続する
正極側導体及び負極側導体と、前記半導体装置を駆動制
御する制御回路とを有したインバータ装置において、 前記直流電源平滑用コンデンサをセラミックコンデンサ
とし、液冷式冷却器に絶縁シートを介して取付け、前記
半導体装置に近接配置し、前記正極側導体及び負極側導
体と電気的に接続したことを特徴とするインバータ装
置。
5. A DC power supply, a semiconductor device, and a DC power supply
Connect smoothing capacitor, DC power supply and semiconductor device
Drive control of the positive and negative conductors and the semiconductor device.
In the inverter device having a control circuit, the DC power supply smoothing capacitor is a ceramic capacitor.
And attach it to the liquid-cooled cooler via an insulating sheet.
It is placed close to the semiconductor device, and the positive electrode side conductor and the negative electrode side conductor are arranged.
Inverter device characterized by being electrically connected to the body
Place
JP24947699A 1999-09-03 1999-09-03 Semiconductor device and inverter device Expired - Fee Related JP3529675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24947699A JP3529675B2 (en) 1999-09-03 1999-09-03 Semiconductor device and inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24947699A JP3529675B2 (en) 1999-09-03 1999-09-03 Semiconductor device and inverter device

Publications (2)

Publication Number Publication Date
JP2001077260A JP2001077260A (en) 2001-03-23
JP3529675B2 true JP3529675B2 (en) 2004-05-24

Family

ID=17193542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24947699A Expired - Fee Related JP3529675B2 (en) 1999-09-03 1999-09-03 Semiconductor device and inverter device

Country Status (1)

Country Link
JP (1) JP3529675B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641232B2 (en) * 2001-11-13 2005-04-20 本田技研工業株式会社 Inverter device and manufacturing method thereof
JP4161589B2 (en) * 2002-02-20 2008-10-08 株式会社日立製作所 Low voltage capacitor
JP2005094842A (en) * 2003-09-12 2005-04-07 Toshiba Corp Inverter arrangement and manufacturing method thereof
JP4674482B2 (en) * 2005-03-28 2011-04-20 パナソニック電工株式会社 Power converter
JP2006318953A (en) * 2005-05-10 2006-11-24 Toyota Industries Corp Terminal connection structure of semiconductor device
JP2008209341A (en) 2007-02-28 2008-09-11 Nippon Seiki Co Ltd Pointer-type meter
JP4697475B2 (en) 2007-05-21 2011-06-08 トヨタ自動車株式会社 Power module cooler and power module
JP5212088B2 (en) * 2008-12-25 2013-06-19 株式会社デンソー Semiconductor module cooling device
JP5017332B2 (en) * 2009-08-24 2012-09-05 株式会社日立製作所 Inverter
CN105849903B (en) * 2013-12-24 2018-05-18 三菱电机株式会社 Power inverter and power module
JP2016115900A (en) * 2014-12-18 2016-06-23 三菱電機株式会社 Semiconductor module and semiconductor device

Also Published As

Publication number Publication date
JP2001077260A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
EP1006578B1 (en) Semiconductor power module
JP4192396B2 (en) Semiconductor switching module and semiconductor device using the same
US6703703B2 (en) Low cost power semiconductor module without substrate
JP3484122B2 (en) Power converter
CN100367648C (en) Electric power converter
JP5287359B2 (en) Semiconductor module
US7095099B2 (en) Low profile package having multiple die
JP2002026251A (en) Semiconductor device
WO2005119896A1 (en) Inverter device
JP4805636B2 (en) Power semiconductor device and semiconductor power converter
JP3643525B2 (en) Inverter device
JP3529675B2 (en) Semiconductor device and inverter device
US6906935B2 (en) Inverter apparatus and method of manufacturing the same
CN117174680B (en) Power module, packaging structure and electronic equipment
CN117276226B (en) Power module, packaging structure and electronic equipment
JPH1118429A (en) Control module
JP2000058372A (en) Ceramic capacitor mounting structure
JP3507682B2 (en) Semiconductor module
US6232654B1 (en) Semiconductor module
JP2002238260A (en) Semiconductor device
JP3525823B2 (en) Mounting structure of complementary IGBT
JP2004048084A (en) Semiconductor power module
CN219497779U (en) Semiconductor power module, motor controller and vehicle
US11742267B2 (en) Power electronics assembly having flipped chip transistors
CN214480328U (en) Intelligent power module and intelligent power module structure adopting same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees