JP3525177B2 - Material processing method using X-ray - Google Patents

Material processing method using X-ray

Info

Publication number
JP3525177B2
JP3525177B2 JP2000347103A JP2000347103A JP3525177B2 JP 3525177 B2 JP3525177 B2 JP 3525177B2 JP 2000347103 A JP2000347103 A JP 2000347103A JP 2000347103 A JP2000347103 A JP 2000347103A JP 3525177 B2 JP3525177 B2 JP 3525177B2
Authority
JP
Japan
Prior art keywords
ray
ray mask
resist material
rays
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347103A
Other languages
Japanese (ja)
Other versions
JP2002151395A (en
Inventor
進 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2000347103A priority Critical patent/JP3525177B2/en
Publication of JP2002151395A publication Critical patent/JP2002151395A/en
Application granted granted Critical
Publication of JP3525177B2 publication Critical patent/JP3525177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線の照射量に応
じた深さで加工可能な材料にX線マスクを介してX線を
照射することにより、材料の各部を可変深さで加工する
X線を用いた材料の加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates an X-ray through a X-ray mask on a material that can be processed at a depth corresponding to the amount of X-ray irradiation, thereby processing each part of the material at a variable depth. The present invention relates to a method of processing a material using X-rays.

【0002】[0002]

【従来の技術】情報通信機器、マイクロマシン等、エレ
クトロニクスと機械部品の融合が進むにつれてエレクト
ロニクス部品のみならず、機械部品にも微小で高精度な
加工が求められている。従来、係る高精度の加工に適し
た方法として、LIGAと呼ばれる手法が知られてい
る。LIGA(Lithographie Galvanoformung Abformun
g)は、ドイツで提案された方法で、その名称は、ドイツ
語のリソグラフィ、電気メッキと成形の頭文字に由来す
る。
2. Description of the Related Art As the integration of electronics and mechanical parts such as information and communication equipment and micromachines progresses, not only electronic parts but also mechanical parts are required to be minute and highly precise. Conventionally, a method called LIGA is known as a method suitable for such highly accurate processing. LIGA (Lithographie Galvanoformung Abformun
g) is a method proposed in Germany, whose name derives from the German acronyms for lithography, electroplating and molding.

【0003】このLIGAでは、まず、図6中(a)に
示すように、金属等からなる基板1上にPMMA(ポリ
メチルメタクリレート)等からなるレジスト材2を形成
しておき、X線透過層3a上に所望形状のX線吸収層3
bを形成したX線マスク3を介して不図示のシンクロト
ロン光源等からレジスト材2にX線を照射する。
In this LIGA, first, as shown in FIG. 6A, a resist material 2 made of PMMA (polymethylmethacrylate) or the like is formed on a substrate 1 made of metal or the like, and an X-ray transmission layer is then formed. X-ray absorbing layer 3 having a desired shape on 3a
The resist material 2 is irradiated with X-rays from a synchrotron light source (not shown) or the like through the X-ray mask 3 on which b is formed.

【0004】図7中(a)にX線マスク3の厚みを付し
て示すように、X線透過層3aの裏面側にX線吸収層3
bの形成された領域ではX線が吸収されて透過しない
が、X線吸収層3bの形成されていない領域ではX線が
透過する結果、レジスト材2におけるX線の照射を受け
た露光領域では分子鎖が切断され、分子量が小さくな
る。
As shown in FIG. 7A with the thickness of the X-ray mask 3, the X-ray absorbing layer 3 is provided on the back surface side of the X-ray transmitting layer 3a.
X-rays are absorbed and not transmitted in the region where b is formed, but X-rays are transmitted in the region where the X-ray absorption layer 3b is not formed. As a result, in the exposed region of the resist material 2 which is irradiated with X-rays. The molecular chain is cut and the molecular weight is reduced.

【0005】従って、露光終了後にレジスト材2を所定
の現像液で現像すると、露光領域でレジスト材2が除去
されて凹部2aが形成される。この凹部2aの深さ、つ
まり、加工深さは、X線の積算照射量によって定まる。
具体的には、PMMAからなるレジスト材2の場合、図
7中(b)に示すように、必要な加工深さが比較的小さ
い段階では、加工深さは積算照射量に略比例するが、必
要な加工深さが増加するに伴って、積算照射量に応じた
加工深さの増加率は小さくなる。
Therefore, when the resist material 2 is developed with a predetermined developing solution after the exposure is completed, the resist material 2 is removed in the exposed area to form the concave portion 2a. The depth of the concave portion 2a, that is, the processing depth is determined by the cumulative dose of X-rays.
Specifically, in the case of the resist material 2 made of PMMA, as shown in (b) in FIG. 7, when the required processing depth is relatively small, the processing depth is approximately proportional to the cumulative irradiation dose, As the required processing depth increases, the rate of increase in the processing depth corresponding to the cumulative irradiation dose decreases.

【0006】図6に戻って、同図中(a)のX線マスク
3を用いてレジスト材2の厚さ方向全体を除去するに十
分な量のX線を照射した場合、同図中(b)に示すよう
に、X線吸収層3bの形成された領域ではレジスト材2
に対するX線の積算照射量は略0%となる一方、X線吸
収層3bの形成されていない領域では積算照射量は略1
00%となる。
Returning to FIG. 6, when the X-ray mask 3 shown in FIG. 6A is used to irradiate a sufficient amount of X-rays to remove the entire resist material 2 in the thickness direction, As shown in b), the resist material 2 is formed in the region where the X-ray absorbing layer 3b is formed.
The cumulative dose of X-rays to the X-ray becomes approximately 0%, while the cumulative dose of X-rays in the region where the X-ray absorbing layer 3b is not formed is approximately 1%.
It becomes 00%.

【0007】その結果、図6中(c)に示すように、X
線吸収層3bの形成された領域ではレジスト材2が略全
量残存する一方、X線吸収層3bの形成されていない領
域ではレジスト材2が略全量除去される。なお、X線の
積算照射量は、レジスト材2を厚さ方向に全量除去する
のに必要な照射量を100%として算出した値である。
As a result, as shown in FIG. 6 (c), X
The resist material 2 remains almost entirely in the region where the X-ray absorbing layer 3b is formed, while the resist material 2 is removed almost entirely in the region where the X-ray absorbing layer 3b is not formed. The cumulative dose of X-rays is a value calculated on the assumption that the dose required to completely remove the resist material 2 in the thickness direction is 100%.

【0008】上記のようにレジスト材2を部分的に除去
した後、図示しないが、電気メッキ法により、残存した
レジスト材2の隙間にNi等の金属を充填した後、レジ
スト材2を除去することにより、所定の凹凸形状を有す
る金属製構造体を得ることができる。
After partially removing the resist material 2 as described above, although not shown, the gap between the remaining resist material 2 is filled with a metal such as Ni by an electroplating method, and then the resist material 2 is removed. As a result, a metal structure having a predetermined uneven shape can be obtained.

【0009】この金属製構造体を鋳型に用いて、プラス
チック又はセラミック製のマイクロ部品を作製したり、
上記金属製構造体自体をマイクロ部品として使用するこ
とができる。上記のLIGAによれば、図6中(c)に
おける残存レジスト材2のアスペクト比(高さ寸法/幅
寸法)、従って、最終製品のアスペクト比を数10乃至
100以上程度の大きさとすることもできる。
By using this metal structure as a mold, a micropart made of plastic or ceramic can be produced,
The metal structure itself can be used as a micro component. According to the above-mentioned LIGA, the aspect ratio (height dimension / width dimension) of the residual resist material 2 in FIG. 6C, that is, the aspect ratio of the final product may be set to several tens to 100 or more. it can.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記方法で
は、図6中(c)の残存レジスト材2、従って、最終製
品の高さ方向(加工の深さ方向)に一様な加工しかでき
ない制約がある。すなわち、残存レジスト材2の水平断
面積(基板1の表面と平行な断面積)はレジスト材2の
高さ位置にかかわらず一定であるが、これは、同図中
(b)におけるX線積算照射量分布がX線吸収層3bの
存在する位置では略0%、存在しない位置では略100
%となり、その中間が存在しないためである。
However, in the above method, the remaining resist material 2 in FIG. 6 (c), that is, the restriction that only uniform processing is possible in the height direction (processing depth direction) of the final product. There is. That is, the horizontal cross-sectional area of the residual resist material 2 (cross-sectional area parallel to the surface of the substrate 1) is constant regardless of the height position of the resist material 2, but this is the X-ray integration in FIG. The dose distribution is about 0% at the position where the X-ray absorption layer 3b exists, and about 100 at the position where it does not exist.
This is because there is no intermediate value.

【0011】そこで、図8中(a)のように、例えば、
円形のX線吸収層3bを有するX線マスク3をレジスト
材2に対して相対的に移動させながら、このX線マスク
3を介してレジスト材2にX線を照射するようにすれ
ば、同図中(c)に示すように、例えば、現像後のレジ
スト材2の形状を円錐台状とすることができる。
Therefore, as shown in FIG. 8A, for example,
If the X-ray mask 3 having the circular X-ray absorption layer 3b is moved relative to the resist material 2 and the resist material 2 is irradiated with X-rays through the X-ray mask 3, the same effect can be obtained. As shown in (c) in the figure, for example, the resist material 2 after development can have a truncated cone shape.

【0012】これは、例えば、図8中(a)のX線マス
ク3の1つのコーナ点3cの相対移動経路を矢印Cで示
したように、X線マスク3全体を水平面内でX線吸収層
3bの半径より小さい半径の円を描くように一定角速度
で連続的に移動させることにより、同図中(b)のよう
に、X線吸収層3bで常時X線が遮断される領域と常時
X線が照射される領域との間にX線積算照射量が連続的
に変化する領域を設けたためである。
This is because, for example, as shown by an arrow C in FIG. 8A, the relative movement path of one corner point 3c of the X-ray mask 3 is absorbed by the X-ray mask 3 in the horizontal plane. By continuously moving at a constant angular velocity so as to draw a circle having a radius smaller than the radius of the layer 3b, as shown in (b) of FIG. This is because an area in which the cumulative X-ray irradiation dose continuously changes is provided between the area and the area irradiated with X-rays.

【0013】しかしながら、図8のようなX線マスク3
を移動させながら露光する加工法では、円錐台等の単純
な3次元形状の加工は比較的容易に行えるが、左右非対
称の3次元形状や任意の曲面形状等を含む3次元形状の
加工等は困難であるという制約があった。
However, the X-ray mask 3 as shown in FIG.
In the processing method of exposing while moving the, it is relatively easy to process a simple three-dimensional shape such as a truncated cone, but it is not possible to process a three-dimensional shape including an asymmetrical three-dimensional shape or an arbitrary curved surface shape. There was a constraint that it was difficult.

【0014】[0014]

【課題を解決するための手段】本発明は前記の課題を解
決するため、左右非対称や任意の曲面形状等を含む3次
元形状の加工を容易に行えるX線を用いた材料の加工方
法を提供することを目的とする。そのため、本発明の請
求項1のX線を用いた材料の加工方法は、X線の照射量
に応じた深さで加工可能な材料とX線マスクとを相対的
に移動させながら上記X線マスクを介して上記材料にX
線を照射することにより、材料の各部を可変深さで加工
する方法において、X線マスクの相対的に移動する方向
の長さが、加工後の材料の所定方向の断面形状の厚さに
対応した形状のX線吸収層を有するX線マスクを上記材
料の表面との間に所定の間隔を隔てて配置し、このX線
マスクを上記材料の所定方向の断面と直交する方向へ相
対移動させながら上記X線マスクを介して上記材料にX
線を照射することにより、上記材料を加工することを特
徴とするものである。
In order to solve the above-mentioned problems, the present invention is a method of processing a material using X-rays capable of easily processing a three-dimensional shape including left-right asymmetry and an arbitrary curved surface shape.
The purpose is to provide the law . Therefore, in the method of processing a material using X-rays according to claim 1 of the present invention, the X-ray is processed while the material that can be processed at a depth corresponding to the dose of X-rays and the X-ray mask are relatively moved. X through the mask on the above material
In the method of processing each part of the material with variable depth by irradiating with a ray, the length of the X-ray mask in the relative movement direction corresponds to the thickness of the cross-sectional shape of the processed material in the predetermined direction. An X-ray mask having an X-ray absorption layer having the above-described shape is arranged at a predetermined distance from the surface of the material, and the X-ray mask is relatively moved in a direction orthogonal to a cross section of the material in a predetermined direction. While passing through the X-ray mask, X
The material is characterized in that the material is processed by irradiating a line.

【0015】請求項2のX線を用いた材料の加工方法
は、請求項1の方法において、X線マスクの相対的に移
動する方向の長さが、加工後の材料の複数方向の断面形
の厚さに各々対応した形状のX線吸収層を有する一又
は複数のX線マスクを用い、材料の個々の断面と直交す
る方向へ各々対応するX線マスクを相対移動させながら
上記X線マスクを介して材料にX線を照射するようにし
たことを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of processing a material using X-rays according to the first aspect, wherein the X-ray mask is relatively moved.
Using one or a plurality of X-ray masks each having an X-ray absorption layer whose length in the moving direction corresponds to the thickness of the cross-sectional shape of the material after processing in a plurality of directions, and is orthogonal to the individual cross-sections of the material. The X-ray mask is characterized in that the material is irradiated with X-rays through the X-ray mask while relatively moving the corresponding X-ray masks in respective directions.

【0016】ここで、1又は複数のX線マスクとしたの
は、上記材料の複数方向の断面形状が互いに等しい場
合、複数方向に対して同一のX線マスクを使用すること
ができる一方、複数方向の断面形状が互いに異なる場
合、各方向で互いにX線吸収層の形状の異なるX線マス
クを使用できる趣旨である。
Here, one or a plurality of X-ray masks are used because the same X-ray mask can be used for a plurality of directions when the materials have the same cross-sectional shapes in a plurality of directions. When the cross-sectional shapes in different directions are different from each other, it is meant that X-ray masks having different shapes of X-ray absorbing layers can be used in each direction.

【0017】請求項3のX線を用いた材料の加工方法
は、請求項1又は2の方法において、上記材料を前もっ
て加工した後、この加工済みの材料の所望位置とX線マ
スクの所望位置とが対向するように位置決めした上で上
記X線マスクと上記材料とを相対移動させながら上記X
線マスクを介して上記材料にX線を照射することによ
り、上記材料を加工することを特徴とするものである。
A method of processing a material using X-rays according to a third aspect is the method according to the first or second aspect, wherein after the material is previously processed, a desired position of the processed material and a desired position of the X-ray mask. And the X-ray mask and the material are moved relative to each other, and the X-ray mask and the X-ray mask are moved relative to each other.
It is characterized in that the material is processed by irradiating the material with X-rays through a line mask.

【0018】[0018]

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1中(a)において、X線を用
いた加工装置は、所定位置に固定的に配置されたX線マ
スク3と、金属等からなる基板1を伴ったPMMA等の
レジスト材2(材料)を載置するテーブル4と、X線マ
スク3に対してテーブル4を、例えば、Y軸方向へ一定
速度で往復移動させる図示しない駆動部とを備え、これ
らの各要素は、真空あるいはHe等のガス(1気圧程
度)が充填された図示しない露光チャンバ内に配置され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1A, a processing device using X-rays includes an X-ray mask 3 fixedly arranged at a predetermined position and a resist material 2 (material) such as PMMA with a substrate 1 made of metal or the like. And a drive unit (not shown) that reciprocates the table 4 with respect to the X-ray mask 3 at a constant speed in the Y-axis direction. Each of these elements is a vacuum or He or the like. It is placed in an exposure chamber (not shown) filled with gas (about 1 atm).

【0020】上記加工装置は、シンクロトロン放射光装
置等からなる図示しないX線照射部を上記露光チャンバ
外に有し、このX線照射部から露光チャンバ内にX線が
入射されて、X線マスク3を介してレジスト材2に照射
されるようになっている。図中、X0、Y0及びZ0は
各々レジスト材2のX軸、Y軸及びZ軸方向のサイズを
示し、図2中(a)から明らかなように、ここでは、X
線マスク3のX軸及びY軸方向のサイズはレジスト材2
のX軸及びY軸方向のサイズX0、Y0と各々等しく設
定されている。
The processing apparatus has an X-ray irradiation unit (not shown) including a synchrotron radiation device and the like outside the exposure chamber, and X-rays are incident on the inside of the exposure chamber from the X-ray irradiation unit to generate X-rays. The resist material 2 is irradiated through the mask 3. In the figure, X0, Y0, and Z0 respectively indicate the sizes of the resist material 2 in the X-axis, Y-axis, and Z-axis directions, and as is clear from (a) in FIG.
The size of the line mask 3 in the X-axis and Y-axis directions is the resist material 2
Are set to be equal to the sizes X0 and Y0 in the X-axis and Y-axis directions, respectively.

【0021】上記X線照射部からのX線はX線マスク3
が配置された範囲のみに照射され、テーブル4の移動に
伴ってレジスト材2がX線マスク3と重なり合う範囲か
らはみ出た場合は、X線マスク3と重ならない範囲のレ
ジスト材2上にはX線が照射されないようになってい
る。
The X-rays from the X-ray irradiator are X-ray masks 3.
Is irradiated only in the area where the X-ray mask is arranged, and when the resist material 2 is out of the area where it overlaps with the X-ray mask 3 as the table 4 moves, X-rays are present on the resist material 2 in the area where it does not overlap with the X-ray mask 3. The line is not illuminated.

【0022】例えば、レジスト材2を図1中(c)に示
すような形状に加工したい場合、同図中(a)に示すよ
うに、X線マスク3に上記加工後のレジスト材2の断面
形状と略等しい形状のX線吸収層3b(便宜上ハッチン
グを付して示す)を形成しておく。
For example, when it is desired to process the resist material 2 into a shape as shown in FIG. 1C, as shown in FIG. 1A, the X-ray mask 3 has a cross section of the resist material 2 after the processing. An X-ray absorption layer 3b (shown with hatching for convenience) having a shape substantially the same as the shape is formed in advance.

【0023】図3にも示すように、本実施の形態では、
テーブル4をY軸方向へ一定速度で往復移動(矢印M参
照)させながらX線マスク3を介してレジスト材2にX
線を露光する。
As shown in FIG. 3, in the present embodiment,
While reciprocating the table 4 in the Y-axis direction at a constant speed (see the arrow M), the X-ray mask 3 is used to move the X-ray on the resist material 2.
Expose the line.

【0024】この場合、テーブル4は、レジスト材2の
Y軸方向の前端位置2aがX線マスク3のY軸方向の後
端位置3dより手前側に位置するI位置と、レジスト材
2のY軸方向の後端位置2bがX線マスク3のY軸方向
の前端位置3cを通過するII位置との間で移動させるよ
うにする。すなわち、テーブル4の一回の往動(図3の
右方向移動)又は復動(図3の左方向移動)中に、レジ
スト材2の全領域がX線マスク3の下方を通過するよう
に移動範囲を設定する。
In this case, the table 4 has an I position in which the front end position 2a of the resist material 2 in the Y-axis direction is located in front of the rear end position 3d in the Y-axis direction of the X-ray mask 3 and the Y position of the resist material 2. The rear end position 2b in the axial direction is moved to the II position passing through the front end position 3c in the Y-axis direction of the X-ray mask 3. That is, the entire region of the resist material 2 passes under the X-ray mask 3 during one forward movement (movement to the right in FIG. 3) or backward movement (movement to the left in FIG. 3) of the table 4. Set the movement range.

【0025】上記のように、テーブル4をY軸方向へ一
定速度で移動させながらレジスト材2にX線を照射した
場合、レジスト材2のX軸方向の各部におけるX線積算
照射量は図1中(b)の曲線f’で示すような分布とな
る。
As described above, when the resist material 2 is irradiated with X-rays while moving the table 4 in the Y-axis direction at a constant speed, the cumulative X-ray irradiation dose in each part of the resist material 2 in the X-axis direction is shown in FIG. The distribution is as shown by the curve f'in the middle (b).

【0026】すなわち、図2中(a)において、X線マ
スク3におけるX線吸収層3bの輪郭(後端3dに接触
しない部分の輪郭)がなす曲線形状が所定の関数fで表
されるとすれば、図1中(b)の曲線f’は上記関数f
の極性(+)を(−)に反転させて、更に反転後の関数
を(−)側から(+)側に平行移動させた状態の曲線と
なる。
That is, in FIG. 2A, the curved shape formed by the contour of the X-ray absorbing layer 3b in the X-ray mask 3 (the contour of the portion not in contact with the rear end 3d) is represented by a predetermined function f. Then, the curve f ′ in FIG.
The polarity (+) is inverted to (-), and the function after inversion is further translated from the (-) side to the (+) side.

【0027】具体的に説明すると、図2中(a)におい
て、X座標がX1、X2及びX3の各点における関数f
の値(Y座標)を各々Y1、Y2及びY3とする。レジ
スト材2上のX座標がX1の位置について考慮すれば、
X線マスク3全体のY軸方向の長さがY0であるのに対
してX線吸収層3bの長さはY1であり、かつ、テーブ
ル4の移動速度は一定であるから、X線の照射期間中に
X線が遮蔽される確率はY1/Y0、逆にX座標がX1
の位置にX線が照射される確率(X座標がX1の位置へ
の実際のX線照射時間/全照射時間)は(Y0−Y1)
/Y0=α1となる。
More specifically, in FIG. 2 (a), the function f at each point where the X coordinate is X1, X2 and X3.
The values (Y coordinates) of Y are Y1, Y2, and Y3, respectively. Considering the position where the X coordinate on the resist material 2 is X1,
The length of the X-ray mask 3 as a whole in the Y-axis direction is Y0, whereas the length of the X-ray absorbing layer 3b is Y1, and the moving speed of the table 4 is constant. The probability that X-rays are shielded during the period is Y1 / Y0, and conversely the X coordinate is X1.
The probability that the X-ray will be irradiated to the position (the actual X-ray irradiation time to the position where the X coordinate is X1 / total irradiation time) is (Y0-Y1).
/ Y0 = α1.

【0028】同様にレジスト材2上のX座標がX2の位
置にX線が照射される確率は(Y0−Y2)/Y0=α
2となる。また、X座標がX3の位置ではY3=Y0で
あり、X線は常に遮蔽されるため、X線の照射される確
率は0となる。
Similarly, the probability that X-rays will be irradiated to the position of X2 on the resist material 2 is (Y0-Y2) / Y0 = α.
It becomes 2. Further, at the position where the X coordinate is X3, Y3 = Y0, and the X-ray is always shielded, so that the probability of being irradiated with the X-ray is 0.

【0029】従って、上述のように、X線積算照射量の
X軸方向の変化を示す曲線f’は、関数fを上下反転さ
せたものとなる。なお、レジスト材2上のX座標が等し
い場合、Y座標、つまり、レジスト材2のY軸方向位置
に関わらず、X線積算照射量は一定となる。これは、図
3において、テーブル4の一回の往動又は復動中に、レ
ジスト材2のY軸方向の全域がX線マスク3のY軸方向
の全域の下方を通過するためである。
Therefore, as described above, the curve f'indicating the change in the X-ray integrated dose in the X-axis direction is obtained by vertically inverting the function f. When the X-coordinates on the resist material 2 are the same, the X-ray integrated irradiation dose is constant regardless of the Y-coordinate, that is, the position of the resist material 2 in the Y-axis direction. This is because, in FIG. 3, the entire region of the resist material 2 in the Y-axis direction passes below the entire region of the X-ray mask 3 in the Y-axis direction during one forward or backward movement of the table 4.

【0030】その結果、上記テーブル4を移動させなが
ら露光をした後、2−(2−ブトキシエトキシ)エタノ
ール、モルホリン及び2−アミノエタノールの混合水溶
液などの適宜の現像液を用いて現像すると、レジスト材
2が図1中(c)のような形状に加工される。すなわ
ち、レジスト材2のXZ平面における断面形状はY座標
に関わらず一定で図2中(b)のようになり、同図中
(a)のX線マスク3のXY平面内でのX線吸収層3b
の形状がレジスト材2のXZ平面に写像される。
As a result, after exposure while moving the table 4, the resist was developed by using an appropriate developing solution such as a mixed aqueous solution of 2- (2-butoxyethoxy) ethanol, morpholine and 2-aminoethanol. The material 2 is processed into a shape as shown in FIG. That is, the cross-sectional shape of the resist material 2 on the XZ plane is constant regardless of the Y coordinate and becomes as shown in FIG. 2B, and the X-ray absorption in the XY plane of the X-ray mask 3 of FIG. Layer 3b
Is mapped onto the XZ plane of the resist material 2.

【0031】但し、X線マスク3のY軸方向サイズY0
とレジスト材2のZ軸方向のサイズZ0とが異なる場
合、レジスト材2のXZ平面における断面形状はX線吸
収層3bの形状を縦方向にZ0/Y0倍に拡大又は縮小
した状態(X軸方向は等倍)となる。
However, the size Y0 of the X-ray mask 3 in the Y-axis direction
And the size Z0 of the resist material 2 in the Z-axis direction are different from each other, the cross-sectional shape of the resist material 2 in the XZ plane is a state in which the shape of the X-ray absorbing layer 3b is enlarged or reduced by Z0 / Y0 times in the vertical direction (X-axis). The direction is the same size).

【0032】逆に言えば、X線マスク3の作成時には、
レジスト材2のZ軸方向サイズZ0(厚さ)とX線マス
ク3のY軸方向サイズY0とに基づいて、加工後のレジ
スト材2の断面形状を縦方向にY0/Z0倍に拡大又は
縮小した形状(X軸方向は等倍)をX線吸収層3bの形
状とする必要がある。
Conversely, when the X-ray mask 3 is created,
Based on the Z-axis size Z0 (thickness) of the resist material 2 and the Y-axis size Y0 of the X-ray mask 3, the cross-sectional shape of the processed resist material 2 is enlarged or reduced Y0 / Z0 times in the vertical direction. The shape (the same size in the X-axis direction) needs to be the shape of the X-ray absorption layer 3b.

【0033】なお、本明細書では、上記のように、加工
後のレジスト材2の断面形状を縦方向に拡大又は縮小し
た形状(X軸方向は等倍)がX線吸収層3bの形状とな
る場合をも含めて、加工後のレジスト材2の断面形状と
X線吸収層3bの形状とが略等しいと表現している。
In the present specification, the shape obtained by enlarging or reducing the cross-sectional shape of the processed resist material 2 in the vertical direction (equal magnification in the X-axis direction) is the shape of the X-ray absorbing layer 3b as described above. Including such cases, the cross-sectional shape of the processed resist material 2 and the shape of the X-ray absorbing layer 3b are expressed as being substantially equal.

【0034】図7中(b)に示したように、レジスト材
2としてPMMAを使用した場合、加工深さが数100
μm程度以下の範囲ではX線積算照射量と加工深さが略
比例するので、最大の加工深さ、つまり、レジスト材2
の厚さZ0が数100μm程度以下の場合、上記のよう
にX線マスク3のX線吸収層3bの形状を加工後のレジ
スト材2の断面形状と略等しくするのみでよい。
As shown in FIG. 7B, when PMMA is used as the resist material 2, the processing depth is several hundreds.
In the range of about μm or less, the cumulative dose of X-rays and the processing depth are substantially proportional to each other.
If the thickness Z0 is less than about several 100 μm, the shape of the X-ray absorbing layer 3b of the X-ray mask 3 need only be substantially equal to the cross-sectional shape of the processed resist material 2 as described above.

【0035】これに対して、レジスト材2の厚さZ0が
数100μm程度を超える場合、図7中(b)から明ら
かなように、X線積算照射量と加工深さが比例しなくな
るので、加工深さに応じて、X線吸収層3bの形状を加
工後のレジスト材2の断面形状と相違させる必要があ
る。具体的には、図2中(a)において、加工深さの大
きい領域、つまり、Y座標の小さい領域で、曲線fを下
方へずらした形状とすればよい。
On the other hand, when the thickness Z0 of the resist material 2 exceeds several hundreds of μm, as is apparent from FIG. 7B, the cumulative X-ray dose and the working depth are not proportional. It is necessary to make the shape of the X-ray absorbing layer 3b different from the cross-sectional shape of the resist material 2 after processing according to the processing depth. Specifically, in FIG. 2A, the shape of the curve f may be shifted downward in a region having a large working depth, that is, a region having a small Y coordinate.

【0036】以上のように、本実施の形態では、X線マ
スク3におけるX線吸収層3bの形状を加工後のレジス
ト材2の断面形状に略転写できるので、レジスト材2の
断面形状を左右非対称な形状や任意の曲線形状とするこ
とも容易に行えるようになる。
As described above, in the present embodiment, the shape of the X-ray absorbing layer 3b in the X-ray mask 3 can be substantially transferred to the cross-sectional shape of the processed resist material 2, so that the cross-sectional shape of the resist material 2 can be changed to the left and right. An asymmetrical shape or an arbitrary curved shape can be easily performed.

【0037】次に、本発明の他の実施の形態を説明す
る。上記の実施の形態では、レジスト材2の一方向のみ
にX線マスク3を一定速度で移動させながら露光し、現
像するものとしたが、レジスト材2を複数方向に移動さ
せながら一又は複数のX線マスク3を用いて露光するこ
とにより、レジスト材2に一層複雑な立体形状の加工を
行うこともできる。
Next, another embodiment of the present invention will be described. In the above-described embodiment, the X-ray mask 3 is exposed and developed while moving the resist material 2 in only one direction at a constant speed, but one or a plurality of resist materials 2 may be moved while moving in a plurality of directions. By exposing using the X-ray mask 3, the resist material 2 can be processed into a more complicated three-dimensional shape.

【0038】例えば、図4中(a)に示すような形状の
X線吸収層3bを有するX線マスク3を上記と同様にレ
ジスト材2の一方向へ相対移動させながら露光し、現像
すると、X線吸収層3bの形状がレジスト材2に転写さ
れる結果、レジスト材2は同図中(b)に示すような形
状に加工される。
For example, when the X-ray mask 3 having the X-ray absorbing layer 3b having the shape as shown in FIG. 4A is exposed while being relatively moved in one direction of the resist material 2 as in the above, and developed, As a result of the shape of the X-ray absorbing layer 3b being transferred to the resist material 2, the resist material 2 is processed into a shape as shown in FIG.

【0039】続いて、同図中(b)のレジスト材2を9
0゜回転させ、上記と同一のX線マスク3を回転後のレ
ジスト材2に対し上記と同一方向へ相対移動させながら
再度露光し、現像すると、レジスト材2は同図中(c)
に示すような形状に加工される。
Then, the resist material 2 shown in FIG.
The resist material 2 is rotated by 0 °, and the same X-ray mask 3 as described above is again moved in the same direction as the rotated resist material 2 in the same direction as described above.
It is processed into a shape as shown in.

【0040】この場合、基板1上で縦横に複数配置され
た各々大略四角錐状のレジスト材2の内の右端奥のレジ
スト材2を、その頂点2cを含むX軸と平行な垂直面及
び上記頂点2cを含むY軸と平行な垂直面で切断した各
断面における断面形状は、いずれもX線吸収層3bの形
状と略等しくなる。
In this case, the resist material 2 at the far right end of the substantially square pyramid-shaped resist materials 2 arranged in the vertical and horizontal directions on the substrate 1 is the vertical surface parallel to the X axis including the vertex 2c and the above. The cross-sectional shape of each cross section cut along a vertical plane parallel to the Y axis including the apex 2c is substantially the same as the shape of the X-ray absorption layer 3b.

【0041】なお、上記の実施の形態では、同一のX線
マスク3をレジスト材2に対して互いに直交する2方向
に相対移動させながら露光し、現像するようにしたが、
これ以外にX線吸収層3bの形状の異なる2枚のX線マ
スク3を用いて互いに直交する2方向に露光するように
してもよく、その場合、加工後のレジスト材2の2方向
の断面形状は互いに異なることになる。
In the above embodiment, the same X-ray mask 3 is exposed and developed while being moved relative to the resist material 2 in two directions orthogonal to each other.
Alternatively, two X-ray masks 3 having different shapes of the X-ray absorbing layer 3b may be used to perform exposure in two directions orthogonal to each other. In that case, a cross section of the resist material 2 after processing in two directions. The shapes will be different from each other.

【0042】図5に更に別の実施の形態を示す。同図中
(a)のように、前もってレジスト材2に所定の加工
(ここでは、レジスト材2の厚み方向へ貫通する複数の
孔2dを縦及び横方向に所定の間隔Wで形成する加工)
を施した後、同図(b)に示すような形状のX線吸収層
3bを有するX線マスク3をレジスト材2に対して位置
決めする。
FIG. 5 shows still another embodiment. As shown in (a) in the figure, predetermined processing is performed on the resist material 2 in advance (here, a plurality of holes 2d penetrating in the thickness direction of the resist material 2 are formed at predetermined intervals W in the vertical and horizontal directions).
Then, the X-ray mask 3 having the X-ray absorption layer 3b having the shape shown in FIG.

【0043】上記X線吸収層3bにおける繰り返しパタ
ーンの間隔Wは、レジスト材2における孔2dの間隔W
と等しくされており、かつ、隣接する孔2dの中心の連
結線L1とX線吸収層3bの繰り返しパターンの中心線
L1とが対向するように、X線マスク3とレジスト材2
とを位置決めする。そして、上記連結線L1と中心線L
2とを合致させたまま、レジスト材2に対しX線マスク
3を中心線L2方向へ移動させながらX線マスク3を介
して露光すると、レジスト材2は図5中(c)に示す形
状となる。
The distance W between the repetitive patterns in the X-ray absorbing layer 3b is the distance W between the holes 2d in the resist material 2.
And the center line L1 of the repeating pattern of the X-ray absorbing layer 3b and the center connecting line L1 of the centers of the adjacent holes 2d are opposed to each other.
Position and. Then, the connecting line L1 and the center line L
When the resist material 2 is exposed through the X-ray mask 3 while the X-ray mask 3 is moved in the direction of the center line L2 while the value 2 and 3 are matched, the resist material 2 has the shape shown in FIG. Become.

【0044】その後、同図中(c)のレジスト材2を9
0゜回転させた上で、再度、X線吸収層3bの繰り返し
パターンの中心線L2と隣接する孔2dの中心の連結線
(但し、図5中(a)の連結線L1とは直交する方向の
連結線)とを合致させ、X線マスク3を中心線L2方向
へ移動させながらX線マスク3を介して露光して加工す
ると、図5中(d)に示すような形状となる。すなわ
ち、上方に向けて次第に細くなる突起の先端面2eに孔
2dが開口したノズル形状が形成される。
After that, the resist material 2 shown in FIG.
After rotating by 0 °, the connecting line at the center of the hole 2d adjacent to the center line L2 of the repetitive pattern of the X-ray absorbing layer 3b (however, is orthogonal to the connecting line L1 in FIG. 5A). (D) in FIG. 5, and the X-ray mask 3 is exposed to light through the X-ray mask 3 while being moved in the direction of the center line L2, the shape becomes as shown in FIG. That is, a nozzle shape is formed in which the hole 2d is opened in the tip end surface 2e of the protrusion that gradually narrows upward.

【0045】なお、上記図1乃至図5に示した各実施の
形態による加工技術によって加工された材料は、情報通
信分野やエレクトロニクスの分野においては、プリンタ
ー用ノズルや半導体検査用プローブ探針など、光学分野
においては、フレネルレンズ、マイクロレンズアレー、
回折格子、分光格子、フィルター、反射防止板など、医
療・生体測定分野においては、生体電極針、生体液採取
針、薬液注射針などの広い用途に利用できる。
The materials processed by the processing techniques according to the embodiments shown in FIGS. 1 to 5 are used in the fields of information communication and electronics, such as printer nozzles and semiconductor inspection probe tips. In the optical field, Fresnel lenses, microlens arrays,
In the medical and biometric fields such as diffraction gratings, spectral gratings, filters, antireflection plates, etc., it can be used for a wide range of applications such as biomedical electrode needles, biofluid collection needles, drug injection needles, and the like.

【0046】[0046]

【発明の効果】本発明の請求項1のX線を用いた材料の
加工方法は、X線マスクの相対的に移動する方向の長さ
が、加工後の材料の所定方向の断面形状の厚さに対応し
た形状のX線吸収層を有するX線マスクを材料の表面と
の間に所定の間隔を隔てて配置し、このX線マスクを上
記材料の所定方向の断面と直交する方向へ相対移動させ
ながら上記X線マスクを介して上記材料にX線を照射す
ることにより上記材料を加工するようにしたものである
が、上記X線マスクを上記断面と直交する方向へ移動さ
せながら材料にX線を照射するに際して、X線マスクの
上記移動方向におけるX線吸収量の占める割合が大きい
領域程、材料に対するX線の照射量が小さくなり、その
結果、材料の加工深さが小さくなる。
According to the method of processing a material using X-rays of the first aspect of the present invention, the length of the X-ray mask in the direction of relative movement is set.
An X-ray mask having an X-ray absorption layer having a shape corresponding to the thickness of the cross-sectional shape of the processed material in a predetermined direction is arranged at a predetermined distance from the surface of the material. The material is processed by irradiating the material with X-rays through the X-ray mask while relatively moving the material in a direction orthogonal to a cross section of the material in a predetermined direction. When irradiating the material with X-rays while moving the mask in the direction orthogonal to the cross section, the larger the proportion of the X-ray absorption amount in the moving direction of the X-ray mask, the smaller the amount of X-ray irradiation to the material. As a result, the working depth of the material is reduced.

【0047】従って、加工後の上記所定断面における断
面形状は、上記X線マスクにおけるX線吸収層の形状と
略相似形となる。このように、本発明では、加工後の材
料の断面形状に合わせて、X線マスクにおけるX線吸収
層の形状を定めるのみで所望の断面形状に加工できるの
で、左右非対称の断面形状や任意の曲線状の断面形状を
含む3次元形状等も容易に加工できるようになる。
Therefore, the cross-sectional shape of the predetermined cross section after processing is substantially similar to the shape of the X-ray absorbing layer in the X-ray mask. As described above, according to the present invention, the desired cross-sectional shape can be processed simply by determining the shape of the X-ray absorption layer in the X-ray mask in accordance with the cross-sectional shape of the processed material. A three-dimensional shape including a curved cross-sectional shape can be easily processed.

【0048】請求項2のX線を用いた材料の加工方法
は、請求項1の加工方法を材料の複数方向に対して行う
ようにしたものである。請求項1のようにX線マスクを
一方向に移動させながらX線を照射して加工したのみで
は、上記X線マスクの移動方向において、加工後の材料
の断面形状は一定となるが、このような加工を材料の複
数方向に対して行うことにより、一層複雑な3次元構造
を作成することができるようになる。
According to a second aspect of the present invention, there is provided a method for processing a material using X-rays, wherein the first method is applied to a plurality of directions of the material. When the X-ray mask is processed by irradiating X-rays while moving the X-ray mask in one direction as described in claim 1, the cross-sectional shape of the material after processing becomes constant in the moving direction of the X-ray mask. By performing such processing in multiple directions of the material, it becomes possible to create a more complicated three-dimensional structure.

【0049】請求項3のX線を用いた材料の加工方法
は、請求項1又は2の方法において、上記材料を前もっ
て加工した後、この加工済みの材料の所望位置とX線マ
スクの所望位置とが対向するように位置決めした上で上
記X線マスクと上記材料とを相対移動させながら上記X
線マスクを介して上記材料にX線を照射することによ
り、上記材料を加工するものであるから、材料に一層複
雑な立体形状を加工することができるようになる。
A method for processing a material using X-rays according to a third aspect is the method according to the first or second aspect, wherein after the material has been processed in advance, a desired position of the processed material and a desired position of the X-ray mask. And the X-ray mask and the material are moved relative to each other, and the X-ray mask and the X-ray mask are moved relative to each other.
Since the material is processed by irradiating the material with X-rays through a line mask, the material can be processed into a more complicated three-dimensional shape.

【0050】[0050]

【0051】[0051]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態におけるX線を用いた加工
装置とX線積算照射量と加工後のレジスト材の形状との
関係を示す説明図。
FIG. 1 is an explanatory diagram showing a relationship between a processing apparatus using X-rays, an integrated X-ray irradiation dose, and a shape of a resist material after processing according to an embodiment of the present invention.

【図2】上記加工装置におけるX線マスクの形状と加工
後のレジスト材の断面形状との関係を示す説明図。
FIG. 2 is an explanatory view showing the relationship between the shape of an X-ray mask and the sectional shape of a resist material after processing in the above processing apparatus.

【図3】上記加工装置のX線マスクに対してレジスト材
を相対移動させる様子を示す説明図。
FIG. 3 is an explanatory view showing a manner in which a resist material is moved relative to an X-ray mask of the processing apparatus.

【図4】本発明の他の実施の形態においてX線マスクを
順次2方向に移動させながら露光して加工する様子を示
す説明図。
FIG. 4 is an explanatory diagram showing a state in which an X-ray mask is exposed and processed while being sequentially moved in two directions according to another embodiment of the present invention.

【図5】本発明の更に他の実施の形態においてX線マス
クを順次2方向に移動させながら露光して加工する様子
を示す説明図。
FIG. 5 is an explanatory view showing a state in which an X-ray mask is exposed and processed while being sequentially moved in two directions according to still another embodiment of the present invention.

【図6】従来のX線を用いた加工装置とX線積算照射量
と加工後のレジスト材の形状との関係を示す説明図。
FIG. 6 is an explanatory diagram showing a relationship between a conventional processing apparatus using X-rays, an integrated X-ray irradiation dose, and a shape of a resist material after processing.

【図7】X線積算照射量をレジスト材に対する加工深さ
との関係を示す説明図。
FIG. 7 is an explanatory diagram showing the relationship between the cumulative X-ray irradiation dose and the processing depth of a resist material.

【図8】従来のX線を用いた他の加工装置とX線積算照
射量と加工後のレジスト材の形状との関係を示す説明
図。
FIG. 8 is an explanatory view showing the relationship between another conventional processing apparatus using X-rays, the cumulative X-ray irradiation dose, and the shape of the resist material after processing.

【符号の説明】[Explanation of symbols]

2 レジスト材(材料) 3 X線マスク 3b X線吸収層 2 Resist material (material) 3 X-ray mask 3b X-ray absorption layer

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線の照射量に応じた深さで加工可能な
材料とX線マスクとを相対的に移動させながら上記X線
マスクを介して上記材料にX線を照射することにより、
材料の各部を可変深さで加工する方法において、 X線マスクの相対的に移動する方向の長さが、加工後の
材料の所定方向の断面形状の厚さに対応した形状のX線
吸収層を有するX線マスクを上記材料の表面との間に所
定の間隔を隔てて配置し、このX線マスクを上記材料の
所定方向の断面と直交する方向へ相対移動させながら上
記X線マスクを介して上記材料にX線を照射することに
より、上記材料を加工することを特徴とするX線を用い
た材料の加工方法。
1. An X-ray is irradiated onto the material through the X-ray mask while relatively moving a material that can be processed at a depth corresponding to the X-ray irradiation dose and the X-ray mask,
A method of processing each part of a material with a variable depth, wherein the length of the X-ray mask in the direction of relative movement corresponds to the thickness of the cross-sectional shape of the material after processing in a predetermined direction. The X-ray mask having the above is arranged at a predetermined distance from the surface of the material, and the X-ray mask is moved through the X-ray mask while relatively moving the X-ray mask in the direction orthogonal to the cross section of the material in the predetermined direction. A method of processing a material using X-rays, characterized in that the material is processed by irradiating the material with X-rays.
【請求項2】 X線マスクの相対的に移動する方向の長
さが、加工後の材料の複数方向の断面形状の厚さに各々
対応した形状のX線吸収層を有する一又は複数のX線マ
スクを用い、材料の個々の断面と直交する方向へ各々対
応するX線マスクを相対移動させながら上記X線マスク
を介して材料にX線を照射するようにしたことを特徴と
する請求項1記載のX線を用いた材料の加工方法。
2. One or a plurality of X-ray absorbing layers each having an X-ray absorption layer whose length in the direction of relative movement of the X-ray mask corresponds to the thickness of the cross-sectional shape of the processed material in a plurality of directions. The material is irradiated with X-rays through the X-ray mask while relatively moving the corresponding X-ray masks in a direction orthogonal to the individual cross sections of the material using the X-ray mask. 1. A method of processing a material using X-rays according to 1.
【請求項3】 上記材料を前もって加工した後、この加
工済みの材料の所望位置とX線マスクの所望位置とが対
向するように位置決めした上で上記X線マスクと上記材
料とを相対移動させながら上記X線マスクを介して上記
材料にX線を照射することにより、上記材料を加工する
ことを特徴とする請求項1又は2記載のX線を用いた材
料の加工方法。
3. After the material has been processed in advance, the desired position of the processed material and the desired position of the X-ray mask are positioned so as to face each other, and then the X-ray mask and the material are relatively moved. The method for processing a material using X-rays according to claim 1 or 2, wherein the material is processed by irradiating the material with X-rays through the X-ray mask .
JP2000347103A 2000-11-14 2000-11-14 Material processing method using X-ray Expired - Fee Related JP3525177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347103A JP3525177B2 (en) 2000-11-14 2000-11-14 Material processing method using X-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347103A JP3525177B2 (en) 2000-11-14 2000-11-14 Material processing method using X-ray

Publications (2)

Publication Number Publication Date
JP2002151395A JP2002151395A (en) 2002-05-24
JP3525177B2 true JP3525177B2 (en) 2004-05-10

Family

ID=18820886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347103A Expired - Fee Related JP3525177B2 (en) 2000-11-14 2000-11-14 Material processing method using X-ray

Country Status (1)

Country Link
JP (1) JP3525177B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821281B2 (en) 2000-10-16 2004-11-23 The Procter & Gamble Company Microstructures for treating and conditioning skin
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
JP2003124099A (en) * 2001-10-16 2003-04-25 Univ Waseda Pattern-drawing method, mask, and mask manufacturing method
JP4503212B2 (en) * 2002-03-12 2010-07-14 奇美電子股▲ふん▼有限公司 An exposure system and a method for forming a color filter for a liquid crystal panel using the exposure system.
US7578954B2 (en) * 2003-02-24 2009-08-25 Corium International, Inc. Method for manufacturing microstructures having multiple microelements with through-holes
JP2005246595A (en) * 2004-03-05 2005-09-15 Ritsumeikan Microneedle array and method of producing the same
CA2560840C (en) 2004-03-24 2014-05-06 Corium International, Inc. Transdermal delivery device
JP2006195289A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Manufacturing method of optical element having nonreflection structure
JP2006235195A (en) * 2005-02-24 2006-09-07 Matsushita Electric Ind Co Ltd Method for manufacturing member with antireflective structure
JP5070764B2 (en) * 2006-08-18 2012-11-14 凸版印刷株式会社 Microneedle patch manufacturing method
JP4984736B2 (en) * 2006-08-18 2012-07-25 凸版印刷株式会社 Exposure apparatus and method
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
CA2686093C (en) 2007-04-16 2018-05-08 Corium International, Inc. Solvent-cast microneedle arrays containing active
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
JP6327852B2 (en) 2010-05-04 2018-05-23 コリウム インターナショナル, インコーポレイテッド Methods and devices for transdermal delivery of parathyroid hormone using microprojection arrays
AU2013364053B2 (en) 2012-12-21 2018-08-30 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
RU2674083C2 (en) 2013-03-12 2018-12-04 Кориум Интернэшнл, Инк. Microprojection applicators
CA2903459C (en) 2013-03-15 2024-02-20 Corium International, Inc. Multiple impact microprojection applicators and methods of use
WO2014150293A1 (en) 2013-03-15 2014-09-25 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
ES2761580T3 (en) 2013-03-15 2020-05-20 Corium Inc Microarrays for therapeutic agent delivery, methods of use and manufacturing methods
US10401723B2 (en) * 2013-06-03 2019-09-03 Asml Netherlands B.V. Patterning device
EP3188714A1 (en) 2014-09-04 2017-07-12 Corium International, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making

Also Published As

Publication number Publication date
JP2002151395A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP3525177B2 (en) Material processing method using X-ray
DE60217771T2 (en) Exposure system, projection exposure apparatus and method of making an article
TWI507812B (en) Method for design and manufacture of a reticle using a two-dimensional dosage map and charged particle beam lithography
US7838856B2 (en) Collimator fabrication
Takagi et al. Photoforming applied to fine machining
DE69530452T2 (en) Method and device for energy beam processing
CN105549328B (en) The method that three-dimensional structure is manufactured in material is etched
JP6595533B2 (en) Laser patterning device for 3D workpiece
EP2415066B1 (en) Method and apparatus for producing three dimensional nano and micro scale structures
Boniface et al. Volumetric helical additive manufacturing
Singh et al. Optimization of dimensional accuracy and surface roughness in m-SLA using response surface methodology
CN1224834C (en) Optical aberration detection method in projection optical system
Zumaque et al. Simulational studies of energy deposition and secondary processes in deep x-ray lithography
EP1616224B1 (en) Micromachining process
KR101765325B1 (en) Method for manufacturing mold using embossed pattern by laser
DE102014219649A1 (en) Arrangement of an energy sensor device
JP2007079458A (en) Method for manufacturing fine three-dimensional structure and x-ray mask used therefor
CN106033133A (en) Grating and manufacturing method thereof, and radiation imaging device
CN113137926B (en) Plane measurement system capable of being used under special working condition
Faisal et al. Micro and nano machining—an industrial perspective
Ryoo et al. Maskless laser direct imaging lithography using a 355-nm UV light source in manufacturing of flexible fine dies
JP4115645B2 (en) Material processing apparatus and processing method using ultraviolet light or light having a shorter wavelength than ultraviolet light
JP2008089617A (en) Method for manufacturing fine structure and fine structure manufactured by the method
JP2001503569A (en) Micro machining using high energy light ions
KR101965261B1 (en) Manufacturing method of three-dimensional meshed microstructure by two-photon stereolithography

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees