JP3524835B2 - Photosynthetic culture device and culture method - Google Patents

Photosynthetic culture device and culture method

Info

Publication number
JP3524835B2
JP3524835B2 JP2000049055A JP2000049055A JP3524835B2 JP 3524835 B2 JP3524835 B2 JP 3524835B2 JP 2000049055 A JP2000049055 A JP 2000049055A JP 2000049055 A JP2000049055 A JP 2000049055A JP 3524835 B2 JP3524835 B2 JP 3524835B2
Authority
JP
Japan
Prior art keywords
light
culture
liquid
photosynthetic
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049055A
Other languages
Japanese (ja)
Other versions
JP2001231539A (en
Inventor
文一 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Sumitomo Heavy Industries Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Sumitomo Heavy Industries Ltd filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2000049055A priority Critical patent/JP3524835B2/en
Publication of JP2001231539A publication Critical patent/JP2001231539A/en
Application granted granted Critical
Publication of JP3524835B2 publication Critical patent/JP3524835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明はCO2 を生物的に固
定化して大気中のCO2 を低減するとともに、有用物質
に変換して利用するための光合成培養装置及び培養方法
に関し、特に、培養液中の光合成生物に太陽光を効率よ
く照射供給する光合成培養装置及び培養方法に関する。
While reducing the present invention CO 2 in the atmosphere and biologically fixing the CO 2 BACKGROUND OF THE INVENTION relates to photosynthetic culture system and culture methods for use in conversion to useful materials, in particular, cultured The present invention relates to a photosynthetic culture device and a culture method for efficiently irradiating photosynthetic organisms in a liquid with sunlight.

【従来の技術】地球温暖化防止に光合成生物を用いて光
合成により生物的にCO2 を固定化する光合成培養装置
がある。この方法はエネルギー源に太陽光を用い、また
その生産物を有効利用できるため、環境に調和した技術
として知られている。この太陽光を利用する光合成生物
の培養方法には、オープンポンド方式を用いた微細藻類
の培養などが従来技術として用いられている。しかし、
この方法は広大な敷地面積を必要とする問題がある。液
面から離れた点での光強度をI、細胞濃度をXとする
と、Lambert−Beerの法則に従い、 In(I/Io)=−aX (但し、aは細胞の吸光係
数) となり、細胞濃度の上昇に連れて光の減衰が発生する。
一般的に培養液中では細胞濃度が高くなると照射面近傍
だけで光供給が行われ、他の培養条件を満足していると
きは光供給律速となる。オープンボンド方式などはこれ
にあたり、光の透過距離の関係から液深を大きくでき
ず、多大な光照射面積が必要となる。また、太陽光のよ
うな強い光を適度に希釈して光合成生物に適した強度の
光として利用することにより、光の利用効率を大きくで
きることが知られており、従来より培養液内に希釈光を
照射するための様々な方法が考案されている。例えば、
特開昭51−106783号公報では光透過性材料で作
られた採光体を培養液中に挿入した光合成微生物培養装
置が示されている。また、特開昭52−105277号
公報では受光口を有すると共に透光性を有する導光体を
利用する光合成法が示されている。また、特開平8−2
62231号公報、特開平8−262232号公報、特
開平10−191956号公報では光合成生物の培養に
使用好適な発光担体や、平板状光散乱体を採用した光合
成培養装置が示されている。なお、従来、光を希釈照射
する構造体名として、採光体、導光体、板状光散乱体、
発光担体、軽量発光担体などと様々に呼ばれている。本
明細書では、「光分散体」と統一的に以下記し、「光分
散体」とは、太陽光を培養液中に分散させる目的の構造
体(但し、構造体の構造や機能が同一であることを意味
するものではない)として、光を分散する担体を意味す
る。なお、本明細書において、太陽放射エネルギーのう
ち平行光線を「直達日射」、反射光線を「散乱日射」と
呼ぶ。また、全天日射は直達日射の入射面成分と散乱日
射の合計を呼ぶ。また、光合成培養装置で利用される可
視光を対象としたとき、太陽放射、直達日射、散乱日
射、全天日射に対応して、それぞれ太陽光、直達光、散
乱光、全天光と呼ぶ。また、太陽光の太陽エネルギー量
(光強度)は波長域400〜700nmを光合成有効放
射とする光量子計による値とする。また、諸データの取
得は本発明がなされた地点である北緯35度付近とし
た。
2. Description of the Related Art There is a photosynthetic culture device for biologically immobilizing CO 2 by photosynthesis using photosynthetic organisms for the prevention of global warming. This method uses sunlight as an energy source and can effectively utilize the products thereof, and is therefore known as an environmentally friendly technology. As a method for culturing photosynthetic organisms using sunlight, culture of microalgae using the open pond method has been used as a conventional technique. But,
This method has a problem that it requires a vast area. Assuming that the light intensity at a point away from the liquid surface is I and the cell concentration is X, In (I / Io) = − aX (where a is the extinction coefficient of the cell) according to the Lambert-Beer's law, and the cell concentration Attenuation of light occurs as the temperature rises.
Generally, when the cell concentration in the culture medium becomes high, the light is supplied only in the vicinity of the irradiation surface, and when the other culture conditions are satisfied, the light supply is limited. In the open bond system and the like, the liquid depth cannot be increased due to the light transmission distance, and a large light irradiation area is required. In addition, it is known that the light utilization efficiency can be increased by appropriately diluting strong light such as sunlight and using it as light with an intensity suitable for photosynthetic organisms. Various methods have been devised for irradiating. For example,
Japanese Unexamined Patent Publication No. 51-106783 discloses a photosynthetic microorganism culture device in which a daylighting body made of a light-transmitting material is inserted into a culture solution. Further, Japanese Patent Application Laid-Open No. 52-105277 discloses a photosynthesis method using a light guide having a light receiving port and having a light transmitting property. In addition, JP-A-8-2
No. 62231, JP-A-8-262232, and JP-A-10-191956 disclose a luminescent carrier suitable for culturing photosynthetic organisms, and a photosynthetic culture device employing a flat light scatterer. Incidentally, conventionally, as a structure name for diluting and irradiating light, a light collector, a light guide, a plate-like light scatterer,
It is called variously as a luminescent carrier, a lightweight luminescent carrier, or the like. In the present specification, the term “light disperser” will be referred to as “the light disperser” below, and the “light disperser” means a structure intended to disperse sunlight in a culture solution (provided that the structure and the function of the structure are the same. (But not meant to be)) means a carrier that disperses light. In this specification, parallel rays of solar radiation energy are referred to as “direct solar radiation”, and reflected rays are referred to as “scattering solar radiation”. In addition, total solar radiation is the sum of the incident surface component of direct solar radiation and scattered solar radiation. Further, when the visible light used in the photosynthetic culture device is targeted, it is referred to as sunlight, direct light, scattered light, and all-sky light corresponding to solar radiation, direct solar radiation, scattered solar radiation, and total solar radiation, respectively. Further, the amount of solar energy (light intensity) of sunlight is a value obtained by an optical quantum meter having photosynthetic effective radiation in the wavelength range of 400 to 700 nm. In addition, various data were acquired near the latitude of 35 degrees north, which is the point where the present invention was made.

【発明が解決しようとする課題】光合成生物の光合成に
より空気中のCO2 を固定するには、希釈後の光分散体
照射面の光強度が、光合成生物の生育には強すぎる光強
度であるところの「光飽和点」以下である必要があり、
かつ光合成生物の呼吸によるCO2 排出速度と光合成に
よるCO2 吸収速度が一致する光強度であるところの
「光補償点」以上である必要がある。一般的には光飽和
点では200〜2000μE・m-2・s-1程度、光補償
点では7〜70μE・m-2・s-1程度と言われているよ
うに、範囲は広い。また光合成生物の種類や、培養条件
によっても異なるため、培養に用いる光合成生物毎の培
養特性から最適と判断される光強度になるよう、光分散
体照射面の光強度が設定される。一方、光合成培養装置
(装置の移動が可能なものを除く)の設置場所において
利用できる太陽エネルギー量(光強度)は、一般的に長
期的な気象統計データとして把握することが可能であ
り、光分散体の設計・製作は、この気象統計データと、
前述の要求される光分散体照射面光強度の関係に基づい
て行えばよいと考えられる。ところが、自然環境のもと
では、晴天と曇天では光強度が異なる。また、太陽高度
の日変化により、朝夕と日中の光強度も異なる。このた
め光強度が小さいときには太陽光が希釈されすぎて光補
償点以下となり、光合成培養が停止する恐れがあった。
これを防ぐため、曇天や朝夕の光強度に合わせて光分散
体を設計することはできるが、このような設定では逆に
強い光のときに十分な希釈が行えないため光利用効率が
低下すると言う不都合があった。また別の自然環境のフ
ァクターとして、太陽高度の年変化がある。これは公転
と地軸の傾きと緯度の関係から、光合成培養装置設置地
点における太陽高度の年変化が決まる。北半球において
は水平面の全天光は夏至前後と比べて冬至前後では小さ
くなる。従来の光合成培養装置における光分散体は水平
面の全天光を利用しており、冬至前後では太陽エネルギ
ーを十分に光分散体内へ導入できないため培養効率が低
下するという問題があった。一方、太陽電池装置などの
産業分野においては、太陽電池モジュールの設置などの
場合に太陽高度の年変化や日変化を考慮した固定方式ま
たは追尾方式が考案されており、また、光合成培養装置
の分野においても集光装置を用いる方法などはあった
が、コストや保守性の課題があった。そこで本発明は、
気候変化、太陽高度の年変化や日変化にも対応でき、光
合成生物の効率的な培養を可能とする光合成培養装置及
び培養方法を提供することを目的とする。
In order to fix CO 2 in the air by photosynthesis of a photosynthetic organism, the light intensity on the irradiation surface of the light dispersion after dilution is too high for the growth of the photosynthetic organism. However, it must be below the "light saturation point",
Moreover, it is necessary to be equal to or higher than the "light compensation point" where the CO 2 excretion rate due to respiration of the photosynthetic organism and the CO 2 absorption rate due to photosynthesis have the same light intensity. Generally, the range is wide, as is said to be about 200 to 2000 μE · m −2 · s −1 at the light saturation point and about 7 to 70 μE · m −2 · s −1 at the light compensation point. Further, since it varies depending on the type of photosynthetic organism and the culture conditions, the light intensity on the irradiation surface of the light dispersion is set so that the light intensity is determined to be optimum from the culture characteristics of each photosynthetic organism used for culture. On the other hand, the amount of solar energy (light intensity) that can be used at the installation location of a photosynthetic culture device (excluding those that can be moved) can be generally grasped as long-term meteorological statistical data. Design and production of the dispersion is based on this meteorological statistical data,
It is considered that it may be carried out based on the above-mentioned required relationship between the light intensities on the irradiation surface of the light dispersion body. However, in a natural environment, the light intensity differs between clear and cloudy weather. In addition, due to diurnal changes in the sun's altitude, the light intensity in the morning and evening differs from that in the daytime. Therefore, when the light intensity is low, the sunlight is too diluted to reach the light compensation point or lower, and there is a risk that the photosynthetic culture will stop.
In order to prevent this, the light disperser can be designed according to the light intensity in cloudy weather or morning and evening, but if such a setting is used, on the contrary, it will not be possible to sufficiently dilute when strong light is used, and the light utilization efficiency will decrease. There was an inconvenience to say. Another factor of the natural environment is the annual change in solar altitude. This is because the annual change in the solar altitude at the photosynthetic culture device installation point is determined by the relationship between the orbit, the inclination of the earth axis, and the latitude. In the Northern Hemisphere, the horizontal skylight is smaller before and after the winter solstice than before and after the summer solstice. The light disperser in the conventional photosynthetic culture device utilizes all-sky light in the horizontal plane, and there is a problem that the solar energy cannot be sufficiently introduced into the light disperser before and after the winter solstice, resulting in a decrease in culture efficiency. On the other hand, in the industrial field such as solar cell devices, a fixed method or a tracking method has been devised in consideration of annual changes in solar altitude and daily changes when installing solar cell modules, etc. Although there was a method of using a light condensing device, there were problems in cost and maintainability. Therefore, the present invention is
It is an object of the present invention to provide a photosynthetic culture device and a culture method that can cope with climate change, annual change of the sun altitude, and daily changes, and enable efficient culture of photosynthetic organisms.

【課題を解決するための手段】前記した問題点を解決す
るための本発明の光合成培養装置は、次の(1)及び
(2)の要件を含むことを特徴とする。: (1)光合成生物を含む培養液と、太陽光を光源として
入射し、培養液中に光を拡散して照射することができる
1個以上の光分散体を収容する培養槽;並びに、 (2)該培養槽の近傍に設置され、培養液中の細胞濃
度、気象観測・予報情報及び太陽光強度から選ばれた1
種以上の情報、及び培養液の液面レベルを入力情報とし
てデータ処理することにより、光分散体の光入射部位と
培養液の液面レベルとの、光合成生物を培養するに適し
た関係を算出することができ且つ液面レベルを制御する
ことができる液面レベル調整手段。さらに、具体的な本
発明の光合成培養装置は、次の(1)−(7)の要件を
含むことを特徴とする。: (1)光合成生物を含む培養液と、太陽光を光源として
入射し、培養液中に光を拡散して照射することができる
1個以上の光分散体を収容する培養槽; (2)該培養槽と送液手段で接続され、培養液を貯留或
いは供給するための培養液槽; (3)該培養槽に設置され、該培養液内の液面レベルを
計測するための計測手段; (4)該培養槽に設置され、培養液中の細胞濃度を計測
するための計測手段; (5)該培養槽の近傍に設置され、該培養槽の設置地域
の気象観測・予報情報を受信するための受信手段; (6)該培養槽の近傍に設置され、太陽光強度を計測す
るための計測手段; (7)該培養槽の近傍に設置され、培養液中の細胞濃
度、気象観測・予報情報及び太陽光強度から選ばれた1
種以上の情報、及び培養液の液面レベルを入力情報とし
てデータ処理することにより、光分散体の光入射部位と
培養液の液面レベルとの、光合成生物を培養するに適し
た関係を算出することができ且つ液面レベルを制御する
ことができる液面レベル調整手段。本発明の光合成培養
装置は、このような構成を採用することにより、気候変
化、太陽高度の年変化や日変化にも対応でき、具体的に
は、光強度の弱い、曇天日や、朝夕の日照条件や、また
冬至前後の太陽南中高度の低い時期においても、太陽エ
ネルギーを有効に培養液中に導入することができ、光合
成生物の培養効率が高い。また、本発明の光合成生物の
培養方法は、第1の手段と第2の手段がある。第1の手
段を含む基本的な本発明の光合成生物の培養方法は、太
陽光を光源として入射し、培養液中に光を拡散して照射
することができる1個以上の光分散体を収容する培養槽
で光合成生物を培養する方法において、培養液中の細胞
濃度、気象観測・予報情報及び太陽光強度から選ばれた
1種以上の情報、及び培養液の液面レベルを入力情報と
してデータ処理することにより、光分散体の光入射部位
と培養液の液面レベルとの、光合成生物を培養するに適
した関係を算出し、培養液の液面レベルを調整すること
を特徴とする。さらに、具体的な第1の手段を含む本発
明の光合成生物の培養方法は、太陽光を光源として入射
し、培養液中に光を拡散して照射することができる1個
以上の光分散体を収容する培養槽で光合成生物を培養す
る方法において、気象観測・予報情報データと該培養槽
近傍に設けた光センサーで計測した光強度に基づいてデ
ータ処理し、得られた結果から設定基準光強度以上の晴
天が予測される場合には、日中時に培養槽内の培養液の
液面レベルを光分散体の受光面レベルと同等レベルに制
御し、また、設定基準光強度未満の曇天時が予測される
場合には、日中時、日の出から日中まで、日中〜日没、
及び日の出から日没までから選ばれた何れかの時間にお
いて、培養液の液面レベルを光分散体の受光面レベルよ
り高くなるように調整することを特徴とする。前記第1
の手段を一言で簡略に言えば、「培養液の液面レベルを
上下させる」ことである。本発明の第2の手段は、第1
の手段と組み合わされて使用される。本発明の第2の手
段は、光分散体が垂直乃至斜方向に傾斜できるように、
光分散体の下部の少なくとも一部が、培養槽底面に固定
された可動留め具で、支えられていることを特徴とす
る。前記第2の手段を一言で簡略に言えば、「光分散体
を傾斜させる」ことである。
The photosynthetic culture apparatus of the present invention for solving the above-mentioned problems is characterized by including the following requirements (1) and (2). (1) A culture tank containing a photosynthetic organism-containing culture solution and one or more light dispersions capable of diffusing and irradiating the culture solution with sunlight as a light source, and 2) Installed in the vicinity of the culture tank and selected from cell concentration in the culture solution, meteorological observation / prediction information, and sunlight intensity 1
Information suitable for culturing photosynthetic organisms is calculated between the light-incident site of the light dispersion and the liquid surface level of the culture liquid by processing the data using the information above the species and the liquid surface level of the culture liquid as input information. And a liquid level adjusting means capable of controlling the liquid level. Furthermore, the specific photosynthetic culture device of the present invention is characterized by including the following requirements (1) to (7). (1) A culture tank containing a photosynthetic organism and one or more light dispersions capable of diffusing and irradiating the culture liquid with sunlight as a light source; (2) A culture solution tank which is connected to the culture tank by a liquid feeding means and stores or supplies the culture solution; (3) a measuring means which is installed in the culture tank and measures a liquid level in the culture solution; (4) Measuring means installed in the culture tank for measuring the cell concentration in the culture solution; (5) Installed in the vicinity of the culture tank and receiving meteorological observation / prediction information of the area where the culture tank is installed. (6) Measuring means for measuring sunlight intensity, which is installed near the culture tank; (7) Cell concentration in the culture solution, weather observation, which is installed near the culture tank・ 1 selected from forecast information and sunlight intensity
Information suitable for culturing photosynthetic organisms is calculated between the light-incident site of the light dispersion and the liquid surface level of the culture liquid by processing the data using the information above the species and the liquid surface level of the culture liquid as input information. And a liquid level adjusting means capable of controlling the liquid level. By adopting such a configuration, the photosynthetic culture device of the present invention can cope with climate change, yearly changes in the sun altitude and diurnal changes. Specifically, the light intensity is low, cloudy days, morning and evening. The solar energy can be effectively introduced into the culture medium even under the sunshine conditions or when the solar mid-solar altitude around the winter solstice is low, and the culture efficiency of the photosynthetic organism is high. The method for culturing a photosynthetic organism of the present invention includes a first means and a second means. The basic method for culturing a photosynthetic organism of the present invention including the first means contains one or more light dispersions capable of irradiating with sunlight as a light source and diffusing and irradiating light into a culture solution. In the method for culturing photosynthetic organisms in a culture tank, the data is used as input information, including cell concentration in the culture solution, one or more types of information selected from meteorological observation / prediction information and sunlight intensity, and the liquid surface level of the culture solution. The treatment is performed to calculate a relationship suitable for culturing a photosynthetic organism between the light incident portion of the light dispersion and the liquid surface level of the culture solution, and to adjust the liquid surface level of the culture solution. Furthermore, the method for cultivating a photosynthetic organism of the present invention including the concrete first means is one or more light dispersions capable of irradiating with sunlight as a light source and diffusing and irradiating light into a culture solution. In a method of culturing a photosynthetic organism in a culture tank containing a cultivated plant, data processing is performed based on meteorological observation / prediction information data and the light intensity measured by an optical sensor provided near the culture tank, and the obtained reference light is set from the obtained results. If clear weather above the intensity is expected, control the liquid surface level of the culture solution in the culture tank to the same level as the light receiving surface level of the light dispersion during daytime, and in cloudy weather below the set reference light intensity. If predicted, during the daytime, from sunrise to daytime, daytime to sunset,
Also, the liquid level of the culture solution is adjusted to be higher than the light receiving surface level of the light dispersion at any time selected from sunrise to sunset. The first
In short, the above means is "to raise or lower the liquid level of the culture solution". The second means of the present invention is the first
It is used in combination with the means of. The second means of the present invention is to allow the light disperser to be tilted vertically or obliquely,
It is characterized in that at least a part of the lower portion of the light dispersion member is supported by a movable fastener fixed to the bottom surface of the culture tank. The second means can be simply described as "tilting the light dispersion body".

【発明の実施の形態】第1の手段を含んだ光合成培養装
図1は本発明の光合成培養装置の好ましい実施の形態を
示し、第1の手段が含まれる光合成培養装置である。図
1において、本発明の光合成培養装置は培養槽1と光合
成生物を含む培養液2と光分散体3から主として構成さ
れる。本発明で使用される光分散体3は、光源からの光
を入射できる受光面と、培養液中に拡散して照射するこ
とができる照射面を有する光分散体であって、該受光面
及び/又は照射面は撥水性であることが好ましい。撥水
加工仕上げは、透明なフッ素樹脂などの撥水性材料のコ
ーティングや、表面の微細繊毛化による撥水性向上処理
を行うことができる。4は、培養槽1とは別体の培養液
槽であり、培養槽1と送液手段で接続され、外部から或
いは培養槽1から供給される培養液5(光合成生物を含
んでもよい)を貯留、或いは、培養槽1へ培養液5を供
給することができる。培養槽1と培養液槽4は送液手段
である配管、開閉弁、送液ポンプ6、7で接続される。
図1では、本発明の構成要素を単純化しているが、培養
槽1はスケールアップされた培養池であってもよいし、
また、培養液槽4は培地調整槽や培養液回収槽などに機
能分担した構造としてもよい(後記する実施例で詳述す
る)。培養槽1には培養液2中の光合成生物の濃度を計
測するための細胞濃度計8と、培養槽1内の培養液2の
液面レベルを計測するための液面レベル計9が設置され
ている。また、培養槽1の近傍に光センサ10(例え
ば、光量子計、日射計、照度計など)が設置されてい
る。また、培養装置の設置地域を観測対象とする気象観
測・予報情報を得るための受信機器11が設置されてい
る。12は液面レベル制御調整装置であり、前記各計測
機器及び受信機器11での計測、或いは受信された情
報、即ち、細胞濃度、液面レベル、光強度、気象情報デ
ータに基づき、データ処理されて培養槽1内の培養液2
の液面レベルを設定するためのものである。液面レベル
の設定には、培養槽1からの光合成生物(例えば、藻
体)を含む培養液2を培養液槽4へ送液する培養液回収
ライン13及び送液ポンプ7からなる送液手段と、培養
液槽4からの培養液5を培養槽1へ送液する培養液供給
ライン14及びポンプ6からなる送液手段が利用され
る。図1の光合成培養装置を用いた培養方法は次のよう
に行われる。ここでは制御方法の操作についてのみ述
べ、制御方法の根拠は次の「第1の手段の根拠と作用」
の欄に記す。先ず、光合成培養装置の設置場所における
過去の気象情報による太陽光の光強度を、光強度の基準
値データとして液面レベル制御調整装置12に入力す
る。さらに設置地域の気象予報情報を受信機器11によ
り受信して、液面レベル制御調整装置12に入力し、一
方で、光センサ10での実測の光強度データを液面レベ
ル制御調整装置12に入力し、前記基準値データを補正
して数時間先の太陽光の光強度の予測値とし、光強度の
予測の精度を向上させる。さらに、液面レベル制御調整
装置12において、この光強度の予測値を予め設定され
ている光強度の基準値データと比較し、基準値以上であ
れば培養液の液面レベルを光分散体3の受光面レベルL
0 と同等となるように制御する。基準値以下であれば場
溶液の液面レベルを光分散体3の受光面レベルL0 より
高いレベルL1 に上昇させる操作を行う。基準値に幅を
持たせたり、基準値を2つ以上設定して、操作による液
面操作の応答速度を緩やかにしてフラッキを小さくした
り、制御精度をあげても良い。このとき、太陽高度の日
変化に伴う光強度の変化も制御判断材料として加えても
よい。なお、太陽高度の日変化は時刻と関連づけられる
ため、実際には時刻に基づき制御を行ってもよい。例え
ば、その地域の気象データによる季節毎(例えば、月
毎、週毎)の平均光強度を光強度の基準値データとし、
気象観測・予報情報に基づいて、これ以上の晴天が予想
され、かつ日中(例えば、8〜16時)時、培養液2の
液面を光分散体3の受光面レベルと同じかやや低くなる
ように制御する。また、基準値データより低い曇天時が
予想される場合の日中(例えば、8〜16時)時や、又
は基準値データに係わらず、日出〜朝刻(例えば8時ま
で)、夕刻(例えば16時から)〜日没の時間におい
て、培養液の液面レベルを光分散体の受光面のレベルよ
り高くなるよう制御する。以上の培養液の液面レベルの
制御方法において、液面レベルの調整幅を培養液の細胞
濃度に応じて行ってもよい。即ち、細胞濃度が低いとき
には上昇幅を大きくする。細胞濃度が高いときは、液面
上昇を小さくする。光合成生物の種類や培養環境の違い
にもよるが、液面操作幅として−2〜6cmの範囲とす
るとよい。第2の手段を含んだ光合成培養装置 図2と図3は第2の手段を説明するための本発明の光合
成培養装置の槻略図である。ここで、両図に示す培養槽
21、31は第1の手段の項で記した図1の培養槽1
と、置き換えることとし、図2、図3では第2の手段の
説明を主眼とするために、その他の設置器機等の表示を
便宜上省略している。先ず、図2を用いて第2の手段の
説明をする。図2は、第2の手段を有する本発明の一つ
の態様の光合成培養装置の厚さ方向から見た断面図であ
る。図2の光合成培養装置には培養槽21と光合成生物
を含む培養液22と光分散体23が概略的に示されてい
る。光分散体23の外形を高さH、幅W(図示していな
い)、厚さtとする。光分散体23は垂直乃至斜方向に
傾斜できるように、光分散体23の下部の少なくとも一
部が、培養槽21底面に固定された可動留め具24で、
支えられている。例えば、直方体からなる光分散体23
では、その下端の幅方向の稜線において、培養槽21底
面に接地して傾斜できるように可動留め具24で固定さ
れ、光分散体23のもう一方の下端の稜線は自由に持ち
上がる構造である。また、可動留め具24の近傍にスト
ッパ25が設置され、該ストッパ25は光分散体23の
傾斜角度を制限し、傾斜した光分散体26をそれ以上傾
斜できないようにする構造となっている。このときの光
分散体23、26の比重は0.3〜1未満程度が好まし
い。次に、図3は、第2の手段を説明する別の本発明の
態様の光合成培養装置の厚さ方向から見た断面図であ
る。図3には、図2と同様に光合成培養装置は培養槽3
1と光合成生物を含む培養液32と光分散体33が概略
的に示されている。光分散体33はその下端の幅方向の
稜線において、培養槽31底面に接地して傾斜できるよ
うに可動留め具34で固定され、光分散体33のもう一
方の下端の稜線は自由に持ち上がる構造である。図3の
構造では2個以上が整列された各光分散体33の上部
に、連結手段である連結ワイヤ35が装着されて、各光
分散体33を連結しており、既存技術による機械的な水
平方向に駆動できる駆動装置36を用いて、連結ワイヤ
35を水平に移動させることで、光分散体33を傾斜さ
せることが可能である。このときの光分散体33の比重
は0.9〜1.2程度が好ましい。前記第2の手段を含
む光合成培養装置では、第1の手段による液面レベル制
御に加え、あるいは単独で、次の液面レベル制御を行う
ことができる。すなわち、光分散体33の受光面におけ
る受光効率が調整できるように、光分散体33を傾斜さ
せ、例えば、北緯35度付近では、傾斜方向を南方向と
なるよう設定し、9月から冬至をはさんで4月までの期
間において、かつ基準光強度以上の晴天時において、光
分散体33を垂直位置から30度までの間の角度となる
よう、傾斜させ、より好適には11月から1月の期間に
おいて30度とすることが望ましい。また、この傾斜制
御を培養液の液面レベルの下げ操作により行い、下げ幅
は、例えば30cm高さの光分散体33であれば0.5
cmから4cmとすればよい。このとき、光分散体の受
光面が液没しないように液面を下げることが好ましい。
もちろん基準光強度以下と光強度が弱いときに、第1の
手段に準拠して培養液の液面レベルを上昇させる操作を
行なうことで、第1の手段と第2の手段の両方を実施す
ることができる。第2の手段を含む図3の光合成培養装
置では、5月から夏至をはさんで8月迄の期間において
は連結ワイヤ35により光分散体33を垂直となるよう
に固定し、この時の液面レベルの操作は第1の手段に準
じ、9月から冬至をはさんで4月の期間においては連結
ワイヤ35により、光分散体33を垂直位置から30度
までの間の角度となるように傾斜させ、より好適には1
1月から1月にかけては、30度とする。この時の培養
液面の制御は傾斜受光面の下側のレベルに対して培養液
の液面レベル操作を行う他は第1の手段に準じる。第1の手段の根拠と作用 ここでは北緯35度付近における実測データを用いて説
明するが、緯度や気象の異なる条件において数値の変
動、程度の差はあっても、本発明で用いる概念は同様に
適用が可能である。3,6,9,12月の任意にサンプ
リングした典型的な晴天日と曇天日の全天光の光強度の
日変化を図4に、左列を晴天日、右列を曇天日のデータ
として示す。図4の晴天日のグラフより、晴天日の全天
光光強度と光分散体照射面の平均光強度を求め下記の表
1に示す。表1においては、日出から日没までの時間で
ある「日長」における平均光強度と、日の出から8時
迄、10時から14時迄、8時から16時迄、及び16
時から日没までのそれぞれの平均光強度を示す。この時
の光分散体については、光分散体タイプ1と光分散体タ
イプ2について求めた。得られた結果をそれぞれ下記の
表1にまとめて示す。ここで、タイプ1は外形長さH3
0cm×幅W10cm×厚さt3cmであり、タイプ2
は外形長さH60cm×幅W10cm×厚さt3cmで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Photosynthetic culture apparatus including first means
Location Figure 1 shows a preferred embodiment of the photosynthetic culture apparatus of the present invention, a photosynthetic culture device contains first means. In FIG. 1, the photosynthetic culture apparatus of the present invention is mainly composed of a culture tank 1, a culture solution 2 containing a photosynthetic organism, and a light dispersion 3. The light disperser 3 used in the present invention is a light disperser having a light receiving surface on which light from a light source can be incident and an irradiation surface on which light can be diffused and irradiated in a culture solution. It is preferable that the irradiated surface is water repellent. The water-repellent finish can be performed by coating with a water-repellent material such as a transparent fluororesin, or by improving the water repellency by making the surface finer. Reference numeral 4 denotes a culture solution tank which is separate from the culture tank 1, and is connected to the culture tank 1 by a liquid feeding means and stores a culture solution 5 (which may contain photosynthetic organisms) supplied from the outside or from the culture tank 1. The culture solution 5 can be stored or supplied to the culture tank 1. The culture tank 1 and the culture solution tank 4 are connected by a pipe serving as a liquid feeding means, an on-off valve, and liquid feeding pumps 6 and 7.
Although the components of the present invention are simplified in FIG. 1, the culture tank 1 may be a scale-up culture pond,
Further, the culture solution tank 4 may have a structure in which the functions are divided into a medium adjusting tank, a culture solution collecting tank, and the like (described in detail in Examples described later). A cell densitometer 8 for measuring the concentration of photosynthetic organisms in the culture solution 2 and a liquid level meter 9 for measuring the liquid level of the culture solution 2 in the culture tank 1 are installed in the culture tank 1. ing. An optical sensor 10 (for example, a photon meter, a pyranometer, an illuminometer, etc.) is installed near the culture tank 1. In addition, a receiving device 11 for obtaining weather observation / prediction information for an observation area in which the culture device is installed is installed. Reference numeral 12 is a liquid level control and adjustment device, which performs data processing based on the information measured or received by each of the measuring devices and the receiving device 11, that is, cell concentration, liquid level, light intensity, and weather information data. Culture solution 2 in culture tank 1
It is for setting the liquid level of. For setting the liquid level, a liquid feeding means including a liquid culture recovery line 13 for feeding a liquid culture 2 containing a photosynthetic organism (for example, algae) from the liquid culture tank 1 to the liquid culture tank 4 and a liquid feed pump 7. Then, a liquid feeding means including a culture liquid supply line 14 for feeding the culture liquid 5 from the culture liquid tank 4 to the culture tank 1 and a pump 6 is used. A culturing method using the photosynthetic culturing apparatus of FIG. 1 is performed as follows. Only the operation of the control method is described here, and the basis of the control method is as follows in "The basis and action of the first means".
Write in the column. First, the light intensity of sunlight according to past meteorological information at the installation location of the photosynthetic culture device is input to the liquid surface level control adjustment device 12 as reference value data of light intensity. Further, the weather forecast information of the installation area is received by the receiving device 11 and input to the liquid level control and adjustment device 12, while the light intensity data measured by the optical sensor 10 is input to the liquid level control and adjustment device 12. Then, the reference value data is corrected to be a predicted value of the light intensity of sunlight several hours ahead, and the accuracy of the light intensity prediction is improved. Further, in the liquid surface level control adjusting device 12, the predicted value of the light intensity is compared with preset reference value data of the light intensity, and if it is equal to or larger than the reference value, the liquid surface level of the culture solution is set to the light dispersion medium 3. Light-receiving surface level L
Control so that it becomes equal to 0 . If it is less than the reference value, the operation of raising the liquid surface level of the field solution to a level L 1 higher than the light receiving surface level L 0 of the light dispersion body 3 is performed. The reference value may have a width, or two or more reference values may be set to slow the response speed of the liquid surface operation by operation to reduce the flicker, or increase the control accuracy. At this time, a change in light intensity due to a daily change in the sun altitude may be added as a control determination factor. In addition, since the daily change of the sun altitude is associated with the time, the control may actually be performed based on the time. For example, the average light intensity for each season (for example, every month, every week) based on the weather data of the area is set as the reference value data of the light intensity,
Based on the meteorological observation / prediction information, finer weather is expected, and during the daytime (for example, 8 to 16 o'clock), the liquid level of the culture solution 2 is the same as or slightly lower than the light receiving surface level of the light dispersion element 3. Control to be. In addition, during the daytime (for example, 8 to 16 o'clock) when cloudy weather is expected to be lower than the reference value data, or regardless of the reference value data, sunrise to morning (for example, until 8 o'clock), evening ( During the time from sunset (for example, from 16:00) to sunset, the liquid level of the culture solution is controlled to be higher than the level of the light receiving surface of the light dispersion body. In the above-mentioned method for controlling the liquid surface level of the culture liquid, the adjustment range of the liquid surface level may be adjusted according to the cell concentration of the culture liquid. That is, when the cell concentration is low, the increase width is increased. When the cell concentration is high, the rise in the liquid level is reduced. Although it depends on the kind of the photosynthetic organism and the difference in the culture environment, the liquid level operation width is preferably in the range of −2 to 6 cm. Photosynthetic Culture Apparatus Including Second Means FIG. 2 and FIG. 3 are schematic diagrams of the photosynthetic culture apparatus of the present invention for explaining the second means. Here, the culture tanks 21 and 31 shown in both figures are the culture tank 1 of FIG. 1 described in the section of the first means.
2 and FIG. 3, the display of other installed devices and the like is omitted for convenience in order to mainly describe the second means. First, the second means will be described with reference to FIG. FIG. 2 is a cross-sectional view seen from the thickness direction of the photosynthetic culture device according to one aspect of the present invention having the second means. The photosynthetic culture apparatus of FIG. 2 schematically shows a culture tank 21, a culture solution 22 containing a photosynthetic organism, and a light dispersion 23. The outer shape of the light dispersion body 23 has a height H, a width W (not shown), and a thickness t. At least a part of the lower part of the light dispersion member 23 is a movable fastener 24 fixed to the bottom surface of the culture tank 21 so that the light dispersion member 23 can be tilted vertically or obliquely.
Supported. For example, the light dispersion 23 made of a rectangular parallelepiped
Then, in the ridge line in the width direction of the lower end thereof, it is fixed to the bottom surface of the culture tank 21 by the movable fastener 24 so as to be tilted, and the ridge line of the other lower end of the light dispersion body 23 is freely lifted. Further, a stopper 25 is installed in the vicinity of the movable fastener 24, and the stopper 25 has a structure that limits the tilt angle of the light dispersion member 23 and prevents the tilted light dispersion member 26 from tilting any further. At this time, the specific gravity of the light dispersion bodies 23 and 26 is preferably about 0.3 to less than 1. Next, FIG. 3 is a cross-sectional view seen from the thickness direction of a photosynthetic culture apparatus of another aspect of the present invention for explaining the second means. In FIG. 3, as in FIG. 2, the photosynthetic culture device has a culture tank 3
A culture medium 32 containing 1 and a photosynthetic organism and a light dispersion 33 are schematically shown. The light disperser 33 is fixed at its lower end in the widthwise ridge with a movable fastener 34 so that it can be grounded and tilted on the bottom of the culture tank 31, and the ridge at the other lower end of the light disperser 33 can be lifted freely. Is. In the structure of FIG. 3, a connecting wire 35, which is a connecting means, is attached to the upper portion of each light dispersion member 33 in which two or more are aligned, and the respective light dispersion members 33 are connected to each other. It is possible to tilt the light dispersion element 33 by moving the connecting wire 35 horizontally by using the driving device 36 that can be driven in the horizontal direction. At this time, the specific gravity of the light dispersion element 33 is preferably about 0.9 to 1.2. In the photosynthetic culture device including the second means, the following liquid level control can be performed in addition to or independently of the liquid level control by the first means. That is, the light dispersion body 33 is tilted so that the light receiving efficiency of the light receiving surface of the light dispersion body 33 can be adjusted. In the period up to April, and in fine weather above the reference light intensity, the light dispersion element 33 is inclined so as to form an angle between the vertical position and 30 degrees, and more preferably from November to January. It is desirable to set it to 30 degrees during the month. Further, this inclination control is performed by lowering the liquid surface level of the culture solution, and the lowering width is 0.5 for the light dispersion 33 having a height of 30 cm, for example.
It may be from 4 cm to 4 cm. At this time, it is preferable to lower the liquid surface so that the light receiving surface of the light dispersion body is not submerged.
Of course, when the light intensity is lower than the reference light intensity and the light intensity is weak, both the first means and the second means are carried out by performing the operation of raising the liquid surface level of the culture solution according to the first means. be able to. In the photosynthetic culture apparatus of FIG. 3 including the second means, the light dispersion body 33 is fixed vertically by the connecting wire 35 during the period from May to the summer solstice and until August, and the liquid at this time is fixed. The surface level operation is performed according to the first means, so that the light dispersing element 33 is angled from the vertical position to 30 degrees by the connecting wire 35 during the period from September to the winter solstice and in April. Inclined, more preferably 1
It will be 30 degrees from January to January. The control of the culture solution level at this time is based on the first means except that the level of the culture solution is controlled with respect to the level below the inclined light receiving surface. Grounds and effects of the first means Here, description will be made using measured data in the vicinity of 35 degrees north latitude, but the concept used in the present invention is the same even if there are numerical fluctuations and degree differences under different latitude and weather conditions. Can be applied to. Figure 4 shows the diurnal variation of the total sky light intensity of typical sunny and cloudy days sampled arbitrarily in March, June, September, and December, with the left column as the clear day and the right column as the cloudy day data. Show. The total light intensity on a sunny day and the average light intensity on the irradiation surface of the light dispersion were obtained from the graph on a sunny day in FIG. 4 and shown in Table 1 below. In Table 1, the average light intensity in "day length", which is the time from sunrise to sunset, and from sunrise to 8:00, 10:00 to 14:00, 8:00 to 16:00, and 16
The average light intensity from time to sunset is shown. The light dispersions at this time were determined for light dispersion type 1 and light dispersion type 2. The obtained results are summarized in Table 1 below. Here, type 1 is the external length H3
0 cm x W10 cm x thickness t3 cm, type 2
Is an external length H60 cm × width W10 cm × thickness t3 cm.

【表1】 表1の作成と同様にして、図4の曇天日のグラフから、
曇天日の日長における全天光光強度と光分散体照射面の
平均光強度を求め、その結果を下記の表2に示す。この
時の光分散体については、光分散体タイプ1と光分散体
タイプ2について求めた。
[Table 1] Similar to the creation of Table 1, from the graph of cloudy weather in Fig. 4,
The total light intensity and the average light intensity of the light-dispersed body irradiating surface in the day length of cloudy days were determined, and the results are shown in Table 2 below. The light dispersions at this time were determined for light dispersion type 1 and light dispersion type 2.

【表2】 表1から、光分散体タイプ1を用いたとき、晴天日であ
れば光分散体照射面平均光強度は日長平均でもほぼ30
〜40μE・m-2・s-1程度であることが分かる。しか
し、日出から8時までの朝方や、16時から日没までの
夕方では光分散体照射面平均光強度は1〜20μE・m
-2・s-1と弱く、光補償点以下の可能性がかなり高いこ
とが分かる。なお、光分散体タイプ2はタイプ1より希
釈率が大きいため光利用効率は高くなる可能性がある一
方で、日長平均でも20μE・m -2・s-1程度と光合成
生物の種類などによっては光補償点に近い値となる可能
性もあることが分かる。一方、表2の曇天日についてみ
ると、日長平均の全天光平均光強度は100〜300μ
E・m-2・s-1程度と低くく、このときの光分散体照射
面平均光強度も光分散体のタイプの違いはあるが2〜1
0μE・m-2・s-1程度と小さく、光補償点以下の可能
性が高いことが分かる。本発明は、光分散体照射面平均
光強度が光補償点以下となる恐れのある、まさにこの現
象を解決すべき課題として捕らえ、鋭意検討した結果、
培養液の液面レベルを上昇させることで光分散体受光面
による太陽光の受光を遮断するという逆転の発想により
構築した点に特徴がある。この発想に基づき、本発明の
光合成培養装置及び培養方法においては、光分散体受光
面に対して培養液の液面の上下操作が可能な構造と、制
御方法を実現している。即ち、本発明によれば、晴天日
の太陽光が強いときには光分散体による希釈効果を最大
限に利用しつつ、曇天日や朝夕の光強度が弱いときに
は、培養液の液面レベルを光分散体の受光面レベルより
も高くすることにより、培養液の液面を受光面として切
り替え、光合成培養装置としての光利用効率を総合的に
高めることが可能となる。例えば、弱いときの太陽光光
強度を100〜300μE・m-2・s-1程度とすると、
この時に培養液の液面へ照射される光は、比較的弱く光
利用効率が必然的に高い。この時の液中での光強度の減
衰について以下に説明する。図5に培養液の液面からの
距離と相対光強度の関係に及ぼす細胞濃度(Spirulina
platensis)(微細藻類)の影響について示す。細胞濃度
が1g−cell・L-1以上の高濃度であれば、1cm
程度の液深でも相対光強度は0.5以下となり光強度は
50〜150μE・m-2・s-1と急激に小さくなる。ま
た、細胞濃度が0.1g−cell・L-1程度と比較的
低濃度であっても液深6cm程度までには相対光強度は
0.1以下となり光強度は10〜30μE・m-2・s-1
以下となる。従って、培養液の液面レベルの上下幅は細
胞濃度と光強度のデータを不可欠の情報として光分散体
と同等レベル〜液浸6cmの範囲で制御すればがよいこ
とが分かる。「同等レベル」とは、培養液の液面が静止
していれば受光面と同一のレベルを意味するが、実際に
は液面は波立ちなどの影響により上下に変動しており、
−2cm〜0cm程度の範囲を意味する。なお、培養液
の液面レベル制御に必要な太陽光の光強度は、気象観測
・予報情報を基準データとし、光センサーによる実測デ
ータでこれを補正して精度を向上させ、数時間先の値と
して予測して用いるのが良い。これは、培養液の液面レ
ベル操作に伴う送液量とポンプ能力の関係から培養液の
液面レベルの変動は、特に大規模では緩慢であり、光セ
ンサーによる実測データをそのまま用いると、太陽光の
光強度の変動に追従できないばかりか、小規模でも無用
な動力を要するため、これを防止するためである。例え
ば、3 万m2 の液面積の培養池の液面を3cm幅制御す
る場合に500L・m-1のポンプで1時間を要するが、
数時間先の予測光強度を用いれば十分に制御が可能であ
る。なお、一般に気象観測・予報情報は広域にわたるた
め、光合成培養装置設置場所における光センサーによる
実測データにより補正することで測定精度を向上させる
効果がある。本発明による、付加的な作用として、受光
面が培養液により洗浄される効果がある。その効果は光
分散体表面における透明フツ素樹脂等撥水性材料のコー
ティングや、微細繊毛化撥水性向上処理により、顕著に
発揮される。なお、従来型の光分散体においては、受光
面に培養液が飛散等で付着し、成分析出によって受光阻
害が発生する場合があったが、本発明ではこのような受
光阻害が防止できる。第2の手段の根拠と作用 本発明の第2の手段を含んだ光合成培養装置は、光分散
体が直達光(光分散体の受光面成分)と散乱光の合計に
よる全天光を受光できるという特徴に着目して、光分散
体そのものの受光面の角度を0度から30度の範囲で設
定することができれば、総合的な受光量を最適化できる
ことを見いだし、複数の光分散体を傾斜させることによ
り、本発明を実現している。年間を通じて、北緯35度
付近における全天光の日平均光強度を計測した。該計測
地点における太陽南中高度は夏至、冬至でそれぞれ約8
0度、30度(水平線より)である。図6は、全天光の
日平均光強度を更に月平均とし、水平面、30度傾斜
面、60度傾斜面についてプロットした一例である(6
0度傾斜面は11、12、1月のみ)。本発明における
光分散体を用いた光合成培養装置では全天光を利用する
が、比較対照のものは水平面の全天光を利用した。この
水平面の全天光光強度と、30度傾斜面の全天光光強度
を比較するために、水平面の全天候の日平均光強度に対
する30度の全天候の日平均光強度の比率を下記の表3
に示す。
[Table 2] From Table 1, it is a fine day when using the light dispersion type 1.
If so, the average light intensity on the irradiation surface of the light dispersion is about 30 even on a day length average.
~ 40μE ・ m-2・ S-1It turns out that it is a degree. Only
From sunrise to 8:00 or from 16:00 to sunset
In the evening, the average light intensity on the irradiation surface of the light dispersion is 1 to 20 μE · m.
-2・ S-1And the possibility of being below the optical compensation point is quite high.
I understand. Light dispersion type 2 is rarer than type 1.
There is a possibility that the light utilization efficiency may be high due to the large release rate.
Average day length of 20μE ・ m -2・ S-1Degree and photosynthesis
The value may be close to the light compensation point depending on the type of organism
It turns out that there is also a sex. On the other hand, see Table 2 for cloudy sun
Then, the average daylight-long all-sky light intensity is 100-300μ.
Em-2・ S-1Irradiation with light dispersion at this time
The surface average light intensity is also 2-1 though there are differences in the type of light dispersion.
0 μE ・ m-2・ S-1It is as small as possible and can be below the optical compensation point
You can see that it is highly effective. The present invention is the average of the light-dispersed body irradiation surface.
There is a possibility that the light intensity will be less than the light compensation point.
The elephant was caught as a problem to be solved, and as a result of diligent examination,
By increasing the liquid level of the culture solution, the light receiving surface of the light disperser
By the idea of reversing that the reception of sunlight by
The point is that it was built. Based on this idea,
In the photosynthetic culture device and culture method,
The structure that allows the liquid surface of the culture solution to be moved up and down relative to the surface
The method is realized. That is, according to the present invention, a sunny day
When the sunlight is strong, the dilution effect of the light dispersion is maximized.
When the light intensity is low on a cloudy day or in the morning and evening,
Means that the liquid level of the culture solution should be
By also increasing the
Change the efficiency of light utilization as a photosynthetic culture device
It is possible to raise it. For example, sunlight when weak
Strength of 100-300μE ・ m-2・ S-1In terms of degree,
At this time, the light radiated to the liquid surface of the culture solution is relatively weak.
Use efficiency is inevitably high. At this time, the light intensity in the liquid decreases
The decline will be described below. Figure 5 shows the
Effect of cell concentration on the relationship between distance and relative light intensity (Spirulina
platensis) (Microalgae) is shown. Cell concentration
Is 1g-cell L-1Higher concentration above 1 cm
The relative light intensity becomes 0.5 or less even at the depth of the liquid, and the light intensity is
50-150 μE · m-2・ S-1And suddenly becomes smaller. Well
Also, the cell concentration is 0.1g-cell·L-1Relative to the degree
Even if the concentration is low, the relative light intensity is up to 6 cm
0.1 or less and the light intensity is 10 to 30 μE · m-2・ S-1
It becomes the following. Therefore, the upper and lower widths of the liquid level of the culture solution are small.
Light disperser with cell concentration and light intensity data as essential information
It should be controlled within the same level as the above and the range of liquid immersion 6 cm.
I understand. "Equivalent level" means that the liquid surface of the culture solution is stationary
If it does, it means the same level as the light receiving surface, but actually
The liquid level fluctuates up and down due to the influence of waviness,
It means a range of about -2 cm to 0 cm. The culture solution
The intensity of sunlight required for liquid level control of the
・ Forecast information is used as reference data, and the actual measurement data
Data to compensate for this and improve accuracy,
It is better to predict and use. This is the liquid level of the culture solution.
From the relationship between the pumping capacity and the volume of liquid sent with the bell operation,
Fluctuations in liquid level are slow, especially on a large scale.
If you use the actual measurement data from the sensor as it is,
Not only can it not follow fluctuations in light intensity, but it is useless even on a small scale
This is to prevent this, because a large amount of power is required. example
For example, 30,000m2Control the liquid surface of the culture pond with the liquid area of 3 cm width
500 L ・ m-1It takes 1 hour with the pump of
Sufficient control is possible by using the predicted light intensity of several hours ahead.
It Note that weather observation and forecast information generally covers a wide area.
Therefore, by the photosensor at the photosynthetic culture device installation location
Improving measurement accuracy by correcting with actual measurement data
effective. As an additional action according to the invention,
The surface is effectively washed with the culture solution. The effect is light
A coating of a water-repellent material such as transparent fluorine resin on the surface of the dispersion
Remarkably due to coating and fine ciliated water repellent treatment
To be demonstrated. In addition, in the conventional light disperser,
The culture solution adheres to the surface due to scattering, etc.
Although harm may occur, the present invention does not
Light inhibition can be prevented.Grounds and effects of the second means The photosynthetic culture apparatus including the second means of the present invention is
The total amount of direct light (light receiving surface component of the light disperser) and scattered light
Focusing on the feature that it can receive all-sky light by
Set the angle of the light receiving surface of the body itself within the range of 0 to 30 degrees.
The total amount of light received can be optimized
By tilting multiple light dispersers.
The present invention has been realized. 35 degrees north latitude throughout the year
The average daily light intensity of all-sky light in the vicinity was measured. The measurement
The south and middle altitudes of the Sun at the point are about 8 in summer solstice and in winter solstice
It is 0 degrees and 30 degrees (from the horizontal line). Figure 6 shows all-sky
The daily average light intensity is further set to the monthly average, and the horizontal plane is inclined by 30 degrees.
It is an example of plotting about a plane and a plane inclined by 60 degrees (6
(0 degree inclined surface is only in November, December and January). In the present invention
A photosynthetic culture device using a light disperser uses all-sky light
However, the comparative one used all-sky light in the horizontal plane. this
Horizontal sky light intensity and 30 degree inclined sky light intensity
To compare the average daily light intensity for all weather conditions in the horizontal plane.
Table 3 below shows the ratio of the daily average light intensity for all weather conditions of 30 degrees.
Shown in.

【表3】 表3によれば、夏至の前後では水平面の方が高いが、冬
至前後は30度傾斜面の方が高いことがわかる。すなわ
ち、北緯35度付近において、光分散体の傾斜方向を南
方向となるよう設定し、5月から8月の期間は光分散体
を垂直として水平面で受光し、9月から4月の期間は光
分散体を垂直から30度までのあいだの角度に傾斜すれ
ば光分散体への受光量が多くなることが分かる。効率的
には、水平面と30度傾斜面との比が1.3以上と大き
い11月から1月にかけて30度とするのが最も良い。
しかしながら、30度以上に傾けても、図6の60度傾
斜面の光強度のプロットに示すように、傾斜角度に応じ
た光強度の増加がなく、傾斜による培養液流動阻害が発
生しやすくなると考えられるので好ましくない。なお、
南方向に一軸的に光分散体を傾斜することにより朝夕の
太陽高度の低いときの受光量を大きくする効果がある。
すなわち、第1の手段において朝夕の光強度が弱い時間
帯では培養液の液面レベルを上げて受光するとしたが、
第2の手段を適用する場合には11月から1月におい
て、朝夕の光強度が弱い時間帯であっても培養液の液面
レベルを下げたまま受光する方法を代わりに用いること
ができる。ところで、光分散体を傾斜させた時、晴天時
において液面より光分散体の受光面が出ていることが望
ましい。このためには光分散体の比重は1以下が要求さ
れる。このとき、浮力が強いと、光分散体の一端が固定
されているため、開放端が常に持ち上がり傾斜する恐れ
があり、従って光分散体の比重はこのような現象が小さ
くなる培養液と同じ程度の比重である、0.9〜1未満
が好ましい。但し、1に近づくと、光分散体が培養液の
液面下に沈む頻度が高まるため、これを防ぐためストッ
パーによる傾斜角度の制限効果を利用することが必要と
なる。
[Table 3] Table 3 shows that the horizontal plane is higher before and after the summer solstice, but the 30-degree inclined plane is higher before and after the winter solstice. That is, in the vicinity of the latitude of 35 degrees north, the inclination direction of the light dispersion is set to the south direction, the light is vertically received from May to August, and the light is received from the horizontal plane from September to April. It can be seen that the amount of light received by the light dispersion body increases when the light dispersion body is tilted at an angle between vertical and 30 degrees. Efficiently, it is best to set it to 30 degrees from November to January when the ratio of the horizontal plane to the 30 degree inclined surface is 1.3 or more, which is large.
However, even if tilted at 30 degrees or more, as shown in the plot of the light intensity of the 60-degree tilted surface in FIG. 6, there is no increase in light intensity according to the tilt angle, and the obstruction of the culture fluid flow tends to occur. This is not preferable because it can be considered. In addition,
Inclining the light dispersion uniaxially to the south has the effect of increasing the amount of light received at low sun altitudes in the morning and evening.
That is, in the first means, in the time zone when the light intensity is low in the morning and evening, the liquid surface level of the culture solution is raised to receive light.
In the case of applying the second means, a method of receiving light with the liquid level of the culture solution kept low from November to January even in the morning and evening hours when the light intensity is weak can be used instead. By the way, when the light dispersion is tilted, it is desirable that the light receiving surface of the light dispersion is out of the liquid surface in fine weather. For this purpose, the specific gravity of the light dispersion is required to be 1 or less. At this time, if the buoyancy is strong, one end of the light disperser is fixed, so the open end may always be lifted and tilted. Therefore, the specific gravity of the light disperser is about the same as that of a culture solution in which such a phenomenon is reduced. It is preferable that the specific gravity is 0.9 to less than 1. However, when the value approaches 1, the frequency with which the light dispersion body sinks below the liquid surface of the culture solution increases, so it is necessary to utilize the effect of limiting the inclination angle by the stopper in order to prevent this.

【実施例】〔実施例1〕図7は本実施例1の光合成培養
装置を示し、図1の光合成培養装置をより具体的にした
一つの実施の形態である。図7の光合成培養装置におい
ては、培養槽41や制御機構は基本的に本発明の基本構
造として前記に解説した図1に準ずる。また、光分散体
43の傾斜機構は同じく本発明の前記に解説した図3に
準ずる。即ち、培養槽41、培養液42、光分散体4
3、細胞濃度計48、液面レベル計49、光センサ5
0、受信機器51、液面レベル制御調整装置52は、図
1と同等なものであり、連結ワイヤ45と駆動装置46
は、図3と同等なものである。図7の光合成培養装置に
おいては、培養槽41の底部にスパージャ44が設けら
れており、培養中にスパージャ44からCO2 含有ガス
を通気して、通気撹拌培養が行われる。さらに、培養槽
41において培養された光合成生物を含む培養液42
は、培養液回収ライン55を通じ、培養液回収槽59を
経て、次いで細胞分離槽63にて光合成生物(例えば、
藻体)を分離回収し、光合成生物が除去された培養液を
リサイクル培養液として培養液大リサイクルライン65
を通して培養液調整槽61に戻される。一方、培養液供
給ライン54においては、培養液調整槽61にて培地成
分と水とリサイクル培養液が混合されて培養液が調整さ
れ、次いで培養液供給槽58へ調整された培養液がスト
ックされる。培養液供給槽58からの培養液は培養槽4
1へ供給される。なお、培養液供給槽58においては、
必要に応じて、培養液小リサイクルライン53により培
養槽41からの培養液42の一部を戻して混合してもよ
い。培養液回収ライン55には、培養槽41の排出側、
培養液回収槽59の排出側、細胞分離槽63の排出側に
各送液ポンプ56、62、64が設けられて図7の光合
成培養装置が運転される。培養液供給ライン54には、
培養液調整槽61の供給側、培養液供給槽58の供給側
に各送液ポンプ60、57が設けられて図7の光合成培
養装置が運転される。本実施例1では光分散体43は、
培養槽41内に、高さ60cm×幅10cm×厚さ3c
m、比重1.05のものを32ケ装着した。培養液42
は改変MC培地(水1LにKNO3 、KH2 PO4 、M
gSO4 ・7H2 Oを各1g、およびFe溶液、A5溶
液各1mLの割合で溶解、初期pH6)とし、太陽光の
下、CO2 濃度5%の通気ガスを0.4vvmで通気撹
拌し、光合成生物としてChlorella sp.H
84の培養を行った。また、比較例として、同培養条件
で液面操作を行わない培養を行った。なお、前記Fe溶
液は、FeSO4 ・7H 2 Oを2.0g、H2 Oを10
00ml、H2 SO4 を2滴混合して調製したものであ
る。前記A5溶液は、H3 BO3 を2.86g、MnS
4 ・7H2 Oを2.50g、ZnSO4 ・7H2 Oを
0.222g、CuSO4 ・5H2 Oを79mg、Na
2 MoO4 ・2H2 Oを21mg、H2 Oを1000m
l混合して調製したものである。前記Chlorell
sp.H84は、特許第2894540号公報に開
示されている。この結果、本発明による培養速度が、5
月から8月の期間で光の利用効率が約20%向上し、液
面操作による効果が確認された。また、11月から1月
の期間で比較すると、約33%向上し、光分散体の傾斜
による効果が確認された。 〔実施例2〕本実施例2は、培養池に本発明を適用した
場合の実施例である。図8は、本実施例2の培養池に使
用される光分散体ユニット73の基本構成を示し、光分
散体71の傾斜機能を有さない場合である。本ユニット
73は光分散体71を固定板72に平行に多数配置した
構造からなる。1つの光分散体71の外形サイズを長さ
H40cm×幅W200cm×厚さ3cmとし、比重を
1.05とした。この光分散体71を18枚、7 cm間
隔で縦L200cm、横W200cmのポリウレタン製
固定板72に固定した。光分散体ユニット73の全体比
重は0.98であった。図9は、図8の光分散体ユニッ
ト73を培養池74に適用した場合の概略図である。培
養池74には培養液75が満たされ、光分散体ユニット
73とガス供給ユニット76が設置されている。各ユニ
ットは浮力により液面に浮かぶ特性があるが、光分散体
ユニット73は、培養池74の底に固定されているた
め、ある液面以上になると光分散体ユニット73の上面
は液中となる。培養池74へ水を供給する構成は、河川
77などから自然水をポンプ、配管などの送液設備78
により取水し、培養液調整設備79により、必要に応じ
た水処理や培養液としての成分調整を行い、培養池74
に供給する構造となっている。また、培養池74からの
培養液75を回収する構成は、ポンプ、配管などの送液
設備80により培養池74の培養液75を取出し、回収
液処理設備81により、必要に応じて光合成生物の回収
処理や、廃水処理を行った後、放流する構造となってい
る。本実施例2の培養池74を使用して、河川77から
の自然水を取水し、培養液調整設備79でリンと窒素、
及び鉄イオンの栄養塩を規定濃度に調整した後、培養池
74でガス供給ユニット76により空気通気下で、培養
液中の細胞濃度、気象観測・予報情報及び太陽光強度か
ら選ばれた1種以上の情報、及び培養液75の液面レベ
ルを入力情報としてデータ処理することにより、光分散
体の光入射部位と培養液の液面レベルとの、Cocco
myxa sp.NY2Fを培養するに適した関係を算
出し、培養液の液面レベルを調整しながらCoccom
yxasp.NY2Fの光合成培養を行った。一方、比
較例としては光分散体の受光面レベルを培養液の液面レ
ベルと同等にしたまま光合成培養を行った。この結果、
Coccomyxa sp.NY2Fの細胞濃度比較
で、比較例に対し、供給太陽光エネルギー量あたり、本
実施例2の方が約17%高い値となり、受光効率が高い
ことが確認された。このように本実施例2により、自然
環境のような大規模光合成培養施設でも、CO2 固定化
の向上に寄与できることが示された。 〔実施例3〕本実施例3は、解放式循環水路型クロレラ
培養池(レースウェイ)に本発明を適用した実施例であ
る。図10は、本実施例3に適用される光分散体ユニッ
ト93の基本構成を示し、光分散体91の傾斜機能を有
する場合である。本ユニット93は光分散体91を固定
板92に平行に多数配置した構造からなる。本実施例3
においては、1つの光分散体91の外形サイズを長さH
30cm×幅W200cm×厚さ3cmとし、比重を
0.95とした。この光分散体91を15枚、9cm間
隔で縦L200cm、横W200cmのアクリル製固定
板92に第2の手段の図2の方式により傾斜が可能とな
るように製作した。図11は図10の光分散体ユニット
93を解放式循環水路型クロレラ培養池(以下レースウ
ェイと記す)に適用した場合の外観図である。光分散体
91の平面が水流に平行となるように光分散体ユニット
93を配置し、かつ傾斜面が南向きとなるように設置し
た。レースウェイは幅10m、長さ100mを2基並列
に設置し、一方は液面レベル制御をしない比較例とし
た。培養液は回転パドル94により循環送液される。回
転パドル94の後方に通気ガス用ノズル95が設置さ
れ、培養液中にCO2 が供給できるようになっている。
本実施例3では、培養液が光分散体ユニット93の間を
通過するとき、培養液中に分散した光合成生物が希釈さ
れた太陽光を受光し、効率よく増殖することが可能であ
る。培養液の液面レベルは、前記実施例1に準じた第1
の手段により培養液槽96と液面レベル制御調整装置9
7により行う。培養液は改変MC培地(2m3 にKNO
3 KH2 PO4 MgSO4 7H2 Oを各1kg、及びF
e溶液、A5溶液各1Lの割合で溶解、初期pH6)と
し、CO2 濃度1%の通気ガスを0.3vvmで通気し
Chlorella vulgarisの培養を行っ
た。この結果、比較例に対して培養液の液面レベル制御
を行った場合には所定細胞濃度に到達するまので培養時
間が約20〜30%短縮され、傾斜した光分散体を用い
た培養液の液面レベル制御の有効性が確認された。
[Example] [Example 1] FIG. 7 shows the photosynthetic culture of Example 1.
The apparatus is shown and the photosynthetic culture apparatus of FIG. 1 is made more concrete.
This is one embodiment. In the photosynthetic culture device of Figure 7
The culture tank 41 and the control mechanism are basically the basic structure of the present invention.
The structure is similar to that described in Fig. 1 above. Also the light dispersion
The tilting mechanism 43 is also shown in FIG.
According to That is, the culture tank 41, the culture solution 42, and the light dispersion 4
3, cell concentration meter 48, liquid level meter 49, optical sensor 5
0, receiving device 51, liquid level control adjusting device 52
1 is equivalent to the connecting wire 45 and the driving device 46.
Is equivalent to FIG. In the photosynthetic culture device of FIG.
In addition, a sparger 44 is provided at the bottom of the culture tank 41.
And CO from the sparger 44 during culturing.2Contained gas
Aeration is carried out and aeration stirring culture is performed. Furthermore, the culture tank
Culture medium 42 containing photosynthetic organisms cultured in 41
Through the culture solution recovery line 55, the culture solution recovery tank 59
After that, in the cell separation tank 63, a photosynthetic organism (for example,
Alga body) is separated and collected, and the culture solution from which photosynthetic organisms have been removed
Culture liquid large recycling line 65 as recycled culture liquid
Is returned to the culture solution adjusting tank 61. On the other hand, the culture solution
In the feed line 54, the culture medium is adjusted in the culture medium adjusting tank 61.
The mixture was mixed with water, water and recycled culture solution to prepare the culture solution.
Next, the adjusted culture solution is stored in the culture solution supply tank 58.
Be locked. The culture solution from the culture solution supply tank 58 is the culture tank 4
1 is supplied. In the culture solution supply tank 58,
Cultivate with the small culture solution recycling line 53 as needed.
You may return a part of the culture solution 42 from the nutrient tank 41 and mix it.
Yes. In the culture solution recovery line 55, the discharge side of the culture tank 41,
On the discharge side of the culture solution collection tank 59 and the discharge side of the cell separation tank 63
Each of the liquid feed pumps 56, 62, 64 is provided and the optical pump of FIG.
The cultivation apparatus is operated. In the culture solution supply line 54,
Supply side of culture solution adjusting tank 61, supply side of culture solution supply tank 58
The liquid feed pumps 60 and 57 are provided in the
The feeding device is operated. In the first embodiment, the light dispersion 43 is
In the culture tank 41, height 60 cm x width 10 cm x thickness 3 c
32 pieces having m and a specific gravity of 1.05 were mounted. Medium 42
Is a modified MC medium (KNO in 1 L of water)3, KH2POFour, M
gSOFour・ 7H21g of O and Fe solution, A5 solution
The solution is dissolved at a ratio of 1 mL each, the initial pH is 6), and the
Below, CO2Aeration gas having a concentration of 5% is aerated with 0.4 vvm.
Stir, as a photosynthetic organismChlorella  sp. H
84 cultures were performed. In addition, as a comparative example, the same culture conditions
Culturing was performed without operating the liquid surface. In addition, the Fe solution
Liquid is FeSOFour・ 7H 22.0g of O, H2O is 10
00 ml, H2SOFourWas prepared by mixing 2 drops of
It The A5 solution is H3BO32.86 g of MnS
OFour・ 7H22.50 g O, ZnSOFour・ 7H2O
0.222g, CuSOFour・ 5H279 mg of O, Na
2MoOFour・ 2H221 mg O, H2O for 1000 m
It was prepared by mixing l. The aboveChlorell
a  sp. H84 was opened in Japanese Patent No. 2894540.
It is shown. As a result, the culture rate according to the present invention is 5
From the month to August, the light utilization efficiency has improved by about 20%,
The effect of surface manipulation was confirmed. Also, from November to January
Compared with the period of about 33% improvement, the inclination of the light dispersion
The effect was confirmed. [Example 2] In Example 2, the present invention was applied to a culture pond.
It is an example of a case. FIG. 8 shows the structure of the culture pond of Example 2.
The basic configuration of the light dispersion unit 73 used is shown in FIG.
This is a case where the scattering body 71 does not have a tilting function. This unit
73 is a large number of light dispersion bodies 71 arranged in parallel to the fixed plate 72.
Composed of structure. Length of the outer size of one light dispersion 71
H40cm × width W200cm × thickness 3cm, specific gravity
It was set to 1.05. 18 sheets of this light dispersion 71 between 7 cm
Made of polyurethane with L200cm length and W200cm width
It was fixed to the fixing plate 72. Overall ratio of the light dispersion unit 73
The weight was 0.98. FIG. 9 shows the light dispersion unit of FIG.
FIG. 7 is a schematic view of the case of applying the grate 73 to the culture pond 74. Cultivation
The pond 74 is filled with the culture solution 75, and the light dispersion unit
73 and a gas supply unit 76 are installed. Each uni
The buoy has the characteristic that it floats on the liquid surface due to buoyancy.
The unit 73 is fixed to the bottom of the culture pond 74.
Therefore, when the liquid level is above a certain level, the upper surface of the light dispersion unit 73
Becomes liquid. The structure that supplies water to the culture pond 74 is a river.
Liquid sending equipment such as pumps and piping for natural water from 77 etc. 78
Water is collected by the
The water pond 74
It has a structure to supply to. Also, from the culture pond 74
The structure for collecting the culture solution 75 is a liquid transfer such as a pump or a pipe.
The culture liquid 75 in the culture pond 74 is taken out and collected by the facility 80.
Recovery of photosynthetic organisms as required by the liquid treatment facility 81
After the treatment and wastewater treatment, the structure is such that it is discharged.
It From the river 77 using the culture pond 74 of the second embodiment
Of natural water, and phosphorus and nitrogen in the culture solution adjusting facility 79,
After adjusting the nutrient concentration of iron and iron ions to the specified concentration,
Incubation under aeration with a gas supply unit 76 at 74
Cell concentration in liquid, weather observation / forecast information, and sunlight intensity
One or more types of information selected from the above, and the liquid level of the culture solution 75
Light dispersion by processing the data as input information.
Between the light incident part of the body and the liquid level of the culture solution,Cocco
myxa  sp. Calculate the relationship suitable for culturing NY2F
While adjusting the liquid level of the culture solutionCoccom
yxasp. The photosynthetic culture of NY2F was performed. On the other hand, the ratio
As a comparative example, the level of the light-receiving surface of the light dispersion is adjusted to the level of the culture solution.
Photosynthetic culture was performed while keeping the same level as Bell. As a result,
Coccomyxa  sp. Comparison of cell concentration of NY2F
In comparison with the comparative example,
The value of Example 2 is about 17% higher, and the light receiving efficiency is higher.
It was confirmed. As described above, according to the second embodiment,
Even in a large-scale photosynthetic culture facility such as the environment, CO2Immobilization
It was shown that it can contribute to the improvement of. [Third Embodiment] The third embodiment is an open-type circulating water channel type chlorella.
It is an example in which the present invention is applied to a culture pond (raceway).
It FIG. 10 shows the light dispersion unit applied to the third embodiment.
9 shows the basic configuration of the light distribution unit 93 and has the tilt function of the light dispersion unit 91.
This is the case. This unit 93 fixes the light dispersion 91
It has a structure in which a large number are arranged in parallel to the plate 92. Example 3
, The outer size of one light dispersion element 91 is set to the length H
30 cm × width W 200 cm × thickness 3 cm, specific gravity
It was set to 0.95. 15 sheets of this light disperser 91 for 9 cm
Acrylic fixed L200cm long and W200cm wide
The plate 92 can be tilted by the method of FIG. 2 of the second means.
I made it like. FIG. 11 shows the light dispersion unit of FIG.
93 open-type circulating water channel type chlorella culture pond (hereinafter raceway
It is an external view in the case of being applied to (). Light dispersion
Light dispersion unit so that the plane of 91 is parallel to the water flow
Place 93 and install so that the slope faces south.
It was Two raceways with a width of 10 m and a length of 100 m are arranged in parallel.
Installed on one side, and one side as a comparative example without liquid level control.
It was The culture solution is circulated by the rotating paddle 94. Times
A ventilation gas nozzle 95 is installed behind the rolling paddle 94.
CO in the culture solution2Can be supplied.
In the present Example 3, the culture medium was placed between the light dispersion unit 93.
As it passes, the photosynthetic organisms dispersed in the culture medium are diluted.
It is possible to receive the sunlight that has been generated and propagate efficiently.
It The liquid surface level of the culture solution was the same as that in Example 1 above.
By means of the culture solution tank 96 and the liquid level control device 9
7. The culture solution is a modified MC medium (2 m3To KNO
3KH2POFourMgSOFour7H21 kg each for O and F
e solution, A5 solution dissolved at a ratio of 1 L each, initial pH 6)
And CO2Aeration gas with a concentration of 1% is aerated at 0.3 vvm
handChlorella vulgarisCulture of
It was As a result, compared to the comparative example, the liquid surface level control of the culture solution was performed.
When culturing is performed until the specified cell concentration is reached.
The distance is shortened by about 20-30%, and the inclined light dispersion is used.
The effectiveness of the liquid level control of the culture solution was confirmed.

【発明の効果】本発明の第1の手段を含んだ光合成培養
装置及び培養方法によれば、気候変化、太陽高度の年変
化や日変化にも対応でき、具体的には、光強度の弱い、
曇天日や、朝夕の日照条件や、また冬至前後の太陽南中
高度の低い時期においても、太陽エネルギーを有効に培
養液中に導入することができ、光合成生物の培養効率が
高い。本発明の第2の手段を含んだ光合成培養装置及び
培養方法によれば、前記効果に加え、光分散体を太陽に
合わせて傾斜させることにより、光分散体の受光面にお
ける総合的な受光量を最適化できる。本発明の光合成培
養装置及び培養方法によれば、付加的な作用として、受
光面が培養液により洗浄される効果がある。その効果は
光分散体表面における透明フツ素樹脂等撥水性材料のコ
ーティングや、微細繊毛化撥水性向上処理により、顕著
に発揮される。
According to the photosynthetic culturing apparatus and culturing method including the first means of the present invention, it is possible to cope with climate change, yearly change of solar altitude and diurnal change. Specifically, the light intensity is weak. ,
It is possible to effectively introduce solar energy into the culture medium even in cloudy days, in the morning and evening sunshine conditions, and in the low solar south mid-altitude around the winter solstice, and the culture efficiency of photosynthetic organisms is high. According to the photosynthetic culturing apparatus and the culturing method including the second means of the present invention, in addition to the above effects, by tilting the light dispersion according to the sun, the total amount of light received on the light receiving surface of the light dispersion can be improved. Can be optimized. According to the photosynthetic culture apparatus and the culture method of the present invention, there is an additional effect that the light receiving surface is washed with the culture solution. The effect is remarkably exhibited by coating the surface of the light dispersion material with a water-repellent material such as transparent fluorine resin or by treating the fine fibrillated water-repellent property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光合成培養装置の好ましい実施の形態
を示し、第1の手段が含まれる光合成培養装置である。
FIG. 1 shows a preferred embodiment of a photosynthetic culture device of the present invention, which is a photosynthetic culture device including a first means.

【図2】第2の手段を説明するための本発明の光合成培
養装置の槻略図である。
FIG. 2 is a schematic diagram of the photosynthetic culture device of the present invention for explaining the second means.

【図3】第2の手段を説明するための本発明の光合成培
養装置の槻略図である。
FIG. 3 is a schematic diagram of the photosynthetic culture device of the present invention for explaining the second means.

【図4】3,6,9,12月の任意にサンプリングした
典型的な晴天日と曇天日の全天光の光強度の日変化を示
すグラフである。
FIG. 4 is a graph showing diurnal changes in the light intensity of all-sky light on typical sunny days and cloudy days that are arbitrarily sampled in March, June, September, and December.

【図5】培養液の液面からの距離と相対光強度の関係に
及ぼす細胞濃度(Spirulina platensis)(微細藻類)の
影響について示す。
FIG. 5 shows the effect of cell concentration ( Spirulina platensis ) (microalgae) on the relationship between the distance from the liquid surface of the culture medium and the relative light intensity.

【図6】全天光の日平均光強度を更に月平均とし、水平
面、30度傾斜面、60度傾斜面についてプロットした
一例である。
FIG. 6 is an example in which the daily average light intensity of all skylight is further set to a monthly average and plotted for a horizontal plane, a 30 ° inclined surface, and a 60 ° inclined surface.

【図7】実施例1の光合成培養装置を示し、図1の光合
成培養装置をより具体的にした一つの実施の形態(ワイ
ヤ傾斜型)である。
7 shows the photosynthetic culture apparatus of Example 1, which is one embodiment (wire tilt type) in which the photosynthetic culture apparatus of FIG. 1 is more specific.

【図8】実施例2の培養池に使用される光分散体ユニッ
トの基本構成を示し、光分散体が傾斜機能を有さない場
合である。
FIG. 8 shows a basic configuration of a light dispersion unit used in the culture pond of Example 2, in which the light dispersion does not have a tilt function.

【図9】図8の光分散体ユニットを培養池に適用した場
合の概略図である。
FIG. 9 is a schematic diagram when the light dispersion unit of FIG. 8 is applied to a culture pond.

【図10】実施例3に適用される光分散体ユニットの基
本構成を示し、光分散体の傾斜機能を有する場合であ
る。
FIG. 10 shows a basic configuration of a light dispersion unit applied to Example 3, which has a function of tilting the light dispersion unit.

【図11】図10の光分散体ユニットを解放式循環水路
型クロレラ培養池(レースウェイ)に適用した場合の外
観図である。
FIG. 11 is an external view when the light dispersion unit of FIG. 10 is applied to an open circulation channel type chlorella culture pond (raceway).

【符号の説明】[Explanation of symbols]

1、21、31、41 培養槽 2、5、22、32、42、75 培養液 3、23、26、33、43、71、91 光分散体 4、96 培養液槽 6、7、56、57、60、62、64 送液ポン
プ 8、48 細胞濃度計 9、49 液面レベル計 10、50 光センサ 11、51 受信機器 12、52、97 液面レベル制御調整装置 13、55 培養液回収ライン 14、54 培養液供給ライン 24、34 可動留め具 25 ストッパ 35、45 連結ワイヤ 36、46 駆動装置 44 スパージャ 53 培養液小リサイクルライン 58 培養液供給槽 59 培養液回収槽 61 培養液調整槽 63 細胞分離槽 65 培養液大リサイクルライン 72、92 固定板 73、93 光分散体ユニット 74 培養池 76 ガス供給ユニット 77 河川 78 送液設備 79 培養液調整設備 80 送液設備 81 回収液処理設備 94 回転パドル 95 通気ガス用ノズル
1, 21, 31, 41 Culture tanks 2, 5, 22, 32, 42, 75 Culture solutions 3, 23, 26, 33, 43, 71, 91 Light dispersion 4, 96 Culture solution tanks 6, 7, 56, 57, 60, 62, 64 Liquid delivery pump 8, 48 Cell concentration meter 9, 49 Liquid level meter 10, 50 Optical sensor 11, 51 Receiver 12, 52, 97 Liquid level control adjustment device 13, 55 Culture solution recovery Lines 14, 54 Culture solution supply lines 24, 34 Movable fasteners 25 Stoppers 35, 45 Connecting wires 36, 46 Drive device 44 Sparger 53 Culture solution small recycling line 58 Culture solution supply tank 59 Culture solution recovery tank 61 Culture solution adjusting tank 63 Cell separation tank 65 Culture liquid large recycling line 72, 92 Fixing plate 73, 93 Light dispersion unit 74 Culture pond 76 Gas supply unit 77 River 78 Liquid feeding facility 79 Culture liquid adjusting facility 0 feeding facilities 81 recovered solution treatment facility nozzle 94 rotating paddle 95 vent gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI (C12N 1/12 C12N 1/12 C12R 1:89) (56)参考文献 特開 平7−184631(JP,A) 特開 平5−284959(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12M 1/00 - 3/10 C12N 1/00 - 5/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI (C12N 1/12 C12N 1/12 C12R 1:89) (56) Reference JP-A-7-1884631 (JP, A) JP Hei 5-284959 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C12M 1/00-3/10 C12N 1/00-5/28

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の(1)及び(2)の要件を含むこ
とを特徴とする光合成培養装置: (1)光合成生物を含む培養液と、太陽光を光源として
入射し、培養液中に光を拡散して照射することができる
1個以上の光分散体を収容する培養槽;並びに、 (2)該培養槽の近傍に設置され、培養液中の細胞濃
度、気象観測・予報情報及び太陽光強度から選ばれた1
種以上の情報、及び培養液の液面レベルを入力情報とし
てデータ処理することにより、光分散体の光入射部位と
培養液の液面レベルとの、光合成生物を培養するに適し
た関係を算出することができ且つ液面レベルを制御する
ことができる液面レベル調整手段。
1. A photosynthetic culture apparatus comprising the following requirements (1) and (2): (1) A culture solution containing a photosynthetic organism, and sunlight incident as a light source into the culture solution. A culture tank containing one or more light dispersers capable of diffusing and irradiating light; and (2) a cell concentration in the culture solution, weather observation / prediction information, which is installed in the vicinity of the culture tank. 1 selected from sunlight intensity
Information suitable for culturing photosynthetic organisms is calculated between the light-incident site of the light dispersion and the liquid surface level of the culture liquid by processing the data using the information above the species and the liquid surface level of the culture liquid as input information. And a liquid level adjusting means capable of controlling the liquid level.
【請求項2】 下記の(1)−(7)の要件を含むこと
を特徴とする光合成培養装置: (1)光合成生物を含む培養液と、太陽光を光源として
入射し、培養液中に光を拡散して照射することができる
1個以上の光分散体を収容する培養槽; (2)該培養槽と送液手段で接続され、培養液を貯留或
いは供給するための培養液槽; (3)該培養槽に設置され、該培養液内の液面レベルを
計測するための計測手段; (4)該培養槽に設置され、培養液中の細胞濃度を計測
するための計測手段; (5)該培養槽の近傍に設置さ
れ、該培養槽の設置地域の気象観測・予報情報を受信す
るための受信手段; (6)該培養槽の近傍に設置され、太陽光強度を計測す
るための計測手段; (7)該培養槽の近傍に設置され、培養液中の細胞濃
度、気象観測・予報情報及び太陽光強度から選ばれた1
種以上の情報、及び培養液の液面レベルを入力情報とし
てデータ処理することにより、光分散体の光入射部位と
培養液の液面レベルとの、光合成生物を培養するに適し
た関係を算出することができ且つ液面レベルを制御する
ことができる液面レベル調整手段。
2. A photosynthetic culture device comprising the following requirements (1)-(7): (1) A culture solution containing a photosynthetic organism, and sunlight entering the culture solution as a light source. A culture tank containing one or more light dispersions capable of diffusing and irradiating light; (2) A culture solution tank connected to the culture tank by a liquid feeding means for storing or supplying a culture solution; (3) Measuring means installed in the culture tank for measuring the liquid level in the culture solution; (4) Measuring means installed in the culture tank for measuring the cell concentration in the culture solution; (5) Receiving means installed in the vicinity of the culture tank for receiving meteorological observation / prediction information of the area where the culture tank is installed; (6) Installed in the vicinity of the culture tank to measure the intensity of sunlight. (7) Installed in the vicinity of the culture tank for measuring cell concentration in the culture solution, weather observation, It has been selected from the group consisting of broadcast information and sunlight intensity 1
Information suitable for culturing photosynthetic organisms is calculated between the light-incident site of the light dispersion and the liquid surface level of the culture liquid by processing the data using the information above the species and the liquid surface level of the culture liquid as input information. And a liquid level adjusting means capable of controlling the liquid level.
【請求項3】 前記光分散体が垂直乃至斜方向に傾斜で
きるように、光分散体の下部の少なくとも一部が、培養
槽底面に固定された可動留め具で支えられていることを
特徴とする、請求項1又は2記載の光合成培養装置。
3. The light disperser is supported by a movable fastener fixed to the bottom of the culture tank so that at least a part of the lower part of the light disperser can be tilted vertically or obliquely. The photosynthetic culture device according to claim 1 or 2.
【請求項4】 前記可動留め具の近傍に光分散体の傾斜
角度を制限する光分散体用のストッパが配置されている
ことを特徴とする請求項3記載の光合成培養装置。
4. The photosynthetic culture device according to claim 3, wherein a stopper for the light dispersion element that limits the inclination angle of the light dispersion element is disposed near the movable fastener.
【請求項5】 前記光分散体の2個以上が整列された、
各光分散体の上部は連結手段で連結固定され、該連結手
段の水平方向の移動により光分散体が傾斜可能であるこ
とを特徴とする請求項1、2、3又は4記載の光合成培
養装置。
5. Two or more of the light dispersers are aligned,
The photosynthetic culture device according to claim 1, 2, 3 or 4, wherein the upper part of each light disperser is connected and fixed by a connecting means, and the light disperser can be tilted by the horizontal movement of the connecting means. .
【請求項6】 太陽光を光源として入射し、培養液中に
光を拡散して照射することができる1個以上の光分散体
を収容する培養槽で光合成生物を培養する方法におい
て、培養液中の細胞濃度、気象観測・予報情報及び太陽
光強度から選ばれた1種以上の情報、及び培養液の液面
レベルを入力情報としてデータ処理することにより、光
分散体の光入射部位と培養液の液面レベルとの、光合成
生物を培養するに適した関係を算出し、培養液の液面レ
ベルを調整することを特徴とする光合成生物の培養方
法。
6. Injecting sunlight into the culture solution as a light source.
One or more light dispersions capable of diffusing and irradiating light
In the method of culturing photosynthetic organisms in the culture tank containing
Cell concentration in the culture solution, meteorological observation / forecast information, and the sun
One or more types of information selected from the light intensity, and the liquid surface of the culture solution
By processing the data using the level as input information,
Photosynthesis between the light incident part of the dispersion and the liquid surface level of the culture solution
Calculate the relationship suitable for culturing organisms, and
Method for culturing photosynthetic organisms characterized by adjusting bell
Law.
【請求項7】 太陽光を光源として入射し、培養液中に
光を拡散して照射することができる1個以上の光分散体
を収容する培養槽で光合成生物を培養する方法におい
て、気象観測・予報情報データと該培養槽近傍に設けた
光センサーで計測した光強度に基づいてデータ処理し、
得られた結果から設定基準光強度以上の晴天が予測され
る場合には、日中時に培養槽内の培養液の液面レベルを
光分散体の受光面レベルと同等レベルに制御し、また、
設定基準光強度未満の曇天時が予測される場合には、培
養液の液面レベルを光分散体の受光面レベルより高くな
るように調整することを特徴とする光合成生物の培養方
法。
7. Sunlight enters as a light source to enter the culture solution.
One or more light dispersions capable of diffusing and irradiating light
In the method of culturing photosynthetic organisms in the culture tank containing
Installed in the vicinity of the culture tank and weather observation / prediction information data.
Data processing based on the light intensity measured by the optical sensor,
From the results obtained, it is predicted that clear weather will exceed the set reference light intensity.
The level of the culture solution in the culture tank during the day,
Control to the same level as the light-receiving surface level of the light disperser, and
If it is predicted that the weather will be cloudy below the set standard light intensity,
Set the liquid surface level of the nutrient solution higher than the light-receiving surface level of the light disperser.
Method for culturing photosynthetic organisms characterized by adjusting so that
Law.
【請求項8】 前記液面レベルの調整幅を細胞濃度に応
じて行い、細胞濃度が高いときは液面上昇を小さくし、
細胞濃度が低いときは大きくすることを特徴とする請求
項6又は7記載の光合成生物の培養方法
8. The adjustment range of the liquid level is adapted to the cell concentration.
If the cell concentration is high, increase the liquid level to a small level,
Claims characterized by increasing when the cell concentration is low
Item 6. A method for culturing a photosynthetic organism according to item 6 or 7 .
【請求項9】 光分散体の傾斜方向を南方向となるよう
設定し、冬至前後で且つ基準 光強度以上の晴天時におい
て、光入射効率が高くなるように光分散体を垂直位置か
ら30度までの間の角度の範囲内で傾斜させ、光分散体
の受光面が液没しないように液面を下げることを特徴と
する請求項6又は7記載の光合成生物の培養方法。
9. The inclination direction of the light dispersion element is set to the south direction.
Set and use when it is sunny around the winter solstice and above the standard light intensity.
Position the light disperser in the vertical position to increase the light incidence efficiency.
Tilted within an angle range from 30 to 30 degrees,
It is characterized by lowering the liquid surface so that the light receiving surface of
The method for culturing a photosynthetic organism according to claim 6 or 7.
【請求項10】 光分散体の傾斜方向を南方向となるよ
う設定し、夏至前後において光分散体を垂直となるよう
に固定することを特徴とする請求項6又は7記載の光合
成生物の培養方法。
10. The inclination direction of the light dispersion element is the south direction.
Set the light dispersion to be vertical before and after the summer solstice.
The optical coupling according to claim 6 or 7, characterized in that
Method for culturing adult organisms.
JP2000049055A 2000-02-25 2000-02-25 Photosynthetic culture device and culture method Expired - Fee Related JP3524835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049055A JP3524835B2 (en) 2000-02-25 2000-02-25 Photosynthetic culture device and culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049055A JP3524835B2 (en) 2000-02-25 2000-02-25 Photosynthetic culture device and culture method

Publications (2)

Publication Number Publication Date
JP2001231539A JP2001231539A (en) 2001-08-28
JP3524835B2 true JP3524835B2 (en) 2004-05-10

Family

ID=18571042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049055A Expired - Fee Related JP3524835B2 (en) 2000-02-25 2000-02-25 Photosynthetic culture device and culture method

Country Status (1)

Country Link
JP (1) JP3524835B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US20050095228A1 (en) 2001-12-07 2005-05-05 Fraser John K. Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders
US7771716B2 (en) 2001-12-07 2010-08-10 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
US8404229B2 (en) 2001-12-07 2013-03-26 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to treat acute tubular necrosis
US7651684B2 (en) 2001-12-07 2010-01-26 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in augmenting autologous fat transfer
US7585670B2 (en) 2001-12-07 2009-09-08 Cytori Therapeutics, Inc. Automated methods for isolating and using clinically safe adipose derived regenerative cells
US20050048035A1 (en) 2001-12-07 2005-03-03 Fraser John K. Methods of using regenerative cells in the treatment of stroke and related diseases and disorders
EP1572071B1 (en) 2001-12-07 2018-10-03 Cytori Therapeutics, Inc. Methods for preparing fresh adipose tissue-derived cells and uses in treating patients
DE10322111A1 (en) * 2003-05-10 2004-12-02 Backhaus, Jan O., Prof. Dr. Marine photo-bioreactor for production of phototropic organisms in tropical or sub-tropical waters
EP1648999A4 (en) * 2003-06-25 2006-09-06 Macropore Biosurgery Inc Systems and methods for separating and concentrating regenerative cells from tissue
KR100897018B1 (en) 2007-10-15 2009-05-25 주식회사 바이오트론 Photo-bioreactor for culturing micro algae and apparatus for production of micro algae having the same
WO2010021993A1 (en) 2008-08-19 2010-02-25 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
CA2760574C (en) 2009-05-01 2020-10-27 Cytori Therapeutics, Inc. Device and method for preparing tissue for an adipose graft
PT106754A (en) * 2013-01-29 2014-07-29 A4F Algafuel S A DISCS FOR THE PRODUCTION OF BIOMASS IN CULTURES OF PHOTOSYNTHETIC MICROORGANISMS AND METHOD FOR THE CULTURE OF PHOTOSYNTHETIC MICROORGANISMS
JP6740590B2 (en) * 2015-10-23 2020-08-19 株式会社デンソー Photosynthetic microorganism culturing apparatus and culturing method

Also Published As

Publication number Publication date
JP2001231539A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP3524835B2 (en) Photosynthetic culture device and culture method
Visser et al. Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands
AU654114B2 (en) Process and apparatus for the production of photosynthetic microbes
Ogbonna et al. An integrated solar and artificial light system for internal illumination of photobioreactors
Qiang et al. Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors
Fallowfield et al. The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study
TWI379814B (en)
WO2009037683A1 (en) A system and apparatus for growing cultures
US20140315290A1 (en) Low-cost photobioreactor
CN103547667A (en) V-trough photobioreactor system and method of use
CN103274527B (en) Continuous system for treating organic wastewater by using microalgae
JP2743316B2 (en) Tubular photobioreactor
WO2011143445A2 (en) Cultivation of photosynthetic organisms
CN105779272A (en) Overflow tilting novel microalgae culture system
CN115108688B (en) Comprehensive treatment system and method for white spirit production wastewater
Tredici et al. Cultivation of Spirulina (Arthrospira) platensis in flat plate reactors
Fast et al. Effects of artificial aeration on the chemistry and algae of two Michigan lakes
CN104560637A (en) Rotatable film-forming type microalgae photosynthetic reactor
US20160113224A1 (en) Large-scale algae cultivation system with diffused acrylic rods and double parabolic trough mirror systems
Hermann et al. Waste stabilization ponds: III. Formulation of design equations
JP4523187B2 (en) Photobioreactor
JP3524811B2 (en) Photosynthetic culture device
WO2012072837A1 (en) Photobioreactor for cultivating phototrophic organisms
JPH08322553A (en) Cultivation of fine algae and equipment therefor
CN113150944A (en) Biological reaction system and method for producing microalgae by using agricultural wastewater and waste gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees