JP3514656B2 - Surface smooth wiring board and its manufacturing method - Google Patents

Surface smooth wiring board and its manufacturing method

Info

Publication number
JP3514656B2
JP3514656B2 JP08428299A JP8428299A JP3514656B2 JP 3514656 B2 JP3514656 B2 JP 3514656B2 JP 08428299 A JP08428299 A JP 08428299A JP 8428299 A JP8428299 A JP 8428299A JP 3514656 B2 JP3514656 B2 JP 3514656B2
Authority
JP
Japan
Prior art keywords
δhm
heat
wiring board
film
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08428299A
Other languages
Japanese (ja)
Other versions
JP2000277875A (en
Inventor
紳月 山田
潤 高木
浩一郎 谷口
薫 野本
弘泰 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Denso Corp
Original Assignee
Mitsubishi Plastics Inc
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Denso Corp filed Critical Mitsubishi Plastics Inc
Priority to JP08428299A priority Critical patent/JP3514656B2/en
Publication of JP2000277875A publication Critical patent/JP2000277875A/en
Application granted granted Critical
Publication of JP3514656B2 publication Critical patent/JP3514656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、導体回路の表面
と絶縁層の表面が同じ高さに配置され平滑面を形成して
いる表面平滑配線板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface smooth wiring board in which the surface of a conductor circuit and the surface of an insulating layer are arranged at the same height to form a smooth surface, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】導体回路の表面と絶縁樹脂層の表面の高
さを揃えて平滑面を形成するようにした表面平滑配線板
が知られている。これらは平滑プリント配線板、フラッ
シュプリント配線板またはフラッシュサーキット板とも
別称されている。
2. Description of the Related Art There is known a surface smooth wiring board in which the surface of a conductor circuit and the surface of an insulating resin layer are leveled to form a smooth surface. These are also referred to as smooth printed wiring boards, flash printed wiring boards, or flash circuit boards.

【0003】このような表面平滑配線板は、導体回路の
表面が絶縁層表面と同一平面を形成するように埋め込ま
れているので、配線板の表面は滑らかな平面または可撓
(フレキシブル)性のある場合は曲面を形成し、例えば
ロータリースイッチ、チューナー、整流子などといった
部品が接触する摺動面用の配線板として適するものであ
る。
In such a surface smooth wiring board, the surface of the conductor circuit is embedded so as to form the same plane as the surface of the insulating layer, so that the surface of the wiring board has a smooth flat surface or is flexible. In some cases, it forms a curved surface, and is suitable as a wiring board for a sliding surface on which parts such as a rotary switch, a tuner, and a commutator come into contact.

【0004】表面平滑基板の従来の製造方法としては、
ガラスエポキシ樹脂のプリプレグ上に銅箔を積層接着
(積層プレス工程)した後、回路形成し、さらに鏡面ス
テンレス板に挟み込み加圧加熱(平滑プレス工程)して
製造する方法や、平滑プレス工程前の回路形成後にエポ
キシ樹脂の架橋度合を熱処理により制御し、量産性や信
頼性を改善する方法(特公平10−242621号公
報)が知られているが、前者の製造方法では、架橋度合
の制御が不均一になりやすく、プリント配線表面の導体
部と絶縁部に段差が残りやすく、平滑性が充分な基板を
製造できない。また、後者の製造方法では熱処理工程が
新たに必要になり、生産性に劣ると共にエポキシ樹脂の
架橋度合の制御が非常に困難の製造方法であった。
As a conventional method of manufacturing a surface smooth substrate,
After laminating and adhering copper foil on a prepreg of glass epoxy resin (laminating press step), forming a circuit, further sandwiching it with a mirror-finished stainless steel plate and applying pressure (smooth press step) to manufacture, or before the smooth press step A method of controlling the degree of crosslinking of an epoxy resin by heat treatment after forming a circuit to improve mass productivity and reliability (Japanese Patent Publication No. 10-242621) is known, but in the former manufacturing method, the degree of crosslinking is controlled. It is apt to become non-uniform, a step is likely to remain between the conductor portion and the insulating portion on the surface of the printed wiring, and a substrate having sufficient smoothness cannot be manufactured. In addition, the latter manufacturing method requires a heat treatment step, which is inferior in productivity and makes it very difficult to control the degree of crosslinking of the epoxy resin.

【0005】また、熱可塑性樹脂を用いて表面平滑基板
を製造する方法としては、特開平3−35588号公
報、特開平4−299892号公報、特開平5−182
805号公報、特開平7−45159号公報に、絶縁材
料として高粘度で熱可塑性の飽和ポリエステル樹脂を用
いる記述がある。これらの製造方法は、作製する配線板
によって何らかの工程差はあるが、例えば特開平3−3
5588号公報に記載されているように、非結晶の絶縁
基板の接着シートを50℃、10kg/cm2、20分の熱圧
条件で仮接着し、これを銅箔と70℃、10分の条件で
熱ロールプレスしてラミネートした後、エッチングによ
りパターンを形成し、その後、180℃で30kg/cm2
圧力で熱プレスすることにより、銅箔を樹脂中に押し込
んで基板の滑化加工を行ない、同時に熱可塑性の飽和ポ
リエステル樹脂の結晶化を進め、耐熱性などを向上させ
るという方法である。
Further, as a method for producing a surface smooth substrate using a thermoplastic resin, Japanese Patent Laid-Open Nos. 3-35588, 4-299892 and 5-182 are known.
Japanese Patent Laid-Open No. 805 and Japanese Patent Laid-Open No. 7-45159 describe that a highly viscous and thermoplastic saturated polyester resin is used as an insulating material. These manufacturing methods have some process differences depending on the wiring board to be manufactured.
As described in Japanese Patent No. 5588, an adhesive sheet of an amorphous insulating substrate is temporarily bonded under heat and pressure conditions of 50 ° C., 10 kg / cm 2 , and 20 minutes, and this is bonded to a copper foil at 70 ° C. for 10 minutes. After laminating by hot roll pressing under the conditions, a pattern is formed by etching, and then by hot pressing at 180 ° C and a pressure of 30 kg / cm 2 , the copper foil is pressed into the resin to smooth the substrate. This is a method of improving the heat resistance and the like at the same time by promoting the crystallization of the thermoplastic saturated polyester resin.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平10−
321992号公報にも記載されているように、熱可塑
性の飽和ポリエステル樹脂などの比較的弾力性のある熱
可塑性の絶縁材料は、導体パターンを押し込んで平滑基
板を作製する際に、前記導体パターンの周辺に前記接着
剤または導体パターンの厚さだけ絶縁基板が変形し、こ
の変形を元に戻そうとする力(残留応力)が発生すると
いう問題があり、甚だしい場合には、局部的な歪みが生
じて基板に「波打ち」と呼ばれるような変形が生じる。
However, JP-A-10-
As described in Japanese Patent No. 321992, a relatively elastic thermoplastic insulating material such as a thermoplastic saturated polyester resin is used to form a smooth substrate by pressing the conductive pattern to form a smooth substrate. There is a problem that the insulating substrate is deformed in the periphery by the thickness of the adhesive or the conductor pattern, and a force (residual stress) to restore the deformation is generated. In extreme cases, local strain is generated. As a result, the substrate undergoes a deformation called “waviness”.

【0007】また、前述のようにガラスエポキシ樹脂を
用いた従来の表面平滑基板の場合には、平滑プレス工程
前までのエポキシ樹脂の架橋度合の管理が難しく、信頼
性、量産性の面で満足できるものではなかった。また、
ガラス布を用いているために、基材のフレキシブル性に
欠けるので、その用途は限られていた。
Further, as described above, in the case of the conventional smooth surface substrate using the glass epoxy resin, it is difficult to control the degree of cross-linking of the epoxy resin before the smooth pressing process, and the reliability and mass productivity are satisfactory. It wasn't possible. Also,
Since the glass cloth is used, the flexibility of the base material is lacking, so that its use is limited.

【0008】基板用絶縁材料として、上記のようにポリ
エステル樹脂の熱可塑性樹脂を用いて表面平滑基板を製
造する場合には、樹脂の品質管理の面でガラスエポキシ
樹脂に比較して有利であるという点も考えられるが、平
滑プレス後に残留応力が発生して基板が歪みやすいとい
う問題があり、熱可塑性樹脂を用いた表面平滑基板は存
在していないのが実情である。
When a thermoplastic resin such as polyester resin is used as an insulating material for a substrate to produce a surface smooth substrate as described above, it is advantageous in terms of resin quality control as compared with glass epoxy resin. However, there is a problem that residual stress is generated after smooth pressing and the substrate is easily distorted, and in reality, there is no surface smooth substrate using a thermoplastic resin.

【0009】そこで、この発明の課題は、上記した問題
点を解決して、耐熱性の高い熱可塑性樹脂を用いた表面
平滑基板について、平滑プレス後の導体箔が埋め込まれ
た状態で残留応力が発生せず、基板が歪まないものを提
供することである。
Therefore, an object of the present invention is to solve the above-mentioned problems, and for a surface smooth substrate using a thermoplastic resin having a high heat resistance, a residual stress in a state where a conductor foil after smooth press is embedded is reduced. It is to provide a product that does not occur and the substrate is not distorted.

【0010】また、他の課題としては、300℃未満の
できるだけ低い加熱温度で絶縁層に導体箔を埋め込んで
表面平滑化することが可能であり、しかもハンダ耐熱
性、耐薬品性、電気特性を兼ね備えた表面平滑配線板を
製造することである。
Another problem is that it is possible to embed a conductor foil in an insulating layer at a heating temperature as low as possible, which is lower than 300 ° C., to make the surface smooth, and to obtain solder heat resistance, chemical resistance, and electrical characteristics. It is to manufacture a surface smooth wiring board having the dual function.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、絶縁層の表面と、この絶縁層
に埋め込んで固定された導体回路の表面とが同じ高さに
配置されている表面平滑配線板において、前記絶縁層
が、結晶融解ピーク温度260℃以上のポリアリールケ
トン樹脂65〜35重量%と、非晶性ポリエーテルイミ
ド樹脂35〜65重量%とを含有する熱可塑性樹脂組成
物からなり、この熱可塑性樹脂組成物は、示差走査熱量
測定で昇温した時に測定されるガラス転移温度が150
〜230℃、結晶融解熱量ΔHmと昇温中の結晶化によ
り発生する結晶化熱量ΔHcとの関係が下記の式(A) で
示される関係を満たすものであることを特徴とする表面
平滑配線板としたのである。
In order to solve the above problems, in the present invention, the surface of the insulating layer and the surface of the conductor circuit embedded and fixed in the insulating layer are arranged at the same height. In the surface smooth wiring board, a thermoplastic resin in which the insulating layer contains 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or more and 35 to 65% by weight of an amorphous polyetherimide resin. The thermoplastic resin composition has a glass transition temperature of 150 when measured by differential scanning calorimetry.
-230 ° C., surface smooth wiring board characterized in that the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during heating satisfies the relationship shown by the following formula (A): It was.

【0012】 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 また、結晶融解ピーク温度260℃以上のポリアリール
ケトン樹脂65〜35重量%と非晶性ポリエーテルイミ
ド樹脂35〜65重量%とを含有し、示差走査熱量測定
で昇温した時に測定されるガラス転移温度が150〜2
30℃の熱可塑性樹脂組成物からなるフィルム状絶縁体
を設け、このフィルム状絶縁体に導体箔を重ねて前記熱
可塑性樹脂組成物が下記の式(I) で示される結晶融解熱
量ΔHmと昇温中の結晶化により発生する結晶化熱量Δ
Hcとの関係を満たすように熱融着し(積層プレス)、
次いで熱融着された導体箔をエッチングして導体回路を
形成し、次いで前記熱可塑性樹脂組成物が下記の式(II)
で示される関係を満たすように加熱加圧し(平滑プレ
ス)、その際に前記導体回路の表面に平滑版を圧接して
導体回路の表面と前記フィルム状絶縁体の表面とを同じ
高さに均すことからなる表面平滑配線板の製造方法とし
たのである。
Formula (A): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Further, 65 to 35% by weight of the polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and the amorphous polyetherimide resin 35 to 35 are used. The glass transition temperature measured by differential scanning calorimetry is 150 to 2
A film-like insulator made of a thermoplastic resin composition at 30 ° C. is provided, a conductor foil is laid on the film-like insulator, and the thermoplastic resin composition is heated to a heat of crystal melting ΔHm represented by the following formula (I). Amount of heat of crystallization generated by crystallization in warm temperature Δ
Heat fusion so as to satisfy the relationship with Hc (lamination press),
Then, the heat-bonded conductor foil is etched to form a conductor circuit, and then the thermoplastic resin composition has the following formula (II):
Is heated and pressed (smooth press) so that the surface of the conductor circuit and the surface of the film-like insulator are leveled to the same height. This is the method for manufacturing a surface smooth wiring board consisting of

【0013】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 上記したように構成されるこの発明の表面平滑配線板
は、結晶性のポリアリールケトン樹脂と非晶性のポリエ
ーテルイミド樹脂を所定量配合したフィルム状絶縁体か
らなる絶縁層を有し、この絶縁層は両樹脂の優れた諸特
性により、銅箔製の導体回路を確実に接着固定するため
の熱融着性と、ポリイミド樹脂に特有の優れた耐薬品
性、機械的強度および電気絶縁性を有している。
Formula (I): [(ΔHm-ΔHc) / ΔHm] ≦ 0.5 Formula (II): [(ΔHm-ΔHc) / ΔHm] ≧ 0.7 The surface of the present invention configured as described above The smooth wiring board has an insulating layer composed of a film-shaped insulator in which a crystalline polyarylketone resin and an amorphous polyetherimide resin are blended in a predetermined amount, and the insulating layer has excellent properties of both resins. It has a heat-sealing property for surely bonding and fixing a conductor circuit made of copper foil, and has excellent chemical resistance, mechanical strength and electrical insulation properties peculiar to a polyimide resin.

【0014】また、絶縁層を形成する熱可塑性樹脂組成
物は、前記式(A) を満足するものであるから、この絶縁
層はハンダ付けの際の260℃の加熱に耐えるハンダ耐
熱性を有する。
Further, since the thermoplastic resin composition forming the insulating layer satisfies the above formula (A), this insulating layer has solder heat resistance to withstand heating at 260 ° C. during soldering. .

【0015】表面平滑配線板の製造方法に係る発明で
は、フィルム状絶縁体の片面または両面に熱融着された
導体箔は、熱可塑性樹脂組成物の熱融着性によって強固
に接着されており、この導体箔はエッチングされて精密
な導体回路に形成された際にも強固に接着されており、
導体回路の剥離強度は高い。なお、通常に導体箔の素材
として使用される表面粗化銅箔は、導体回路と絶縁層と
の接着強度が大きくて好ましいものである。
In the invention relating to the method for producing a surface-smoothed wiring board, the conductor foil which is heat-sealed on one or both sides of the film-like insulator is firmly adhered by the heat-sealing property of the thermoplastic resin composition. , This conductor foil is firmly adhered even when it is etched to form a precise conductor circuit.
The peel strength of the conductor circuit is high. A surface-roughened copper foil, which is usually used as a material for a conductor foil, is preferable because it has a large adhesive strength between a conductor circuit and an insulating layer.

【0016】導体箔を熱融着した後の絶縁層は、結晶融
解熱量ΔHmと昇温中の結晶化により発生する結晶化熱
量ΔHcとの関係が前記式(I) で示される関係を満たす
熱可塑性樹脂組成物からなり、絶縁層の一成分であるポ
リアリールケトン樹脂の結晶化の進行状態は適当な程度
に調整されている。
The insulating layer after heat-sealing the conductor foil is a heat-insulating material in which the relationship between the heat of fusion of crystal ΔHm and the quantity of heat of crystallization ΔHc generated by crystallization during temperature rise satisfies the relationship represented by the above formula (I). The progress state of crystallization of the polyarylketone resin, which is a component of the insulating layer and made of a plastic resin composition, is adjusted to an appropriate degree.

【0017】次に、上記のように導体回路を形成した配
線板に対し、その表面に表面平滑なステンレス鋼板その
他の平板などからなる平滑版を当てて、加熱加圧を行な
うとき、250℃未満、通常は230℃付近の低温の条
件を採用する。そのような比較的低温の加熱条件でも前
記式(I) で示される関係を満たす熱可塑性樹脂はガラス
転移点(Tg)を越える状態となり、精密に形成された
導体回路が絶縁層に各所均等な深さで埋め込まれて表面
平滑な配線板を形成できる。
Next, when a smooth plate made of a stainless steel plate or other flat plate having a smooth surface is applied to the surface of the wiring board on which the conductor circuit is formed as described above and heating and pressurization are performed, the temperature is less than 250 ° C. Normally, a low temperature condition of around 230 ° C is adopted. Even under such a relatively low temperature heating condition, the thermoplastic resin satisfying the relationship represented by the above formula (I) is in a state of exceeding the glass transition point (Tg), and the precisely formed conductor circuit is evenly distributed in the insulating layer. A wiring board having a smooth surface can be formed by embedding at a depth.

【0018】このようにして製造された表面平滑配線板
は、絶縁層の熱可塑性樹脂組成物が前記式(II)で示され
る結晶性の進んだ状態になり、260℃に耐えるハンダ
耐熱性を有するものになる。
The surface-smoothed wiring board produced in this way has a thermoplastic resin composition of the insulating layer in a state of advanced crystallinity represented by the above formula (II) and has a soldering heat resistance to withstand 260 ° C. To have.

【0019】また、フィルム状絶縁体と導体箔の接着
は、層間にエポキシ樹脂などの接着剤を介在させないで
熱融着するので、耐熱性、耐薬品性、電気特性などの諸
特性は接着剤の特性に支配されることがなく、絶縁層の
優れた諸特性が充分に活かされ、また効率良く表面平滑
配線板を製造することができる。
Further, since the film-like insulator and the conductor foil are bonded by heat fusion without an adhesive such as an epoxy resin being interposed between layers, various characteristics such as heat resistance, chemical resistance, and electrical characteristics are determined by the adhesive. That is, the excellent characteristics of the insulating layer can be fully utilized and the surface smooth wiring board can be efficiently manufactured.

【0020】[0020]

【発明の実施の形態】この発明の表面平滑配線板の実施
形態を、その製造方法の実施形態と共に、以下に添付図
面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a surface smoothed wiring board of the present invention will be described below together with an embodiment of a manufacturing method thereof with reference to the accompanying drawings.

【0021】図1(f)に示すように、この発明の実施
形態の表面平滑配線板Aは、結晶融解ピーク温度260
℃以上のポリアリールケトン樹脂65〜35重量%と非
晶性ポリエーテルイミド樹脂35〜65重量%とからな
り、示差走査熱量測定で昇温した時に測定されるガラス
転移温度が150〜230℃の熱可塑性樹脂組成物から
なる絶縁層1´の表面と、この絶縁層1´に埋め込んで
固定された導体箔2(図1(d)参照)からなる導体回
路2´の表面とが同じ高さに配置され、平滑面を形成し
ている表面平滑配線板Aである。
As shown in FIG. 1 (f), the surface smoothing wiring board A of the embodiment of the present invention has a crystal melting peak temperature 260.
Composed of 65 to 35% by weight of a polyarylketone resin at 35 ° C or higher and 35 to 65% by weight of an amorphous polyetherimide resin, and has a glass transition temperature of 150 to 230 ° C measured when the temperature is raised by differential scanning calorimetry. The surface of the insulating layer 1 ′ made of the thermoplastic resin composition and the surface of the conductor circuit 2 ′ made of the conductor foil 2 (see FIG. 1 (d)) embedded and fixed in the insulating layer 1 ′ have the same height. Is a surface smooth wiring board A which is arranged on the surface of the substrate and forms a smooth surface.

【0022】このような表面平滑配線板Aを製造する工
程は、先ず図1(a)に示すように、ポリアリールケト
ン樹脂と非晶性ポリエーテルイミド樹脂とを所定割合で
配合した熱可塑性樹脂組成物からなるフィルム状絶縁体
1を作製する。
In the process of manufacturing such a surface smooth wiring board A, as shown in FIG. 1A, first, a thermoplastic resin in which a polyarylketone resin and an amorphous polyetherimide resin are blended in a predetermined ratio is used. A film-shaped insulator 1 made of the composition is prepared.

【0023】そして、図1(b)に示すように、フィル
ム状絶縁体1の要所に内層ブラインドホール(IVH)
形成用の孔3をレーザーまたはドリルで形成し、これに
導電性ペースト4を充填し(図1(c))、乾燥させた
後、両面に銅箔2を重ねて真空熱プレス機を用いて加熱
加圧し、両面銅張積層板5を作製する。なお、孔3は必
要に応じて形成するものであり、孔3を有しないフィル
ム状絶縁体1を用いて同様に両面銅張積層板5を作製し
てもよい。
Then, as shown in FIG. 1 (b), inner layer blind holes (IVH) are formed at the essential points of the film-shaped insulator 1.
The holes 3 for forming are formed by a laser or a drill, the conductive paste 4 is filled in the holes 3 (FIG. 1 (c)), and after drying, the copper foils 2 are stacked on both sides and a vacuum heat press is used. Heat and pressure are applied to produce a double-sided copper clad laminate 5. The holes 3 are formed as needed, and the double-sided copper-clad laminate 5 may be similarly produced by using the film-shaped insulator 1 having no holes 3.

【0024】上記加熱加圧工程では、前記熱可塑性樹脂
組成物のガラス転移点を越えるがポリエーテルイミド樹
脂の結晶融解ピーク温度は越えないように、すなわち熱
可塑性樹脂組成物の非晶性が維持されるように加熱して
フィルム状絶縁体1の両面に銅箔2を熱融着し、このと
き熱可塑性樹脂組成物が下記の式(I) で示される関係を
満たす両面銅張積層板5を作製する。
In the heating and pressing step, the glass transition point of the thermoplastic resin composition is exceeded, but the crystal melting peak temperature of the polyetherimide resin is not exceeded, that is, the amorphousness of the thermoplastic resin composition is maintained. As described above, the copper foil 2 is heat-fused on both sides of the film-like insulator 1 by heating, and at this time, the thermoplastic resin composition satisfies the relationship represented by the following formula (I). To make.

【0025】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 次いで、サブトラクティブ法によって導体回路2を形成
し、図1(e)に示すプリント配線板6にする。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Next, the conductor circuit 2 is formed by the subtractive method to obtain the printed wiring board 6 shown in FIG.

【0026】そして最終工程では、通常使用される加熱
加圧成形機を用いてプリント配線板6の両面にステンレ
ス鋼板等からなる硬質の平滑版7を圧接すると共に両面
から加熱し、絶縁層1´を形成している熱可塑性樹脂組
成物が下記の式(II)で示される関係を満たすように結晶
化温度(Tc)付近(例えば220〜250℃)で加熱
加圧プレス(例えば230℃、50kgf/cm2 、10分
間)を実施して結晶化を進め、ハンダ耐熱性のある表面
平滑配線板Aを製造する。
Then, in the final step, a hard smooth plate 7 made of a stainless steel plate or the like is pressed onto both sides of the printed wiring board 6 by using a heating / pressing machine which is usually used, and heated from both sides to form an insulating layer 1 '. So that the thermoplastic resin composition forming the film satisfies the relationship represented by the following formula (II): near the crystallization temperature (Tc) (for example, 220 to 250 ° C.), a heat and pressure press (for example, 230 ° C., 50 kgf) / cm 2 , for 10 minutes) to promote crystallization to manufacture a surface smooth wiring board A having solder heat resistance.

【0027】 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 本願の発明における重要な制御因子である式(I)または
(II)で示される熱可塑性樹脂組成物の熱特性は、結晶融
解熱量ΔHmと昇温中の結晶化により発生する結晶化熱
量ΔHcとの関係である。
Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Formula (I) which is an important control factor in the invention of the present application or
The thermal characteristics of the thermoplastic resin composition represented by (II) are a relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature increase.

【0028】この熱特性は、JIS K 7121、J
IS K7122に準じた示差走査熱量測定で昇温した
ときのDSC曲線に現れる2つの転移熱の測定値、結晶
融解熱量ΔHm(J/g)と結晶化熱量ΔHc(J/
g)の値から上記式(I)または(II)によって算出され
る。
This thermal characteristic is based on JIS K 7121, J
Measured values of two transition heats appearing in the DSC curve when the temperature is raised by the differential scanning calorimetry according to IS K7122, the heat of fusion of crystal ΔHm (J / g) and the heat of crystallization ΔHc (J /
It is calculated from the value of g) by the above formula (I) or (II).

【0029】これらの式の値は、原料ポリマーの種類や
分子量、組成物の配合比率にも依存しているが、フィル
ム状絶縁体の成形・加工条件の大きく影響する。すなわ
ち、フィルム状に製膜する際に、原料ポリマーを溶融さ
せた後、速やかに冷却することにより、前記式の値を小
さくすることができる。また、これらの数値は、各工程
でかかる熱履歴を調整することにより、制御することが
できる。ここでいう熱履歴とは、フィルム状絶縁体の温
度と、その温度になっていた時間を指し、温度が高いほ
ど、この数値は大きくなる傾向がある。
Although the values of these formulas depend on the kind and molecular weight of the raw material polymer and the compounding ratio of the composition, they greatly influence the molding and processing conditions of the film-shaped insulator. That is, when forming a film, the value of the above formula can be reduced by melting the raw material polymer and then rapidly cooling it. Further, these numerical values can be controlled by adjusting the thermal history applied in each step. The thermal history as used herein refers to the temperature of the film-shaped insulator and the time during which the temperature is maintained, and the higher the temperature, the larger this numerical value tends to be.

【0030】前記式(I) で示される値が、加熱加圧の以
前に0.5を越えていると、熱可塑性樹脂組成物はすで
に結晶性が高い状態にあるため、その後の平滑プレス
(例えば230℃、50kgf/cm2 、10分間)加圧条件
で導体回路2´を絶縁層2の表面に完全に埋め込むこと
が困難になり、効率よく短時間で完全な平滑面を形成す
ることができない。また、加熱加圧を熱可塑性樹脂組成
物の結晶融解温度を越える高温にする必要があれば、回
路パターンが流れて位置ずれが生じ、製造効率も低下す
ることになる。
When the value represented by the above formula (I) exceeds 0.5 before the heating and pressurization, the thermoplastic resin composition is already in a high crystallinity state, so that the smooth press ( For example, it becomes difficult to completely embed the conductor circuit 2'on the surface of the insulating layer 2 under a pressurizing condition (230 ° C., 50 kgf / cm 2 , 10 minutes), and it is possible to efficiently form a complete smooth surface in a short time. Can not. Further, if it is necessary to heat and pressurize at a high temperature exceeding the crystal melting temperature of the thermoplastic resin composition, the circuit pattern will flow and the position will be displaced, resulting in a decrease in manufacturing efficiency.

【0031】そして、フィルム状絶縁体の熱特性は、表
面平滑化のための加熱加圧後は、前記式(II)の関係を満
たす必要がある。
The thermal characteristics of the film-like insulator must satisfy the relationship of the above formula (II) after heating and pressurizing for surface smoothing.

【0032】なぜなら、前記式(II)の値が、0.7未満
の低い値では、絶縁層の結晶化が不充分であり、ハンダ
耐熱性(通常260℃)を保てないからである。
This is because if the value of the formula (II) is as low as less than 0.7, the crystallization of the insulating layer is insufficient and the solder heat resistance (usually 260 ° C.) cannot be maintained.

【0033】表面平滑配線板Aを製造する際に用いるフ
ィルム状絶縁体1の製造方法は、例えばTダイを用いた
押出キャスト法やカレンダー法などの周知の製膜方法を
採用すればよく、特に限定された製造方法を採る必要は
ない。なお、製膜性や安定生産性の面からTダイを用い
た押出キャスト法を採用することが好ましい。押出キャ
スト法の成形温度は、組成物の流動特性や製膜特性によ
って適宜に調節するが、概ね組成物の融点以上、430
℃以下である。
As a method for producing the film-like insulator 1 used for producing the surface smooth wiring board A, a well-known film-forming method such as an extrusion casting method using a T die or a calendering method may be adopted, and particularly, It is not necessary to use a limited manufacturing method. From the viewpoint of film forming property and stable productivity, it is preferable to adopt the extrusion casting method using a T die. The molding temperature of the extrusion casting method is appropriately adjusted depending on the flow characteristics and film forming characteristics of the composition, but is generally not less than the melting point of the composition and 430
It is below ℃.

【0034】この発明に用いるフィルム状絶縁体(また
は絶縁層)の第1の成分であるポリアリールケトン樹脂
は、その構造単位に芳香核結合、エーテル結合およびケ
トン結合を含む熱可塑性樹脂であり、すなわち、フェニ
ルケトンとフェニルエーテルの組み合わせ構造からなる
耐熱性の結晶性高分子である。
The polyarylketone resin, which is the first component of the film-like insulator (or insulating layer) used in the present invention, is a thermoplastic resin having a structural unit containing an aromatic nucleus bond, an ether bond and a ketone bond, That is, it is a heat-resistant crystalline polymer having a combination structure of phenyl ketone and phenyl ether.

【0035】ポリアリールケトン樹脂の代表例として
は、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリエーテルケトンケトンなどがあり、この発明で
は、下記の化1の式に示されるポリエーテルエーテルケ
トンを好適に使用できる。
Representative examples of the polyarylketone resin include polyetherketone, polyetheretherketone, polyetherketoneketone, etc. In the present invention, the polyetheretherketone represented by the following chemical formula 1 is suitable. Can be used.

【0036】[0036]

【化1】 [Chemical 1]

【0037】フィルム状絶縁体を構成する第2の成分で
ある非晶性ポリエーテルイミド樹脂は、その構造単位に
芳香核結合、エーテル結合およびイミド結合を含む非晶
性熱可塑性樹脂であり、この発明において下記の化2の
式に示されるポリエーテルイミド樹脂を適用できる。
The amorphous polyetherimide resin which is the second component constituting the film-like insulator is an amorphous thermoplastic resin containing an aromatic nucleus bond, an ether bond and an imide bond in its structural unit. In the invention, the polyetherimide resin represented by the following chemical formula 2 can be applied.

【0038】[0038]

【化2】 [Chemical 2]

【0039】そして、この発明に用いるフィルム状絶縁
体(または絶縁層)は、上記した2種類の耐熱性樹脂を
前記所定の割合でブレンドした熱可塑性樹脂組成物から
なり、示差走査熱量測定で昇温した時に測定されるガラ
ス転移温度が150〜230℃のものである。
The film-like insulator (or insulating layer) used in the present invention is composed of a thermoplastic resin composition prepared by blending the above-mentioned two kinds of heat-resistant resins in the above-mentioned predetermined proportions, and is measured by differential scanning calorimetry. The glass transition temperature measured when heated is 150 to 230 ° C.

【0040】熱可塑性樹脂組成物の配合割合を限定する
理由は、ポリアリールケトン樹脂が65重量%を越えて
多量に配合されたり、ポリエーテルイミド樹脂の配合割
合が35重量%未満の少量の配合割合では、組成物の結
晶化速度が速くなり、導体箔と熱融着性が低下するから
であり、結晶性ポリアリルエーテルケトン樹脂が35重
量%未満であったり、非晶性ポリエーテルイミド樹脂が
65重量%を超えると、組成物の結晶化度が低くなり、
たとえ結晶融解ピーク温度が260℃以上であってもハ
ンダ耐熱性が低下するので、好ましくないからである。
The reason for limiting the blending ratio of the thermoplastic resin composition is that the polyarylketone resin is blended in a large amount exceeding 65% by weight, or the polyetherimide resin is blended in a small amount of less than 35% by weight. This is because the crystallization rate of the composition is increased and the heat fusion property with the conductor foil is reduced in proportion, so that the content of the crystalline polyallyl ether ketone resin is less than 35% by weight or the amorphous polyetherimide resin is used. When it exceeds 65% by weight, the crystallinity of the composition becomes low,
This is because even if the crystal melting peak temperature is 260 ° C. or higher, the solder heat resistance is lowered, which is not preferable.

【0041】この発明に用いるフィルム状絶縁体を構成
する樹脂組成物には、この発明の効果を阻害しない程度
に、他の樹脂その他の添加剤を配合してもよく、その具
体例としては、熱安定剤、紫外線吸収剤、光安定剤、着
色剤、滑剤、難燃剤、無機フィラーなどが挙げられる。
また、フィルム状絶縁体の表面に、ハンドリング性改良
等のためのエンボス化工やコロナ処理などを施してもよ
い。
The resin composition constituting the film-like insulator used in the present invention may be blended with other resins and other additives to such an extent that the effects of the present invention are not impaired. Examples include heat stabilizers, ultraviolet absorbers, light stabilizers, colorants, lubricants, flame retardants, and inorganic fillers.
Further, the surface of the film-shaped insulator may be subjected to embossing or corona treatment for improving the handling property.

【0042】この発明に用いる導体箔としては、例えば
銅、金、銀、アルミニウム、ニッケル、錫などのように
厚さ8〜70μm程度の金属箔が挙げられる。このう
ち、表面を黒色酸化処理などの化成処理した銅箔が特に
好ましい。
Examples of the conductor foil used in the present invention include metal foils having a thickness of about 8 to 70 μm, such as copper, gold, silver, aluminum, nickel and tin. Among these, a copper foil whose surface is subjected to chemical conversion treatment such as black oxidation treatment is particularly preferable.

【0043】この発明に用いるフィルム状絶縁体の厚み
は、この発明に用いる導体箔の2倍以上の厚みをもつこ
とが好ましい。2倍未満では、平滑プレス工程(例えば
230℃、50kgf/cm2 、10分間)の加圧条件で導体
回路2´を絶縁層2の表面に完全に埋め込むことが困難
になり、完全な平滑面を短時間で効率よく形成できない
からである。
The thickness of the film-like insulator used in the present invention is preferably twice or more the thickness of the conductor foil used in the present invention. If it is less than 2 times, it becomes difficult to completely embed the conductor circuit 2'into the surface of the insulating layer 2 under the pressure condition of the smooth press step (for example, 230 ° C, 50 kgf / cm 2 , 10 minutes), and it becomes a perfect smooth surface. Because it cannot be formed efficiently in a short time.

【0044】導体箔は、接着効果を高めるために、フィ
ルム状絶縁体との接触面(重ねる面)側を予め化学的ま
たは機械的に粗化したものを用いることが好ましい。表
面粗化処理された導体箔の具体例としては、電解銅箔を
製造する際に電気化学的に処理された粗化銅箔などが挙
げられる。
In order to enhance the adhesive effect, it is preferable to use, as the conductor foil, one in which the contact surface (overlapping surface) side with the film-shaped insulator is chemically or mechanically roughened in advance. Specific examples of the surface-roughened conductor foil include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil.

【0045】[0045]

【実施例および比較例】まず、この発明のフィルム状絶
縁体の条件を満足するフィルム状絶縁体の製造例1〜3
およびこれに対比する参考例1、2の製造方法およびこ
れらの物性について以下に説明する。
EXAMPLES AND COMPARATIVE EXAMPLES First, Production Examples 1 to 3 of film-like insulator satisfying the conditions of the film-like insulator of the present invention.
The production methods of Reference Examples 1 and 2 and the physical properties thereof will be described below.

【0046】〔フィルム状絶縁体の製造例1〕ポリエー
テルエーテルケトン樹脂(ビクトレックス社製:PEE
K381G)(以下の文中または表1、2において、P
EEKと略記する。)60重量%と、ポリエーテルイミ
ド樹脂(ゼネラルエレクトリック社製:Ultem−1
000)(以下の文中または表1、2において、PEI
と略記する。)40重量%をドライブレンドした。この
混合組成物を押出成形し、厚さ25μmのフィルム状絶
縁体を製造した。
[Production Example 1 of Film Insulator] Polyether ether ketone resin (manufactured by Victorex Co .: PEE)
K381G) (P in the following text or Tables 1 and 2
Abbreviated as EEK. ) 60% by weight, and a polyetherimide resin (manufactured by General Electric Co .: Ultem-1)
000) (in the following text or in Tables 1 and 2, PEI
Is abbreviated. ) 40 wt% was dry blended. This mixed composition was extruded to produce a film-like insulator having a thickness of 25 μm.

【0047】〔フィルム状絶縁体の製造例2〕製造例1
において、混合組成物の配合割合をPEEK40重量
%、PEI60重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 2 of Film Insulator] Production Example 1
In the above, a film-shaped insulator was manufactured in the same manner except that the mixing ratio of the mixed composition was 40% by weight of PEEK and 60% by weight of PEI.

【0048】〔フィルム状絶縁体の製造例3〕製造例1
において、混合組成物の配合割合をPEEK30重量
%、PEI70重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 3 of Film Insulator] Production Example 1
In the same manner, except that the mixing ratio of the mixed composition was 30% by weight of PEEK and 70% by weight of PEI, a film-like insulator was manufactured in the same manner.

【0049】〔フィルム状絶縁体の参考例1、2〕製造
例1において、混合組成物の配合割合をPEEK100
重量%(参考例1)、またはPEI100重量%(参考
例2)としたこと以外は、同様にしてそれぞれのフィル
ム状絶縁体を製造した。
[Reference Examples 1 and 2 of Film Insulator] In Production Example 1, the mixing ratio of the mixed composition was PEEK100.
Each film-like insulator was manufactured in the same manner except that the weight percentage (Reference Example 1) or the PEI was set to 100 wt% (Reference Example 2).

【0050】上記製造例および参考例で得られたフィル
ム状絶縁体の物性を調べるため、以下の(1) および(2)
に示す項目を測定し、または測定値から計算値を算出し
た。これらの結果は、表1にまとめて示した。
In order to investigate the physical properties of the film-like insulators obtained in the above Production Examples and Reference Examples, the following (1) and (2)
The items shown in 1 were measured, or the calculated values were calculated from the measured values. The results are summarized in Table 1.

【0051】(1) ガラス転移温度(℃)、結晶化温度
(℃)、結晶融解ピーク温度(℃) JIS K7121に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時の上記各温度をサーモグラムから
求めた。
(1) Glass transition temperature (° C.), crystallization temperature (° C.), crystal melting peak temperature (° C.) According to JIS K7121, a 10 mg sample was used and heated with DSC-7 manufactured by Perkin Elmer. Speed 1
Each of the above temperatures when the temperature was raised at 0 ° C./min was determined from the thermogram.

【0052】(2) (ΔHm−ΔHc)/ΔHm JIS K7122に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時のサーモグラムから結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、上記式の値を算出した。
(2) (ΔHm-ΔHc) / ΔHm According to JIS K7122, 10 mg of a sample was used, and the heating rate was 1 using Perkin Elmer's DSC-7.
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were determined from the thermogram when the temperature was raised at 0 ° C./min, and the value of the above formula was calculated.

【0053】[0053]

【表1】 [Table 1]

【0054】〔実施例1〕製造例1で得られた厚さ25
μmのフィルム状絶縁体の両面に、厚さ12μmの電気
化学的に表面を粗面化した電解銅箔を積層し、真空雰囲
気下760mmHg、プレス温度200℃、プレス圧力
30kg/cm2 、プレス時間10分の条件で熱融着さ
せ、両面銅張積層板を作製した。
Example 1 Thickness 25 obtained in Production Example 1
A 12 μm-thick electrochemically roughened electrolytic copper foil is laminated on both sides of a film-like insulator of μm, 760 mmHg in vacuum atmosphere, press temperature 200 ° C., press pressure 30 kg / cm 2 , press time Heat fusion was performed under the condition of 10 minutes to produce a double-sided copper clad laminate.

【0055】作製した両面銅張積層板のフィルム状絶縁
体に対し、前記 (2)(ΔHm−ΔHc)/ΔHmの測定
試験を前記した同じ方法で行ない、式値を表2に示し
た。
The film-like insulator of the double-sided copper-clad laminate thus prepared was subjected to the measurement test of (2) (ΔHm-ΔHc) / ΔHm by the same method as described above, and the formula values are shown in Table 2.

【0056】また、上記のようにして得られた両面銅張
積層板に対して、後述する(3) の方法で接着強度を調
べ、この結果を表2中に併記した。
The adhesive strength of the double-sided copper-clad laminate obtained as described above was examined by the method (3) described later, and the results are also shown in Table 2.

【0057】また、上記のようにして得られた両面銅張
積層板にサブトラクティブ法によって回路パターンを形
成し、導電性回路をエッチングにより形成したプリント
配線板を製造した。
A circuit pattern was formed on the double-sided copper clad laminate obtained as described above by a subtractive method, and a conductive circuit was formed by etching to manufacture a printed wiring board.

【0058】そして、このようにして得られたプリント
配線板の表裏両面に、図1(e)に示すように、ステン
レス鋼製の平滑板7を重ねると共に真空雰囲気下760
mmHgでプレス温度220℃、プレス圧力30kg/c
m2、プレス時間20分の熱圧条件で平滑プレスを実施
し、絶縁層1´が前記の式(II)で示される関係を満たす
熱可塑性樹脂組成物である表面平滑基板を製造した。
Then, as shown in FIG. 1 (e), a smooth plate 7 made of stainless steel is placed on both front and back surfaces of the printed wiring board thus obtained, and a vacuum atmosphere 760 is provided.
mmHg, press temperature 220 ℃, press pressure 30kg / c
Smooth pressing was carried out under a hot press condition of m 2 for a pressing time of 20 minutes to produce a surface smooth substrate which is a thermoplastic resin composition in which the insulating layer 1 ′ satisfies the relationship represented by the above formula (II).

【0059】得られた表面平滑プリント配線板に対し
て、前記 (2)(ΔHm−ΔHc)/ΔHmの測定試験を
行なうと共に、室温における銅箔回路とフィルム状絶縁
体との接着強度を以下の(3) の試験方法で調べ、さらに
ハンダ耐熱性を下記の試験方法で調べ、これらの結果を
表2中に示した。
The surface smooth printed wiring board thus obtained was subjected to the measurement test of (2) (ΔHm-ΔHc) / ΔHm, and the adhesive strength between the copper foil circuit and the film-like insulator at room temperature was determined as follows. The test method of (3) was examined, and the solder heat resistance was examined by the following test method. The results are shown in Table 2.

【0060】(3) 接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、FPC素板の銅箔の銅箔の引き剥がし強さを測定
し、その平均値をkgf/10cmで示した。
(3) Adhesive Strength The peel strength of the copper foil of the copper foil of the FPC blank was measured in accordance with the normal peel strength of JIS C6481, and the average value was shown in kgf / 10 cm. .

【0061】(4) ハンダ耐熱性 JIS C6481の常態のハンダ耐熱性に準拠し、2
60℃のハンダ浴に試験片の銅箔側がハンダ浴に接触す
る状態で10秒間浮かべた後、浴から取り出して室温ま
で放冷し、試験片の膨れや剥がれ箇所の有無を目視観察
し、良否を評価した。
(4) Solder heat resistance According to JIS C6481 normal solder heat resistance, 2
Floating in a solder bath at 60 ° C for 10 seconds with the copper foil side of the test piece in contact with the solder bath, taking out of the bath and allowing to cool to room temperature, and visually observing the presence or absence of swelling and peeling points of the test piece, Was evaluated.

【0062】[0062]

【表2】 [Table 2]

【0063】〔実施例2〕実施例1において、フィルム
状絶縁体として製造例2を使用し、両面銅張積層板を作
製する際のプレス温度を225℃、平滑基板を作製する
際の熱プレス条件を温度240℃、プレス時間を30分
に変更したこと以外は実施例1と同様にして平滑プリン
ト配線板を作製し、試験(3) 〜(4) の評価を表2中に併
記した。
Example 2 In Example 1, using Production Example 2 as the film-shaped insulator, the pressing temperature for producing a double-sided copper-clad laminate was 225 ° C., and the hot pressing for producing a smooth substrate. A smooth printed wiring board was prepared in the same manner as in Example 1 except that the conditions were changed to a temperature of 240 ° C. and a pressing time of 30 minutes, and the evaluations of tests (3) to (4) are also shown in Table 2.

【0064】〔比較例1〕実施例1において、両面銅張
積層板を作製する際のプレス温度を215℃に変更した
こと以外は実施例1と同様にして平滑プリント配線板を
作製し、これに対する試験(3) 〜(4) の評価を表2中に
併記した。
[Comparative Example 1] A smooth printed wiring board was prepared in the same manner as in Example 1 except that the pressing temperature in preparing the double-sided copper-clad laminate was changed to 215 ° C. The evaluations of the tests (3) to (4) for the above are also shown in Table 2.

【0065】〔比較例2〕実施例2において、平滑プリ
ント配線板のプレス温度を230℃、プレス時間を10
分に変更したこと以外は実施例2と同様にして平滑プリ
ント配線板を作製し、試験(3) 〜(4) の評価を表2中に
併記した。
Comparative Example 2 In Example 2, the press temperature of the smooth printed wiring board was 230 ° C. and the press time was 10
A smooth printed wiring board was prepared in the same manner as in Example 2 except that the amount was changed, and the evaluations of tests (3) to (4) are also shown in Table 2.

【0066】〔比較例3〕実施例1において、フィルム
状絶縁体として製造例3を使用し、両面銅張積層板を作
製する際のプレス温度を240℃、プレス時間を20分
に変更したこと以外は実施例1と同様にして平滑プリン
ト配線板を作製し、これに対する試験(3)〜(4) の評価
を表2中に併記した。
[Comparative Example 3] Production Example 3 was used as the film-like insulator in Example 1, but the pressing temperature and the pressing time were changed to 240 ° C and 20 minutes when the double-sided copper-clad laminate was prepared. A smooth printed wiring board was prepared in the same manner as in Example 1 except for the above, and the evaluations of the tests (3) to (4) for this were also shown in Table 2.

【0067】表2の結果からも明らかなように、実施例
1の両面銅張積層板の接着強度は、0.7kgf/10cmと
いう良好な値であり、(ΔHm−ΔHc)/ΔHmの値
も0.31という適正値であった。また、平滑プリント
配線板は、導体回路が均一な深さに埋め込まれた精密な
ものであり、(ΔHm−ΔHc)/ΔHmの値も0.9
6という適正値であり、接着密度は、1.5kgf/10cm
という良好な値であった。また、ハンダ耐熱性試験の結
果は、基板に膨れや剥がれが一切観察されないという良
好な結果であった。
As is clear from the results in Table 2, the double-sided copper-clad laminate of Example 1 has a good adhesive strength of 0.7 kgf / 10 cm, and the value of (ΔHm-ΔHc) / ΔHm is also It was a proper value of 0.31. Further, the smooth printed wiring board is a precise one in which the conductor circuits are embedded in a uniform depth, and the value of (ΔHm-ΔHc) / ΔHm is 0.9.
It is an appropriate value of 6, and the adhesion density is 1.5 kgf / 10 cm.
It was a good value. The results of the solder heat resistance test were good results in that no swelling or peeling was observed on the substrate.

【0068】実施例2の両面銅張積層板の接着強度も
1.3kgf/10cmという良好な値であり、ハンダ耐熱性
試験の結果も良好であり、回路パターン近傍への樹脂の
回り込みの状態も良好であった。
The adhesive strength of the double-sided copper-clad laminate of Example 2 was a good value of 1.3 kgf / 10 cm, the result of the solder heat resistance test was also good, and the state of the resin wrapping around the circuit pattern was also good. It was good.

【0069】これに対して、比較例1の平滑プリント配
線板は、層間の密着性が不充分であり、ハンダ耐熱性も
膨れや剥がれが観察されて不良であった。
On the other hand, in the smooth printed wiring board of Comparative Example 1, the adhesion between the layers was insufficient, and the solder heat resistance was poor because swelling and peeling were observed.

【0070】また、比較例2の平滑プリント配線板は、
層間の密着性はあったが、ハンダ耐熱性は不良であっ
た。
The smooth printed wiring board of Comparative Example 2 is
There was adhesion between the layers, but the solder heat resistance was poor.

【0071】また、比較例3は、両面銅張積層板の銅箔
とフィルムの接着強度は、0.2kgf/10cmという低い
値であり、エッチング工程において回路が剥離した。
In Comparative Example 3, the adhesive strength between the copper foil and the film of the double-sided copper-clad laminate was as low as 0.2 kgf / 10 cm, and the circuit was peeled off in the etching process.

【0072】[0072]

【発明の効果】この発明の表面平滑配線板は、以上説明
したように、耐熱性に優れた所定の熱可塑性樹脂組成物
からなる絶縁層に導体回路が平滑面を形成するように加
熱加圧して埋め込まれており、ハンダ溶解温度に耐える
耐熱性、耐薬品性および電気絶縁性を有すると共に、平
滑プレス後に導体箔が埋め込まれた状態で残留応力が発
生せず、基板が歪まないという利点がある。
As described above, the surface smooth wiring board of the present invention is heated and pressed so that a conductor circuit forms a smooth surface on an insulating layer made of a predetermined thermoplastic resin composition having excellent heat resistance. It has heat resistance, chemical resistance, and electrical insulation that can withstand the solder melting temperature, and has the advantage that residual stress does not occur when the conductor foil is embedded after smooth pressing and the board does not distort. is there.

【0073】そして、この発明の表面平滑配線板の製造
方法は、250℃未満の可及的に低い加熱温度でも絶縁
層に導体箔を埋め込んで表面平滑化することが可能な製
造方法であり、しかも耐熱性(ハンダ耐熱性)、耐薬品
性、電気特性が備わっている表面平滑配線板を簡略な製
造工程で効率良く製造できるという利点がある。
The surface smooth wiring board manufacturing method of the present invention is a manufacturing method capable of embedding a conductor foil in an insulating layer and smoothing the surface even at a heating temperature as low as 250 ° C. Moreover, there is an advantage that a surface smooth wiring board having heat resistance (solder heat resistance), chemical resistance, and electric characteristics can be efficiently manufactured by a simple manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の表面平滑配線板の製造工程を示す模
式図
FIG. 1 is a schematic view showing a manufacturing process of a surface smooth wiring board according to an embodiment.

【符号の説明】[Explanation of symbols]

1 フィルム状絶縁体 1´絶縁層 2 導体箔 2´導体回路 3 孔 4 導電性ペースト 5 両面銅張積層板 6 プリント配線板 7 平滑板 A 表面平滑配線板 1 Film-like insulator 1'insulating layer 2 conductor foil 2'conductor circuit 3 holes 4 Conductive paste 5 Double-sided copper clad laminate 6 printed wiring board 7 Smooth plate A surface smooth wiring board

フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 1/03 H05K 1/03 610N 3/38 3/38 B (72)発明者 谷口 浩一郎 滋賀県長浜市三ッ矢町5番8号 三菱樹 脂株式会社長浜工場内 (72)発明者 野本 薫 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (72)発明者 岩間 弘泰 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (56)参考文献 特開 平6−21619(JP,A) 特開 平2−269765(JP,A) 特開 平5−310951(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05K 1/03 H05K 1/05 H05K 3/00 H05K 3/22 H05K 3/28 H05K 3/44 H05K 3/46 C08J 5/18 C08L 71/10 C08L 73/00 C08L 79/08 Continuation of front page (51) Int.Cl. 7 Identification code FI H05K 1/03 H05K 1/03 610N 3/38 3/38 B (72) Inventor Koichiro Taniguchi 5-8 Mitsuyacho, Nagahama-shi, Shiga Mitsubishi Tree Fat Co., Ltd. Nagahama Plant (72) Inventor Kaoru Nomoto 1-1, Showa-cho, Kariya city, Aichi prefecture, Denso Co., Ltd. (72) Inventor Hiroyasu Iwama 1-1-1-1, Showa-machi, Kariya city, Aichi prefecture, Denso company (56) ) References JP-A-6-21619 (JP, A) JP-A-2-269765 (JP, A) JP-A-5-310951 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) H05K 1/03 H05K 1/05 H05K 3/00 H05K 3/22 H05K 3/28 H05K 3/44 H05K 3/46 C08J 5/18 C08L 71/10 C08L 73/00 C08L 79/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁層の表面と、この絶縁層に埋め込ん
で固定された導体回路の表面とが同じ高さに配置されて
いる表面平滑配線板において、 前記絶縁層が、結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と、非晶性ポリエ
ーテルイミド樹脂35〜65重量%とを含有し、示差走
査熱量測定で昇温した時に測定されるガラス転移温度が
150〜230℃の熱可塑性樹脂組成物からなり、前記
絶縁層に導体箔を重ねて下記の式 (I) で示される結晶融
解熱量ΔHmと昇温中の結晶化により発生する結晶化熱
量ΔHcとの関係を満たすように熱融着し、さらに熱融
着された導体箔をエッチングして形成された導体回路を
結晶融解熱量ΔHmと昇温中の結晶化により発生する結
晶化熱量ΔHcとの関係が下記の式(II)で示される関係
を満たすように加熱加圧して絶縁層の表面と導体回路の
表面を同じ高さに配置したことを特徴とする表面平滑配
線板。 (I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 (II) : 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
1. A surface smooth wiring board in which a surface of an insulating layer and a surface of a conductor circuit embedded and fixed in the insulating layer are arranged at the same height, wherein the insulating layer has a crystal melting peak temperature 260. ℃ and polyaryl ketone resin 65 to 35 wt% or more, and contains a 35 to 65 wt% amorphous polyetherimide resin, a glass transition temperature which is measured when the temperature was raised by differential scanning calorimetry 150 to 230 Composed of a thermoplastic resin composition at
The conductor foil is placed on the insulating layer and the crystal fusion expressed by the following formula (I) is applied.
Heat of crystallization ΔHm and heat of crystallization generated by crystallization during heating
Heat fusion to meet the relationship with the amount ΔHc,
The relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization of the conductor circuit formed by etching the deposited conductor foil is shown by the following formula (II). Apply heat and pressure to satisfy the relationship between the surface of the insulating layer and the conductor circuit.
A surface smooth wiring board characterized in that the surfaces are arranged at the same height . Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (II) : [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項2】 結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と非晶性ポリエー
テルイミド樹脂35〜65重量%とを含有し、示差走査
熱量測定で昇温した時に測定されるガラス転移温度が1
50〜230℃の熱可塑性樹脂組成物からなるフィルム
状絶縁体を設け、このフィルム状絶縁体に導体箔を重ね
て前記熱可塑性樹脂組成物が下記の式(I) で示される結
晶融解熱量ΔHmと昇温中の結晶化により発生する結晶
化熱量ΔHcとの関係を満たすように熱融着し、次いで
熱融着された導体箔をエッチングして導体回路を形成
し、次いで前記熱可塑性樹脂組成物が下記の式(II)で示
される関係を満たすように加熱加圧し、その際に前記導
体回路の表面に平滑版を圧接して導体回路の表面と前記
フィルム状絶縁体の表面とを同じ高さに均すことからな
る表面平滑配線板の製造方法。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
2. Containing 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 35 to 65% by weight of an amorphous polyetherimide resin, and measured when the temperature is raised by differential scanning calorimetry. Glass transition temperature is 1
A film-like insulator made of a thermoplastic resin composition at 50 to 230 ° C. is provided, a conductor foil is laid on the film-like insulator, and the thermoplastic resin composition has a heat of crystal fusion ΔHm represented by the following formula (I). And heat fusion so as to satisfy the crystallization heat amount ΔHc generated by crystallization during temperature rise, and then the heat-fused conductor foil is etched to form a conductor circuit, and then the thermoplastic resin composition is used. The object is heated and pressed so as to satisfy the relationship represented by the following formula (II), in which case the surface of the conductor circuit is pressed against the surface of the conductor circuit to make the surface of the conductor circuit the same as the surface of the film-like insulator. A method for producing a surface-smoothed wiring board, which comprises flattening the surface. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項3】 フィルム状絶縁体に重ねる導体箔が、表
面粗化されている導体箔である請求項2に記載の表面平
滑配線板の製造方法。
3. The method for producing a surface-smoothed wiring board according to claim 2, wherein the conductor foil laminated on the film-shaped insulator is a conductor foil whose surface is roughened.
【請求項4】 ポリアリールケトン樹脂が、ポリエーテ
ルエーテルケトン樹脂である請求項2または3に記載の
表面平滑配線板の製造方法。
4. The method for producing a surface smooth wiring board according to claim 2, wherein the polyarylketone resin is a polyetheretherketone resin.
JP08428299A 1999-03-26 1999-03-26 Surface smooth wiring board and its manufacturing method Expired - Fee Related JP3514656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08428299A JP3514656B2 (en) 1999-03-26 1999-03-26 Surface smooth wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08428299A JP3514656B2 (en) 1999-03-26 1999-03-26 Surface smooth wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000277875A JP2000277875A (en) 2000-10-06
JP3514656B2 true JP3514656B2 (en) 2004-03-31

Family

ID=13826116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08428299A Expired - Fee Related JP3514656B2 (en) 1999-03-26 1999-03-26 Surface smooth wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3514656B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663946B2 (en) 2001-02-28 2003-12-16 Kyocera Corporation Multi-layer wiring substrate
JP4401070B2 (en) * 2002-02-05 2010-01-20 ソニー株式会社 Multilayer wiring board with built-in semiconductor device and manufacturing method thereof
JP4181778B2 (en) 2002-02-05 2008-11-19 ソニー株式会社 Wiring board manufacturing method
CN100415831C (en) * 2002-08-07 2008-09-03 三菱树脂株式会社 Heat resistant film and its metal laminate
JP4200285B2 (en) * 2003-04-02 2008-12-24 パナソニック株式会社 Circuit board manufacturing method
JP4701735B2 (en) 2004-07-09 2011-06-15 株式会社豊田自動織機 Sliding member
JP4764688B2 (en) * 2004-10-22 2011-09-07 日本無線株式会社 Triplate type planar slot antenna
JP2008004660A (en) * 2006-06-21 2008-01-10 Tanaka Kikinzoku Kogyo Kk Cut wiring board with blind hole, and its manufacturing method

Also Published As

Publication number Publication date
JP2000277875A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
JP5119401B2 (en) Flexible laminate having thermoplastic polyimide layer and method for producing the same
JP3514731B2 (en) Manufacturing method of three-dimensional printed wiring board
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP2007268917A (en) Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
JP3514667B2 (en) Heat fusible insulating sheet
JP2004358677A (en) Method for manufacturing laminate
JP3514668B2 (en) Coverlay film
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH10209583A (en) Flexible metal foil polyimide laminate
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP3954831B2 (en) Method for producing heat-resistant flexible laminate
JP4248697B2 (en) Heat sealable insulation sheet
JPH04105392A (en) Flexible printed circuit board and manufacture thereof
JP3034838B2 (en) Method for producing double-sided conductor polyimide laminate
JP3275782B2 (en) Manufacturing method of laminated board
JP2000049457A (en) Manufacture of multilayer board
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board
JP3574092B2 (en) Manufacturing method of heat resistant flexible laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees