JP3514018B2 - Method for producing high-strength and high-toughness martensitic non-heat treated steel - Google Patents

Method for producing high-strength and high-toughness martensitic non-heat treated steel

Info

Publication number
JP3514018B2
JP3514018B2 JP34794895A JP34794895A JP3514018B2 JP 3514018 B2 JP3514018 B2 JP 3514018B2 JP 34794895 A JP34794895 A JP 34794895A JP 34794895 A JP34794895 A JP 34794895A JP 3514018 B2 JP3514018 B2 JP 3514018B2
Authority
JP
Japan
Prior art keywords
steel
forging
strength
heat treated
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34794895A
Other languages
Japanese (ja)
Other versions
JPH09170046A (en
Inventor
広明 吉田
正道 河野
幸宏 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP34794895A priority Critical patent/JP3514018B2/en
Publication of JPH09170046A publication Critical patent/JPH09170046A/en
Application granted granted Critical
Publication of JP3514018B2 publication Critical patent/JP3514018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、フランジコンパ
ニオン,コンロッド,スピンドル等の自動車用部品とし
て好適に使用可能な高強度−高靱性マルテンサイト型非
調質鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength, high-toughness martensitic non-heat treated steel suitable for use as automobile parts such as flange companions, connecting rods and spindles.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
フランジコンパニオン,コンロッド,スピンドル等の部
品はJIS−S45C,SCR420,SCM420等
を熱間鍛造した後に所定の強度と靱性を確保するために
焼入れ−焼戻し処理を行い製造していた。しかしながら
この場合、強度と靱性は確保できるもののリードタイム
が長くなるといった問題があった。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Parts such as flange companions, connecting rods, and spindles were manufactured by hot forging JIS-S45C, SCR420, SCM420, etc., and then performing quenching-tempering treatment to ensure predetermined strength and toughness. However, in this case, although the strength and toughness can be secured, there is a problem that the lead time becomes long.

【0003】一方、現在積極的に展開されている非調質
鋼を用いた場合、リードタイムの点では優れているが十
分な強度と靱性が得られない問題がある。
On the other hand, when a non-heat treated steel, which is being actively developed at present, is used, there is a problem in that sufficient strength and toughness cannot be obtained although it is excellent in terms of lead time.

【0004】これらの問題を解決するために、近年、制
御圧延技術に代表される加工熱処理技術の一つとしてオ
ースフォーミングという手法が検討されているが、一般
構造用鋼に対してこれを適用する場合、加工時にフェラ
イト変態が極端に促進され、得られる組織が不完全にな
ってしまう。このため従来の成分系の構造用鋼では十分
な強度と靱性が得られなかった。
In order to solve these problems, in recent years, a technique called ausforming has been studied as one of the thermomechanical treatment techniques represented by the controlled rolling technique, and it is applied to general structural steel. In this case, ferrite transformation is extremely promoted during processing, resulting in an incomplete microstructure. For this reason, sufficient strength and toughness have not been obtained with conventional structural steels.

【0005】しかも構造用鋼に対してオースフォーミン
グを適用した場合、鍛造加工時に変形抵抗が増加してし
まうため、鍛造加工時に不都合が発生する等オースフォ
ーミングを適用できる構造用鋼はほとんどないのが実情
である。
Further, when ausforming is applied to structural steel, deformation resistance increases during forging, so that there are few structural steels to which ausforming can be applied, such as inconvenience occurring during forging. It's a reality.

【0006】一方上記部品を温間鍛造にて製造する場
合、変形抵抗を下げるために焼鈍し等の軟化熱処理を行
う必要があり、材料コストを上昇させてしまう問題があ
る。
On the other hand, when the above-mentioned parts are manufactured by warm forging, it is necessary to perform softening heat treatment such as annealing in order to reduce the deformation resistance, which causes a problem of increasing the material cost.

【0007】[0007]

【課題を解決するための手段】本願の発明はこのような
課題を解決するために開発されたものである。而して本
願の発明の製造方法は、重量%で、0.02≦C≦0.
15%,0.08≦Si≦1.0%,N≦0.03%
Mn≦3.0%,Cr≦3.0%,Al≦0.2%,
0.0008≦B≦0.01%,Ti≦0.06%であ
り、若しくは更にNi≦4.0%,Cu≦1.0%,M
o≦2.0%,W≦0.5%,Zr≦0.5%,V≦
0.3%,Nb≦0.08%の一種以上を含有し、下記
式で表される焼入れ性指数H≧3.5であって、残部が
実質的にFeから成る鋼素材を、830℃以上に加熱し
てオーステナイト化させた後、30℃/分以上の平均冷
却速度で550〜900℃の範囲まで冷却した上で鍛造
加工し、しかる後100℃/分以上の平均冷却速度でM
f点である300℃以下に冷却してマルテンサイト化す
ることを特徴とする(請求項1)。H=Cr+Mn+N
i+Mo+5(Cu+W+Zr+V+Ti)+XB+2
0Nb+0.5Si−5Al(Bが0.0008以上
0.005%以下含まれる場合にはXB=0.5とす
る)
Means for Solving the Problems The present application inventions are those that have been developed to solve such problems. Thus, the manufacturing method of the invention of the present application is 0.02 ≦ C ≦ 0.
15%, 0.08 ≦ Si ≦ 1.0%, N ≦ 0.03% ,
Mn ≦ 3.0%, Cr ≦ 3.0%, Al ≦ 0.2%,
0.0008 ≦ B ≦ 0.01%, Ti ≦ 0.06% der
Or further Ni ≦ 4.0%, Cu ≦ 1.0%, M
o ≦ 2.0%, W ≦ 0.5%, Zr ≦ 0.5%, V ≦
One or more of 0.3% and Nb ≦ 0.08% are contained, the hardenability index H ≧ 3.5 represented by the following formula, and the balance is
A steel material consisting essentially of Fe is heated to 830 ° C. or higher to be austenitized, cooled to a range of 550 to 900 ° C. at an average cooling rate of 30 ° C./min or higher, and then forged, and thereafter. M at an average cooling rate of 100 ° C / min or more
It is characterized in that it is cooled to 300 ° C. or lower, which is point f, to form martensite (claim 1). H = Cr + Mn + N
i + Mo + 5 (Cu + W + Zr + V + Ti) + XB + 2
0Nb + 0.5Si-5Al (XB = 0.5 when B is contained in 0.0008 or more and 0.005% or less)

【0008】また請求項製造方法は、請求項にお
いて、前記鍛造加工後マルテンサイト化した後におい
て、600℃以下の範囲で再加熱処理を行うことを特徴
とする。
Further, the manufacturing method of claim 2 is characterized in that in claim 1 , after the forging, after converting to martensite, reheating treatment is performed in a range of 600 ° C. or lower.

【0009】次に請求項3の製造方法は、請求項1,2
の何れかにおいて、前記鋼素材が、更に快削成分として
S,Ca,Pb,Te,Biの一種若しくは二種以上
を、S≦0.2%,Ca≦0.05%,Pb≦0.3
%,Te≦0.1%,Bi≦0.15%で含有すること
を特徴とする。
Next, the manufacturing method of claim 3 is the same as that of claims 1 and 2.
In any one of the above, the steel material further contains one or more of S, Ca, Pb, Te, and Bi as free-cutting components, S ≦ 0.2%, Ca ≦ 0.05%, Pb ≦ 0. Three
%, Te ≦ 0.1%, Bi ≦ 0.15%.

【0010】[0010]

【作用及び発明の効果】上記請求項1の発明は、オース
フォーミング手法を適するものである。このオースフ
ォーミングを適用するためには鋼の焼入れ性を高くする
必要がある。そこで本発明者らはそのための研究を行う
中で、鋼の組成を上記組成とし且つ焼入れ性を示す指数
としてH=Cr+Mn+Ni+Mo+5(Cu+W+Z
r+V+Ti)+XB+20Nb+0.5Si−5Al
(XBはBを0.0008以上0.005以下含むとき
0.5)を導き出し、そしてその指数Hが3.5以上で
あれば上記オースフォーミングを安定的に適用でき、最
終的に強度,靱性に優れたマルテンサイト型非調質鋼が
得られることを知得した。
[Effect of the action and INVENTION The invention of claim 1 is to apply the ausforming techniques. In order to apply this ausforming, it is necessary to enhance the hardenability of steel. Therefore, the inventors of the present invention have conducted research for that purpose by setting the composition of steel to the above composition and using H = Cr + Mn + Ni + Mo + 5 (Cu + W + Z) as an index showing hardenability.
r + V + Ti) + XB + 20Nb + 0.5Si-5Al
(XB is 0.5 when B is 0.0008 or more and 0.005 or less is included), and if the index H is 3.5 or more, the ausforming can be stably applied, and finally strength and toughness can be obtained. It was learned that excellent martensitic non-heat treated steel can be obtained.

【0011】本発明によれば、従来のJIS鋼種の焼入
れ−焼戻し材を超えるハイレベルの強度と靱性が得ら
れ、従ってこれを自動車等の部品に適用した場合、従来
の部品よりも小型化することができ、従ってまたその軽
量化を図ることができる。
According to the present invention, a high level of strength and toughness exceeding the conventional quench-tempered material of JIS steel grade can be obtained. Therefore, when this is applied to parts such as automobiles, it becomes smaller than the conventional parts. Therefore, the weight can be reduced.

【0012】本発明により得られる鋼は基本的に非調質
鋼であって焼入れ,焼戻し処理をしない状態で十分な強
度と靱性とが得られ、従って従来のJIS鋼種の焼入れ
−焼戻し材に比べてリードタイムを短縮化でき、コスト
を低減することができる。
The steel obtained according to the present invention is basically a non-heat treated steel and has sufficient strength and toughness without being subjected to quenching and tempering treatments. Therefore, compared with the conventional JIS-quenched-tempered steels. Lead time can be shortened and cost can be reduced.

【0013】本発明の製造方法で先ず素材を830
℃以上に加熱してオーステナイト化し、その後30℃/
分以上の平均冷却速度で550〜900℃の範囲まで、
即ち準安定オーステナイト領域まで冷却してそこで鍛造
加工し、その後これを冷却して組織をマルテンサイト化
する。
[0013] In the production how of the present invention, the first material 830
Heated above ℃ to austenite, then 30 ℃ /
With an average cooling rate of more than a minute, to a range of 550 to 900 ° C,
That is, the structure is cooled to a metastable austenite region, forged there, and then cooled to martensite the structure.

【0014】尚、上記素材として圧延,鍛造にてビレッ
ト,丸棒或いはコイル等にされたものを用いることがで
き、而してその過程での加工温度は900℃以下とする
必要はない。本発明はその後において製品形状に鍛造加
工する際に、上記オースフォーミング手法を適用するこ
とを特徴とする。
As the above-mentioned material, a billet, a round bar, a coil or the like obtained by rolling or forging can be used, and the processing temperature in that process need not be 900 ° C. or lower. The present invention is characterized by applying the above-mentioned ausforming method when forging into a product shape thereafter.

【0015】本発明の製造方法によれば、材料をオース
テナイト状態、即ち軟らかい状態で鍛造加工するため
に、鍛造加工に先立って変形抵抗を少なくするために予
め軟化熱処理を施す必要がなく、加工を容易に行うこと
ができる。また焼ならし材や熱処理を省略した圧延まま
の材料を使用する場合、本方法に従えば鍛造時の変形抵
抗を低減できる。
According to the manufacturing method of the present invention, since the material is forged in the austenite state, that is, in the soft state, it is not necessary to perform the softening heat treatment in advance to reduce the deformation resistance prior to the forging, and the processing is performed. It can be done easily. When a normalizing material or an as-rolled material without heat treatment is used, the deformation resistance at the time of forging can be reduced according to this method.

【0016】本発明の製造方法においては、冷却により
マルテンサイト化した後において、これを600℃以下
の温度に再加熱処理することができ、この場合には材料
の靱性を一層高めることができる(請求項2)。これに
より強度と靱性のバランスを最適化でき、適用する部品
の要求特性に見合った部品製造が可能となる。
In the production method of the present invention, after being martensitic by cooling, it can be reheated to a temperature of 600 ° C. or lower, in which case the toughness of the material can be further enhanced ( Claim 2) . As a result, the balance between strength and toughness can be optimized, and it becomes possible to manufacture parts that meet the required characteristics of the applied parts.

【0017】尚、本発明においては必要に応じて鋼素材
S,Ca,Pb,Te,Bi等の快削成分の一種若し
くは二種以上を添加することができ、この場合には材料
の切削性が高まって製品の製造性が高まる利点が得られ
る(請求項2)。
In the present invention, if necessary, a steel material may be used.
One or more free-cutting components such as S, Ca, Pb, Te, and Bi can be added to the alloy. In this case, the machinability of the material is enhanced and the manufacturability of the product is enhanced. Claim 2).

【0018】次に本発明における各化学成分の限定理由
を詳述する。 C:0.02〜0.15% 非調質鋼であるため、焼入れ強度が構造用鋼として最大
となる1500MPa以下とすべく上限を0.15%と
した。また製造上の制約から下限を0.02%とした。
Next, the reasons for limiting each chemical component in the present invention will be described in detail. C: 0.02 to 0.15% Since it is a non-heat treated steel, the upper limit was set to 0.15% so that the quenching strength would be 1500 MPa or less, which is the maximum as a structural steel. Further, the lower limit was set to 0.02% due to manufacturing restrictions.

【0019】Si:0.08〜1.0% Siは焼入れ性を高める作用があるが加工性を害するた
め、上限を1.0%とした。
Si: 0.08 to 1.0% Si has the effect of enhancing the hardenability but impairs the workability, so the upper limit was made 1.0%.

【0020】N:0.03%以下 NはCと同様に変形抵抗を増加させるため、上限を0.
03%とした。
N: 0.03% or less N increases the deformation resistance like C, so the upper limit is set to 0.
It was set to 03%.

【0021】Mn:3.0以下 Mnは焼入れ性を高める元素であるが、溶解時に炉壁を
傷めるため上限を3.0%とした。
Mn: 3.0 or less Mn is an element that enhances hardenability, but the upper limit was made 3.0% because it damages the furnace wall during melting.

【0022】Cr:3.0%以下 Mo:2.0%以下 W :0.5%以下 Zr:0.5%以下 V :0.3%以下 Nb:0.08%以下 これら成分は強力な炭化物を生成させるとともに焼入れ
性を高める元素であるが、多量に入れ過ぎると未固溶炭
化物により鍛造性が悪化するため、それぞれの上限を上
記値に規定した。
Cr: 3.0% or less Mo: 2.0% or less W: 0.5% or less Zr: 0.5% or less V: 0.3% or less Nb: 0.08% or less These components are strong. Although it is an element that generates carbides and enhances hardenability, if too much is added, the forgeability deteriorates due to undissolved carbides, so the respective upper limits were set to the above values.

【0023】B :0.01%以下 Bは焼入れ性向上のため添加する。0.01%でその効
果は飽和する。0.001%以上で焼入れ性効果は現わ
れる。
B: 0.01% or less B is added to improve hardenability. The effect is saturated at 0.01%. A hardenability effect appears at 0.001% or more.

【0024】Ti:0.06%以下 TiはBがBNを形成すると焼入れ性効果が減少するた
め、NをTiNとして固定するため添加する。0.06
%を超えると鋼の清浄度を害する。
Ti: 0.06% or less Since Ti reduces the hardenability effect when B forms BN, it is added to fix N as TiN. 0.06
If it exceeds%, the cleanliness of steel is impaired.

【0025】Ni:4.0%以下 Cu:1.0%以下 Ni,Cuはオーステナイト安定化元素であり、焼入れ
性を向上させる作用があるが、Cuを入れ過ぎると熱間
加工性が悪化するため上限を1.0%とした。またNi
は多量に入れた場合、焼入れ性の向上効果が収束してし
まうことから上限を4.0%とした。
Ni: 4.0% or less Cu: 1.0% or less Ni and Cu are austenite stabilizing elements and have the function of improving hardenability, but if Cu is added too much, hot workability deteriorates. Therefore, the upper limit was set to 1.0%. Also Ni
When a large amount was added, the effect of improving the hardenability converges, so the upper limit was made 4.0%.

【0026】Al:0.2%以下 Alは焼入れ性を阻害する元素であり、焼入れ性指数の
計算式においてマイナス要素となるため上限を0.2%
に限定した。
Al: 0.2% or less Al is an element that inhibits the hardenability and is a negative factor in the formula for calculating the hardenability index, so the upper limit is 0.2%.
Limited to.

【0027】S:≦0.2%,Ca:≦0.05%,P
b:≦0.3%,Te:≦0.1%,Bi:≦0.15
% これら成分は材料の被削性を高める成分であって、それ
ぞれ上記範囲内で含有させることにより材料の被削性が
高まり、部品製造の際の製造性が高まる。
S: ≤0.2%, Ca: ≤0.05%, P
b: ≦ 0.3%, Te: ≦ 0.1%, Bi: ≦ 0.15
% These components are components that enhance the machinability of the material, and when contained within the above ranges, the machinability of the material is enhanced and the manufacturability in the production of parts is enhanced.

【0028】H=Cr+Mn+Ni+Mo+5(Cu+
W+Zr+V+Ti)+XB+20Nb+0.5Si−
5Al≧3.5 このHは焼入れ性を表す指数であってHを3.5以上と
することにより安定してオースフォーミング手法を適用
可能となり、その後の冷却において組織を容易にマルテ
ンサイト化することができる。
H = Cr + Mn + Ni + Mo + 5 (Cu +
W + Zr + V + Ti) + XB + 20Nb + 0.5Si-
5Al ≧ 3.5 This H is an index showing hardenability, and by setting H to 3.5 or more, the ausforming method can be stably applied, and the structure can be easily martensiticized in the subsequent cooling. You can

【0029】830℃以上の加熱によるオーステナイト
化及び550〜900℃での鍛造加工本発明の製造方法
は、素材を830℃以上に加熱し、その後550〜90
0℃に冷却し、準安定オーステナイト状態で鍛造加工を
施すもので、この温度範囲で加工を行うことによりマル
テンサイト変態まで存続できる転位と加工誘起析出炭化
物を生成させることができ、これにより非常に緻密な組
織が得られ、その結果高強度と高靱性化が同時に達成で
きる。而して加工後の組織はマルテンサイトを主体とし
たものとなる。
Austenitizing by heating at 830 ° C. or higher and forging at 550 to 900 ° C. In the manufacturing method of the present invention, the material is heated to 830 ° C. or higher and then 550 to 90 ° C.
It is cooled to 0 ° C and is forged in a metastable austenite state. By performing working in this temperature range, dislocations and work-induced precipitation carbides that can survive martensitic transformation can be generated, which makes it extremely possible. A dense structure is obtained, and as a result, high strength and high toughness can be achieved at the same time. Thus, the processed structure is mainly composed of martensite.

【0030】尚、この手法において十分な焼入れ性,鍛
造性が必要となるため、焼入れ性を表す指数Hが3.5
以上及びC量を0.15%以下に抑えた材料を使用しな
ければならない。何故なら低温オーステナイト領域での
鍛造は拡散的に変態−析出するフェライトの生成を著し
く促進させてしまうため、所定の強度と靱性が得られな
くなってしまい、またCは低温オーステナイト時の変形
抵抗を増加させる主因であることから極力これを抑えな
ければならないからである。
Since this method requires sufficient hardenability and forgeability, the hardenability index H is 3.5.
Materials having the above content and C content of 0.15% or less must be used. This is because forging in the low temperature austenite region significantly promotes the formation of ferrite that transforms and precipitates diffusely, so that the desired strength and toughness cannot be obtained, and C increases the deformation resistance during low temperature austenite. This is because it is the main factor that causes it to be suppressed as much as possible.

【0031】[0031]

【実施例】次に本発明の実施例を以下に詳述する。表1
に示す各種組成の鋼種について、それぞれを各オーステ
ナイト化(γ化)温度(830℃以上)で加熱した後こ
れを冷却し、鍛造温度750℃,減面率60%の条件下
で鍛造加工した後、水冷を行って組織をマルテンサイト
化し、その硬さを測定して焼入れ性を示す指数Hと硬さ
との関係を求めた。結果が図1に示してある。
EXAMPLES Examples of the present invention will be described in detail below. Table 1
After heating each austenitizing (γ-forming) temperature (830 ° C. or higher) for each of the steel types having various compositions shown in (4) and cooling the steel, forging under the conditions of a forging temperature of 750 ° C. and a surface reduction rate of 60% Then, water cooling was carried out to convert the structure into martensite, and the hardness thereof was measured to obtain the relationship between the hardness H and the index H indicating the hardenability. The results are shown in Figure 1.

【0032】[0032]

【表1】 [Table 1]

【0033】この図1より、オーステナイト化加熱温度
が830℃以上,焼入れ性指数Hが3.5以上である場
合において硬さ300以上を確保でき、本発明のオース
フォーミング手法が適用できることが分かる。
From FIG. 1, it can be seen that when the austenitizing heating temperature is 830 ° C. or higher and the hardenability index H is 3.5 or higher, a hardness of 300 or higher can be secured and the ausforming method of the present invention can be applied.

【0034】一方JIS鋼種であるSCR420,SC
M420等は焼入れ性指数Hが1.8〜2.0であり、
またSNCM420で3.1程度であり、安定して加工
熱処理(オースフォーミング)が適用できるレベルには
ない。
On the other hand, JIS steel grades SCR420, SC
The hardenability index H of M420 and the like is 1.8 to 2.0,
Further, SNCM420 is about 3.1, which is not at a level at which stable heat treatment (ausforming) can be applied.

【0035】これらの現象の理由は次の通りである。低
温オーステナイト領域で塑性加工を加えると、加工によ
り導入された転位が完全に消滅できず、拡散変態となる
フェライト変態或いはパーライト変態を著しく促進して
しまう。その結果、焼入れ性指数の小さい(焼入れ性の
低い)材料ではいくら鍛造後に急冷を施しても相当な割
合でアシキュラーフェライトと呼ばれる組織や上部ベイ
ナイト,等軸フェライト,パーライト等を生成させてし
まい、硬さを大幅に下げてしまう。
The reasons for these phenomena are as follows. When plastic working is applied in the low temperature austenite region, dislocations introduced by working cannot be completely eliminated, and ferrite transformation or pearlite transformation, which is diffusion transformation, is significantly accelerated. As a result, a material with a small hardenability index (low hardenability) will produce a structure called acicular ferrite, upper bainite, equiaxed ferrite, pearlite, etc. in a considerable proportion no matter how much quenching is performed after forging. Hardness is greatly reduced.

【0036】次に図2に表1の鋼種Gについてオーステ
ナイト化加熱温度1000℃における鍛造−水冷後の鍛
造温度と硬さ及びシャルピー衝撃値の関係を示した。こ
の図より、マルテンサイトが主体となる場合、鍛造温度
が550〜900℃の範囲で明確な効果が確認できる。
Next, FIG. 2 shows the relationship between the forging temperature after forging-water cooling and the hardness and the Charpy impact value for steel type G in Table 1 at the austenitizing heating temperature of 1000 ° C. From this figure, when martensite is the main constituent, a clear effect can be confirmed in the forging temperature range of 550 to 900 ° C.

【0037】次に鋼種Gについて図3に示すプロセスA
に従って材料を1000℃に1分間加熱した後700〜
800℃に冷却し、端面拘束試験法による変形抵抗を測
定した。また比較のためにJIS−SCM420につい
て図3のプロセスBに従って700〜800℃に1分間
加熱保持後、端面拘束試験法による変形抵抗を測定し
た。結果が図4に示してある。
Next, for steel type G, process A shown in FIG.
After heating the material to 1000 ° C. for 1 minute according to
After cooling to 800 ° C., the deformation resistance was measured by the end face restraint test method. For comparison, JIS-SCM420 was heated and held at 700 to 800 ° C. for 1 minute according to the process B of FIG. 3, and then the deformation resistance was measured by the end face restraint test method. Results are shown in FIG.

【0038】この試験は熱間圧延ままの組織のものを試
験したものである。この結果から、両鋼種とも多量のベ
イナイトを含んだ状態であるため、通常の温間鍛造であ
るプロセスBでは変形抵抗が非常に高くなっている。
In this test, the as-hot-rolled structure was tested. From these results, since both steel types contain a large amount of bainite, the deformation resistance is extremely high in the process B which is a normal warm forging.

【0039】一方、加工熱処理であるプロセスAに従っ
た場合、熱間圧延後に生成するベイナイト組織等はオー
ステナイト化加熱時に全て消滅し、鍛造時にはC量の少
ない変形能に富んだ軟らかいオーステナイト単相となる
ため、加工性は良くなっている。従って本発明の製造プ
ロセスに従って鍛造加工した場合、供給される材料が加
工性の悪い圧延ままの組織を有するものであっても十分
な加工性を確保できることが確認できる。
On the other hand, when the process A, which is a thermomechanical treatment, is followed, the bainite structure and the like formed after hot rolling disappear during austenitizing and heating, and a soft austenite single phase with a small amount of C and a high deformability is obtained during forging. Therefore, the workability is improved. If you forging according to the production process of the present invention, therefore, it can be confirmed that the material to be supplied can ensure a tissue that is an even sufficient workability with remains poor rolling workability.

【0040】次に図5は現状の非調質鋼とJIS−構造
用鋼の焼入れ−焼戻し材及び本発明の製造プロセスに従
って製造した本発明例鋼(マルテンサイト型非調質
鋼)の強度−靱性バランスを示した図である。この図か
ら、本発明例鋼が通常のマルテンサイト型非調質鋼の
みならずJIS−構造用鋼の焼入れ−焼戻し材をもしの
ぐ特性を有していることを明らかに見てとることができ
る。
Next, FIG. 5 shows the strength of the present non-heat treated steel and JIS-hardening of structural steel-tempering material and the steel of the present invention (martensite type non-heat treated steel) manufactured according to the manufacturing process of the present invention. -A diagram showing the toughness balance. From this figure, it can be clearly seen that the steel according to the present invention has characteristics that surpass not only ordinary martensitic non-heat treated steel but also JIS-quenched structural steel-tempered material. it can.

【0041】次に快削成分を含有させた表2に示す化学
組成の鋼種Xについて鍛造温度と硬さ及び衝撃値との関
係を求めた。結果が図6に示してある。図から分かるよ
うに、快削成分のない場合と比較して靱性は若干低下す
るものの、550〜900℃の鍛造−引き続く焼入れに
より靱性の向上がはっきりと確認できる。尚、製造条件
は加熱温度:1000℃,鍛造温度までの冷却方法:空
冷(30℃/分以上の冷却速度),加工度:45%,鍛
造後の冷却方法:水冷(100℃/分以上の冷却速度)
とした。
Next, the relationship between the forging temperature and the hardness and the impact value was determined for the steel type X having the chemical composition shown in Table 2 containing the free-cutting component. Results are shown in FIG. As can be seen from the figure, although the toughness is slightly reduced as compared with the case where there is no free-cutting component, the improvement in toughness can be clearly confirmed by forging at 550 to 900 ° C. and subsequent quenching. The manufacturing conditions are heating temperature: 1000 ° C., cooling method up to forging temperature: air cooling (cooling rate of 30 ° C./min or more), workability: 45%, cooling method after forging: water cooling (100 ° C./min or more Cooling rate)
And

【0042】[0042]

【表2】 [Table 2]

【0043】<具体的製品の製造例> 次に自動車重要部品の一つである図7に示すフランジコ
ンパニオン10を図8に示す工程に従って製造した。そ
の際の製造条件については表3に示す3通りとし、それ
ぞれ焼入れ性指数Hの異なった2鋼種G,Bについて各
特性を比較検討した。
<Production Example of Specific Product> Next, the flange companion 10 shown in FIG. 7 which is one of the important parts for automobiles was produced according to the process shown in FIG. The manufacturing conditions at that time were three as shown in Table 3, and the characteristics of two steel types G and B having different hardenability indexes H were compared and examined.

【0044】[0044]

【表3】 [Table 3]

【0045】ここで各プロセスに従った場合の材料特性
を調べるため、図7に示すフランジ部Aと絞り部Bから
切り出した衝撃試験片を用いてシャルピー衝撃試験と硬
さ試験をそれぞれ行った。図9及び図10は各鋼種にお
けるフランジ部Aと絞り部Bの硬さを示している。
Here, in order to investigate the material characteristics when each process was followed, a Charpy impact test and a hardness test were performed using impact test pieces cut out from the flange portion A and the drawn portion B shown in FIG. 9 and 10 show the hardness of the flange portion A and the drawn portion B in each steel type.

【0046】これらの結果から明らかなように、焼入れ
性指数Hの低いものは加工熱処理プロセスであるプロセ
ス3や低温熱間鍛造であるプロセス2に従った場合、所
定の硬さが全く得られていない。一方本発明例鋼であ
る鋼種Gの場合、何れのプロセスに従った場合にも十分
な硬さが得られている。
As is clear from these results, when the hardenability index H is low, the prescribed hardness is obtained at all when the process 3 which is the heat treatment process and the process 2 which is the low temperature hot forging are performed. Absent. On the other hand, in the case of steel type G which is the steel of the present invention example , sufficient hardness is obtained regardless of which process is used.

【0047】図11は鋼種Gの靱性の測定結果を示した
もので、この図から加工熱処理プロセスであるプロセス
3に従った場合、最も高い値を示し、本発明の効果が十
分に表われていることが分かる。
FIG. 11 shows the measurement results of the toughness of the steel type G. From this figure, the highest value is obtained when the process 3 which is the thermomechanical treatment process is followed, and the effect of the present invention is sufficiently exhibited. I know that

【0048】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において、種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified modes without departing from the spirit of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において得られた焼入れ性指数
と硬さとの関係を表す図である。
FIG. 1 is a diagram showing a relationship between a hardenability index and hardness obtained in an example of the present invention.

【図2】本発明の実施例において得られた鍛造温度と硬
さと衝撃値との関係を表す図である。
FIG. 2 is a diagram showing the relationship between forging temperature, hardness, and impact value obtained in the example of the present invention.

【図3】本発明の製造プロセスを従来の製造プロセスと
の比較においてパターン化して表す図である。
FIG. 3 is a diagram showing a patterning of the manufacturing process of the present invention in comparison with a conventional manufacturing process.

【図4】本発明の実施例材を図3に示すパターンに従っ
て処理した場合の鍛造加工時の変形抵抗を表す図であ
る。
FIG. 4 is a diagram showing deformation resistance during forging when the example material of the present invention is processed according to the pattern shown in FIG. 3.

【図5】本発明例材の引張強さと衝撃値とのバランスを
従来材との比較において表す図である。
FIG. 5 is a diagram showing the balance between the tensile strength and the impact value of the material of the present invention in comparison with the conventional material.

【図6】快削成分を含有させた本発明の実施例材におい
て得られた鍛造温度と硬さと衝撃値との関係を表す図で
ある。
FIG. 6 is a diagram showing the relationship between forging temperature, hardness and impact value obtained in the example material of the present invention containing a free-cutting component.

【図7】本発明の適用部品としての一例であるフランジ
コンパニオンを表す図である。
FIG. 7 is a view showing a flange companion which is an example as an applied part of the present invention.

【図8】図7のフランジコンパニオンの製造工程の説明
図である。
8 is an explanatory view of a manufacturing process of the flange companion of FIG. 7. FIG.

【図9】比較例材Bを用い、各種プロセスに従って図8
に示す工程に従いフランジコンパニオンを製造した場合
に得られる硬さを示した図である。
9 is a diagram illustrating a comparative example material B according to various processes.
It is a figure showing hardness obtained when a flange companion is manufactured according to the process shown in.

【図10】本発明例材である鋼種Gを用いて、各種プロ
セスに従って図8に示す工程に従いフランジコンパニオ
ンを製造した場合に得られる硬さを示した図である。
FIG. 10 is a diagram showing hardness obtained when a flange companion is manufactured according to various processes by using a steel type G which is an example material of the present invention and according to various processes.

【図11】本発明例材である鋼種Gを用いて、各種プロ
セスに従って図8に示す工程に従いフランジコンパニオ
ンを製造した場合に得られる衝撃値を示した図である。
FIG. 11 is a diagram showing impact values obtained when a flange companion is manufactured according to various processes according to various processes by using steel type G which is an example material of the present invention.

【符号の説明】[Explanation of symbols]

10 フランジコンパニオン 10 Flange companion

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−299285(JP,A) 特開 平4−371547(JP,A) 特開 平7−97657(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-6-299285 (JP, A) JP-A-4-371547 (JP, A) JP-A-7-97657 (JP, A) (58) Field (Int.Cl. 7 , DB name) C21D 8/00 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、0.02≦C≦0.15%,
0.08≦Si≦1.0%,N≦0.03%Mn≦
3.0%,Cr≦3.0%,Al≦0.2%,0.00
08≦B≦0.01%,Ti≦0.06%であり、若し
くは更にNi≦4.0%,Cu≦1.0%,Mo≦2.
0%,W≦0.5%,Zr≦0.5%,V≦0.3%,
Nb≦0.08%の一種以上を含有し、下記式で表され
る焼入れ性指数H≧3.5であって、残部が実質的にF
eから成る鋼素材を、830℃以上に加熱してオーステ
ナイト化させた後、30℃/分以上の平均冷却速度で5
50〜900℃の範囲まで冷却した上で鍛造加工し、し
かる後100℃/分以上の平均冷却速度でMf点である
300℃以下に冷却してマルテンサイト化することを特
徴とする高強度−高靱性マルテンサイト型非調質鋼の製
造方法。 H=Cr+Mn+Ni+Mo+5(Cu+W+Zr+V
+Ti)+XB+20Nb+0.5Si−5Al (Bが0.0008以上0.005%以下含まれる場合
にはXB=0.5とする)
1. In weight%, 0.02 ≦ C ≦ 0.15%,
0.08 ≦ Si ≦ 1.0%, N ≦ 0.03% , Mn ≦
3.0%, Cr ≦ 3.0%, Al ≦ 0.2%, 0.00
08 ≦ B ≦ 0.01%, Ti ≦ 0.06% ,
In addition, Ni ≦ 4.0%, Cu ≦ 1.0%, Mo ≦ 2.
0%, W ≦ 0.5%, Zr ≦ 0.5%, V ≦ 0.3%,
One or more of Nb ≦ 0.08% is contained, the hardenability index H ≧ 3.5 represented by the following formula, and the balance is substantially F:
The steel material consisting of e is heated to 830 ° C or higher to be austenitized, and then 5 at an average cooling rate of 30 ° C / min or higher.
High strength characterized by cooling to a range of 50 to 900 ° C., forging, and then cooling to an Mf point of 300 ° C. or less at an average cooling rate of 100 ° C./min or more to form martensite − Manufacturing method of high toughness martensitic non-heat treated steel. H = Cr + Mn + Ni + Mo + 5 (Cu + W + Zr + V
+ Ti) + XB + 20Nb + 0.5Si-5Al (XB = 0.5 when B is contained in 0.0008 or more and 0.005% or less)
【請求項2】 請求項において、前記鍛造加工後マル
テンサイト化した後において、600℃以下の範囲で再
加熱処理を行うことを特徴とする高強度−高靱性マルテ
ンサイト型非調質鋼の製造方法。
2. The high strength-high toughness martensite type non-heat treated steel according to claim 1 , wherein after the forging process is converted to martensite, reheat treatment is performed in a range of 600 ° C. or less. Production method.
【請求項3】 請求項1,2の何れかにおいて、前記鋼
素材が、更に快削成分としてS,Ca,Pb,Te,B
iの一種若しくは二種以上をS≦0.2%,Ca≦0.
05%,Pb≦0.3%,Te≦0.1%,Bi≦0.
15%で含有することを特徴とする高強度−高靱性マル
テンサイト型非調質鋼の製造方法。
3. The steel according to claim 1 ,
The material is S, Ca, Pb, Te, B as a free-cutting component.
One or more of i is S ≦ 0.2%, Ca ≦ 0.
05%, Pb ≦ 0.3%, Te ≦ 0.1%, Bi ≦ 0.
A high-strength toughness martensitic non-heat treated steel characterized by containing 15%.
JP34794895A 1995-12-16 1995-12-16 Method for producing high-strength and high-toughness martensitic non-heat treated steel Expired - Fee Related JP3514018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34794895A JP3514018B2 (en) 1995-12-16 1995-12-16 Method for producing high-strength and high-toughness martensitic non-heat treated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34794895A JP3514018B2 (en) 1995-12-16 1995-12-16 Method for producing high-strength and high-toughness martensitic non-heat treated steel

Publications (2)

Publication Number Publication Date
JPH09170046A JPH09170046A (en) 1997-06-30
JP3514018B2 true JP3514018B2 (en) 2004-03-31

Family

ID=18393696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34794895A Expired - Fee Related JP3514018B2 (en) 1995-12-16 1995-12-16 Method for producing high-strength and high-toughness martensitic non-heat treated steel

Country Status (1)

Country Link
JP (1) JP3514018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989952A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of wire support clamp

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038361B2 (en) * 2001-11-14 2008-01-23 新日本製鐵株式会社 Non-tempered high strength and high toughness forged product and its manufacturing method
US9376738B2 (en) 2007-10-29 2016-06-28 Nippon Steel & Sumitomo Metal Corporation Hot forging use non-heat-treated steel and hot forged non-heat-treated steel part
TWI341332B (en) * 2008-01-07 2011-05-01 Nippon Steel Corp Wear-resistant steel sheet having excellent wear resistnace at high temperatures and excellent bending workability and method for manufacturing the same
KR101353838B1 (en) 2011-12-28 2014-01-20 주식회사 포스코 Wear resistant steel having excellent toughness and weldability
CN104128763A (en) * 2014-07-24 2014-11-05 成都亨通兆业精密机械有限公司 Lathe spindle machining process
CN106623711B (en) * 2016-11-29 2018-08-21 太原钢铁(集团)有限公司 The forging method of tungstenic austenitic heat-resistance steel pipe
CN108130476B (en) * 2017-12-01 2019-12-10 宝鼎科技股份有限公司 Large high-strength alloy steel hook forging and manufacturing method thereof
CN110983177B (en) * 2019-11-24 2022-03-22 邯郸钢铁集团有限责任公司 Control method of titanium nitride inclusion of 1000 MPa-grade titanium-containing martensitic steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989952A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of wire support clamp

Also Published As

Publication number Publication date
JPH09170046A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3595901B2 (en) High strength steel wire for spring and manufacturing method thereof
JP3215891B2 (en) Manufacturing method of steel rod for cold working
JP2003138345A (en) High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet
JP3514018B2 (en) Method for producing high-strength and high-toughness martensitic non-heat treated steel
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3034543B2 (en) Manufacturing method of tough high-strength steel
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JPH05320749A (en) Production of ultrahigh strength steel
JPH09170047A (en) Bainitic non-heat treated steel with high strength and high toughness and its production
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2756534B2 (en) Manufacturing method for high ductility steel bars
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP3426036B2 (en) Martensitic stainless steel excellent in strength and toughness and method for producing the same
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JPS6137333B2 (en)
JP3089424B2 (en) Manufacturing method of tough non-heat treated steel
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH09170018A (en) Production of washer with high strength and high toughness
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPH1192860A (en) Steel having ultrafine ferritic structure
JP3255937B2 (en) Manufacturing method of quenched steel for hot forging

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees