JP3508603B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device

Info

Publication number
JP3508603B2
JP3508603B2 JP04586699A JP4586699A JP3508603B2 JP 3508603 B2 JP3508603 B2 JP 3508603B2 JP 04586699 A JP04586699 A JP 04586699A JP 4586699 A JP4586699 A JP 4586699A JP 3508603 B2 JP3508603 B2 JP 3508603B2
Authority
JP
Japan
Prior art keywords
driving force
resistance
increase
amount
running resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04586699A
Other languages
Japanese (ja)
Other versions
JP2000240779A (en
Inventor
伸介 東倉
寛朗 西島
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04586699A priority Critical patent/JP3508603B2/en
Publication of JP2000240779A publication Critical patent/JP2000240779A/en
Application granted granted Critical
Publication of JP3508603B2 publication Critical patent/JP3508603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両などに採用さ
れる駆動力制御装置の改良に関し、特に、走行環境に応
じて車両の駆動力特性を適正に制御するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a driving force control device used in a vehicle or the like, and more particularly to properly controlling the driving force characteristic of the vehicle according to the traveling environment.

【0002】[0002]

【従来の技術】従来から車両に用いられる駆動力制御装
置としては、特開平9−242862号公報に開示され
るように、登坂走行時に路面の勾配に応じて変速比を補
正し、勾配によって加速度が低下するのを抑制するもの
が知られている。
2. Description of the Related Art Conventionally, as a driving force control device used for a vehicle, as disclosed in Japanese Patent Application Laid-Open No. 9-242862, a gear ratio is corrected according to a slope of a road surface while traveling on an uphill road, and an acceleration is performed by the slope. It is known to suppress the decrease of the.

【0003】また、特開平8−149612号公報に開
示されるように、電車の走行経路上の走行抵抗を予め設
定し、この走行抵抗に応じて駆動電流の補正を行うもの
が知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-149612, there is known one in which a traveling resistance on a traveling route of a train is preset and a drive current is corrected according to the traveling resistance. .

【0004】さらに、特開平8−277918号公報に
開示されるように、勾配抵抗に応じてエンジンの回転範
囲または変速比の範囲を設定し、勾配に応じた駆動力を
確保するものが知られている。
Further, as disclosed in Japanese Unexamined Patent Publication No. 8-277918, there is known one in which the engine rotation range or the gear ratio range is set in accordance with the gradient resistance to secure the driving force in accordance with the gradient. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の駆動力制御装置においては、走行抵抗の増加分が全
て勾配抵抗の増加分となるように、目標駆動力に加算し
て補正するため、例えば、運転者が目で確認できる勾配
の増加、乗車人員の増加などによる車両重量の増加、あ
るいは、変速機のトルク伝達効率の低下などの走行抵抗
増加分を、全て目標駆動力に加算して補正してしまう。
However, in the above-described conventional driving force control device, since correction is performed by adding to the target driving force so that the increase in the traveling resistance is entirely the increase in the gradient resistance, for example, Correcting by adding to the target driving force any increase in running resistance such as an increase in the grade that can be visually confirmed by the driver, an increase in vehicle weight due to an increase in the number of passengers, or a decrease in the torque transmission efficiency of the transmission. Resulting in.

【0006】一方、運転者は視認可能な走行抵抗(トル
ク)の増加に対しては、アクセルペダルの踏み込み量を
多めに操作することなどにより、駆動力を増大方向に補
正しようとするため、上記駆動力制御による目標駆動力
の増大に、運転操作による駆動力の増大が加わることに
なって、運転者が期待するよりも加速度または車速が過
大になって、違和感を与える場合があった。
On the other hand, the driver tries to correct the driving force in the increasing direction by operating the accelerator pedal with a large amount of depression to increase the visually recognizable running resistance (torque). An increase in the driving force due to the driving operation is added to the increase in the target driving force due to the driving force control, and the acceleration or vehicle speed becomes excessively higher than expected by the driver, which may give a feeling of strangeness.

【0007】そこで本発明は上記問題点に鑑みてなされ
たもので、走行抵抗が増大した場合、運転者に違和感を
与えることなく駆動力を増大して円滑な駆動力制御を行
うことを目的とする。
Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to increase the driving force without causing the driver to feel uncomfortable when the running resistance increases and to perform smooth driving force control. To do.

【0008】[0008]

【課題を解決するための手段】第1の発明は、アクセル
ペダルの踏み込み量を検出するアクセルペダル操作位置
検出手段と、車両の速度を検出する車速検出手段と、前
記アクセルペダルの踏み込み量と車速に基づいて、平坦
路相当の目標駆動力を設定する通常目標駆動力設定手段
と、前記平坦路相当の目標駆動力に対して増加した走行
抵抗を演算する増加抵抗演算手段と、前記平坦路相当の
目標駆動力に増加した走行抵抗を加算したものを目標駆
動力として演算する駆動力補正手段とを備えた車両の駆
動力制御装置において、前記増加抵抗演算手段は、車両
に加わる各種走行抵抗の増加量と各抵抗係数をそれぞれ
検出または推定する種類別増加走行抵抗演算手段を備
え、前記種類別増加走行抵抗演算手段は、運転者が視認
または認識可能な第1の走行抵抗増加量と、運転者が視
認または認識不能な第2の走行抵抗増加量の増大に分け
て各抵抗係数を設定し、これら抵抗増加量に各抵抗係数
を乗じたものを合算する。
SUMMARY OF THE INVENTION A first invention is an accelerator pedal operation position detecting means for detecting an accelerator pedal depression amount, a vehicle speed detecting means for detecting a vehicle speed, an accelerator pedal depression amount and a vehicle speed. A normal target driving force setting means for setting a target driving force equivalent to a flat road, an increasing resistance calculating means for calculating a running resistance increased with respect to the target driving force equivalent to the flat road, and a flat road equivalent. In the driving force control device for a vehicle, the driving force control means calculates a target driving force obtained by adding the increased running resistance to the target driving force of the vehicle.
The amount of increase in various running resistances and each resistance coefficient
Equipped with means for calculating increased running resistance by type for detection or estimation
The driver can visually check the increased running resistance calculation means by type.
Or, the driver can see the recognizable first running resistance increase
Divided into the increase of the second running resistance increase which cannot be recognized or recognized
Set each resistance coefficient by
Multiply by.

【0009】[0009]

【0010】また、第2の発明は、前記第1の発明にお
いて、前記種類別増加抵抗演算手段は、車両重量の増大
に伴う走行抵抗の増加量または道路勾配の増大に伴う走
行抵抗の増加量を前記第1走行抵抗増加量として演算す
るとともに、変速機の伝達トルクの損失量またはエンジ
ン補機の作動により増加する走行抵抗を前記第2走行抵
抗増加量として演算する。
According to a second aspect of the present invention, in the first aspect of the present invention, the type-dependent increase resistance calculating means increases the running resistance with an increase in vehicle weight or the running resistance with an increase in road slope. Is calculated as the first running resistance increase amount, and the running resistance increased by the transmission torque loss amount of the transmission or the operation of the engine accessory is calculated as the second running resistance increase amount.

【0011】また、第3の発明は、前記第2の発明にお
いて、前記種類別増加抵抗演算手段は、道路勾配の増大
に伴う走行抵抗増加量に予め設定した値を乗じて低減し
たものを第1走行抵抗増加量とする。
A third aspect of the present invention is the method according to the second aspect , wherein the type-specific increase resistance calculation means reduces the amount of increase in running resistance associated with an increase in road gradient by a preset value. 1 Increase in running resistance.

【0012】また、第4の発明は、前記第3の発明にお
いて、前記予め設定した値が、50%未満である。
In a fourth aspect based on the third aspect, the preset value is less than 50%.

【0013】また、第5の発明は、前記第2の発明にお
いて、前記種類別増加抵抗演算手段は、車両重量の増大
に伴う走行抵抗の増加量に予め設定した値を乗じて低減
したものを第1走行抵抗増加量とする。
According to a fifth aspect of the present invention, in the second aspect of the present invention, the type-dependent increase resistance calculation means reduces the amount of increase in running resistance due to an increase in vehicle weight by multiplying it by a preset value. The first running resistance increase amount.

【0014】また、第6の発明は、前記第5の発明にお
いて、前記予め設定した値が、70%未満である。
In a sixth aspect based on the fifth aspect , the preset value is less than 70%.

【0015】また、第7の発明は、前記第2の発明にお
いて、前記種類別増加抵抗演算手段は、前記第2走行抵
抗増加量をそのまま平坦路相当の目標駆動力に加算して
補正する。
Further, in a seventh aspect based on the second aspect , the type-dependent increase resistance calculating means corrects the second running resistance increase amount by directly adding it to a target driving force corresponding to a flat road.

【0016】[0016]

【発明の効果】したがって、第1の発明は、平坦路相当
の目標駆動力に増加した走行抵抗を加算して目標駆動力
を補正する場合、運転者が視認または認識可能な走行抵
抗の増加量を低減することで、走行抵抗の増加に応じて
運転者のアクセルペダル踏み込み量が増大しても、補正
された目標駆動力が過大になることはなく、運転者に違
和感を与えることなく駆動力を増大して円滑な駆動力制
御を行うことが可能となる。
Therefore, according to the first aspect of the invention, when the target driving force is corrected by adding the increased running resistance to the target driving force corresponding to the flat road, the amount of increase in the running resistance that the driver can visually recognize or recognize. Even if the driver's accelerator pedal depression amount increases as the running resistance increases, the corrected target driving force does not become excessive, and the driving force can be set without giving the driver a feeling of discomfort. Can be increased and smooth driving force control can be performed.

【0017】[0017]

【0018】また、第2の発明は、運転者が視認または
認識可能な第1走行抵抗増加量を、乗員数や積載量に応
じた車両重量の増大または道路勾配の増大とすること
で、これら第1走行抵抗増加量を低減して平坦路相当の
目標駆動力に加算すれば、運転者のアクセルペダル踏み
込み量が増大しても、目標駆動力が過大になるのを防止
でき、さらに、運転者が視認または認識不能な第2走行
抵抗増加量を、変速機の伝達トルクの損失量またはエン
ジン補機の作動により増加する走行抵抗とすることで、
運転操作に関係しない駆動力の不足を確実に補正するこ
とができる。
The second aspect of the invention is that the first running resistance increase amount that can be visually recognized or recognized by the driver is an increase in vehicle weight or an increase in road gradient in accordance with the number of passengers and the load capacity. By reducing the first running resistance increase amount and adding it to the target driving force equivalent to a flat road, it is possible to prevent the target driving force from becoming excessive even if the accelerator pedal depression amount of the driver increases, and further By setting the second running resistance increase amount that cannot be visually recognized or recognized by a person as the running resistance increase amount due to the loss amount of the transmission torque of the transmission or the operation of the engine accessory,
It is possible to reliably correct the shortage of the driving force that is not related to the driving operation.

【0019】また、第3の発明は、運転者が視認または
認識可能な道路勾配の増大に伴う走行抵抗増加量に、予
め設定した値を乗じることで低減することにより、運転
者のアクセルペダル踏み込み量を加味した目標駆動力を
得ることができる。
A third aspect of the present invention is to reduce the driver's accelerator pedal depression by reducing the amount of increase in running resistance, which the driver can visually recognize or recognize, as the road gradient increases by multiplying it by a preset value. It is possible to obtain the target driving force in consideration of the amount.

【0020】また、第4の発明は、運転者が視認または
認識可能な道路勾配の増大に伴う走行抵抗増加量を50
%未満に低減することにより、道路勾配の増大に応じた
アクセルペダル踏み込み量の増大と目標駆動力の補正量
を適切な値に設定でき、目標駆動力が過大になるのを防
止できる。
The fourth aspect of the invention is to increase the amount of increase in running resistance with the increase in road gradient that the driver can visually recognize or recognize.
By reducing the amount to less than%, it is possible to set the increase amount of the accelerator pedal depression and the correction amount of the target driving force according to the increase of the road gradient to appropriate values, and prevent the target driving force from becoming excessive.

【0021】また、第5の発明は、運転者が視認または
認識可能な車両重量の増大に伴う走行抵抗の増加量に、
予め設定した値を乗じることで低減することにより、運
転者のアクセルペダル踏み込み量を加味した目標駆動力
を得ることができる。
The fifth aspect of the present invention is to increase the amount of running resistance as the weight of the vehicle that the driver can visually recognize or recognize increases.
By reducing the value by multiplying it by a preset value, it is possible to obtain the target driving force in consideration of the accelerator pedal depression amount of the driver.

【0022】また、第6の発明は、運転者が視認または
認識可能な車両重量の増大に伴う走行抵抗の増加量を7
0%未満に低減することにより、車両重量の増大に応じ
たアクセルペダル踏み込み量の増大と目標駆動力の補正
量を適切な値に設定でき、目標駆動力が過大になるのを
防止できる。
The sixth aspect of the invention is to increase the amount of increase in running resistance with the increase in vehicle weight that can be visually recognized or recognized by the driver.
By reducing the amount to less than 0%, the accelerator pedal depression amount and the target driving force correction amount can be set to appropriate values according to the increase in vehicle weight, and the target driving force can be prevented from becoming excessive.

【0023】また、第7の発明は、運転者が視認または
認識不能な第2走行抵抗増加量は、そのまま平坦路相当
の目標駆動力に加算して補正することにより、運転操作
に関係なく増大する走行抵抗増加量を確実に補正するこ
とができる。
According to the seventh aspect of the present invention, the second running resistance increase amount that cannot be visually recognized or recognized by the driver is added to the target driving force corresponding to the flat road as it is to be corrected, thereby increasing regardless of the driving operation. It is possible to reliably correct the running resistance increase amount.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0025】図1は、エンジン101にトルクコンバー
タを備えた自動変速機103を連結し、走行状態に応じ
て最適な駆動力となるようにエンジン101の出力と自
動変速機103の変速比を制御するパワートレイン・コ
ントロール・モジュール50(以下PCM50とする)
を備えた車両に本発明を適用した一例を示す。
In FIG. 1, an automatic transmission 103 having a torque converter is connected to an engine 101, and an output of the engine 101 and a gear ratio of the automatic transmission 103 are controlled so that an optimum driving force is obtained according to a running state. Powertrain control module 50 (hereafter referred to as PCM50)
1 shows an example in which the present invention is applied to a vehicle equipped with.

【0026】このPCM50は、アクセルペダル開度セ
ンサ105(アクセルペダル操作位置検出手段)からの
アクセル踏み込み量APO(または、スロットル開度T
VO)、自動変速機103の変速レンジを切り換えるレ
ンジ選択レバー107(またはインヒビタスイッチ)か
らのセレクト信号、車速センサ11が検出した車速VS
Pなどが入力され、エンジン101の燃料噴射量や、点
火時期を制御したり、自動変速機103の変速比制御及
び油圧制御を行って車両の駆動力を制御する。
This PCM 50 has an accelerator depression amount APO (or a throttle opening T) from an accelerator pedal opening sensor 105 (accelerator pedal operation position detecting means).
VO), a select signal from a range selection lever 107 (or an inhibitor switch) that switches the shift range of the automatic transmission 103, and a vehicle speed VS detected by the vehicle speed sensor 11.
P or the like is input to control the fuel injection amount of the engine 101, the ignition timing, and the gear ratio control and hydraulic control of the automatic transmission 103 to control the driving force of the vehicle.

【0027】このため、エンジン101の吸気通路には
アクチュエータによって開閉駆動される電子制御スロッ
トルバルブ102が介装されており、PCM50から送
られたスロットルバルブ開度信号に基づいて、スロット
ル・コントロール・モジュール51(以下TCM51と
する)が電子制御スロットルバルブ102の開度を制御
する。
For this reason, an electronically controlled throttle valve 102, which is driven to open and close by an actuator, is provided in the intake passage of the engine 101, and the throttle control module is operated based on the throttle valve opening signal sent from the PCM 50. 51 (hereinafter referred to as TCM 51) controls the opening degree of the electronically controlled throttle valve 102.

【0028】また、自動変速機103は、PCM50か
らの変速指令に応じて変速比を設定可能な無段変速機で
構成され、車速センサ11が検出した車速VSPに所定
の定数を乗じた値を出力軸回転数として演算し、入力軸
回転センサ12が検出した入力軸回転数IMPREVと
の比から求めた変速比RATIOが、PCM50からの
指令値と一致するように図示しない変速機構の制御を行
う。なお、自動変速機103には油圧ポンプなどの駆動
による損失抵抗(損失トルク、以下同様)を検出するた
め、図示しない油圧センサによってライン圧を検出して
PCM50へ送出している。
The automatic transmission 103 is composed of a continuously variable transmission whose gear ratio can be set in accordance with a gear shift command from the PCM 50, and has a value obtained by multiplying the vehicle speed VSP detected by the vehicle speed sensor 11 by a predetermined constant. The speed change mechanism (not shown) is controlled so that the speed ratio RATIO calculated as the output shaft speed and calculated from the ratio with the input shaft speed IMPREV detected by the input shaft rotation sensor 12 matches the command value from the PCM 50. . In addition, in order to detect loss resistance (loss torque, the same applies hereinafter) due to driving of a hydraulic pump or the like in the automatic transmission 103, a line pressure is detected by a hydraulic sensor (not shown) and sent to the PCM 50.

【0029】そして、車両の走行環境を把握するため、
ナビゲーション装置としての位置情報処理装置54が配
設され、この位置情報処理装置54は、予め地理上の属
性などを組み込んだ地図情報をCD−ROMやDVD−
ROMなどを記録媒体として格納しており、この地図情
報とGPSアンテナ113から受信した時刻信号に基づ
いて、現在走行している自車の位置及び地域の情報など
をまとめて、前記外部環境情報処理モジュール52に送
信する。
Then, in order to grasp the running environment of the vehicle,
A position information processing device 54 as a navigation device is provided, and the position information processing device 54 stores map information in which geographical attributes and the like are previously incorporated in a CD-ROM or a DVD-ROM.
A ROM or the like is stored as a recording medium, and based on this map information and the time signal received from the GPS antenna 113, information on the position and area of the vehicle currently traveling is collected, and the external environment information processing is performed. Send to module 52.

【0030】前記外部環境情報処理モジュール52は、
位置情報処理装置54の地図情報と自車位置から、道路
勾配θを後述するように推定してPCM50へ送出す
る。
The external environment information processing module 52 is
The road gradient θ is estimated from the map information of the position information processing device 54 and the position of the own vehicle, as described later, and sent to the PCM 50.

【0031】また、エンジン101には補機として、エ
アコンディショナのコンプレッサ120やパワーステア
リング装置の油圧ポンプ121が連結される。
Further, a compressor 120 of an air conditioner and a hydraulic pump 121 of a power steering device are connected to the engine 101 as auxiliary machines.

【0032】これら補機が消費するエンジン出力、すな
わち、走行抵抗を把握するため、コンプレッサ120等
に設けた液圧センサ(図示せず)が検出した冷媒の液圧
をPCM50へ送出するとともに、油圧ポンプ121等
に設けたパワーステアリング装置の油圧センサ(図示せ
ず)が検出した油圧をPCM50へ送出する。
In order to grasp the engine output consumed by these auxiliary machines, that is, the running resistance, the hydraulic pressure of the refrigerant detected by a hydraulic pressure sensor (not shown) provided in the compressor 120 or the like is sent to the PCM 50, and the hydraulic pressure is transmitted. The hydraulic pressure detected by the hydraulic pressure sensor (not shown) of the power steering device provided in the pump 121 or the like is sent to the PCM 50.

【0033】さらに、各車輪の荷重を検出するととも
に、これらを合算して車重を演算する車重検出装置13
0が設けられ、演算された車重MVはPCM50へ送出
される。この車重検出装置130は、例えば、停車時の
サスペンションのストローク等を検出することなどによ
り、各車輪に加わる荷重を推定演算するものである。
Further, the vehicle weight detecting device 13 for detecting the load of each wheel and calculating the vehicle weight by summing these loads.
0 is provided and the calculated vehicle weight MV is sent to the PCM 50. The vehicle weight detection device 130 estimates and calculates the load applied to each wheel by, for example, detecting the stroke of the suspension when the vehicle is stopped.

【0034】ここで、図2はPCM50で行われる駆動
力制御の一例を示しており、アクセルペダル開度センサ
105からのアクセル踏み込み量APOと、車速センサ
11が検出した車速VSPに基づいて、予め設定したマ
ップより通常目標駆動力tTd_nを求める通常目標駆
動力演算手段1と、車両に加わる各種走行抵抗の増加量
と各抵抗係数(ただし、0≦抵抗係数≦1)をそれぞれ
検出または推定する種類別増加走行抵抗演算手段3と、
これら抵抗増加量と抵抗係数に基づいて通常目標駆動力
tTd_nを補正し、目標駆動力tFdを求める補正目
標駆動力演算手段2を備えている。なお、通常目標駆動
力tTd_nは、平坦路走行時における駆動力の目標値
である。
Here, FIG. 2 shows an example of the driving force control performed by the PCM 50, based on the accelerator pedal depression amount APO from the accelerator pedal opening sensor 105 and the vehicle speed VSP detected by the vehicle speed sensor 11 in advance. Ordinary target driving force calculation means 1 for obtaining the normal target driving force tTd_n from the set map, the type of detecting or estimating the increase amount of various running resistances added to the vehicle and each resistance coefficient (where 0 ≦ resistance coefficient ≦ 1) Another increase running resistance calculation means 3,
The correction target driving force calculation means 2 for correcting the normal target driving force tTd_n based on the resistance increase amount and the resistance coefficient to obtain the target driving force tFd is provided. The normal target driving force tTd_n is a target value of the driving force when traveling on a flat road.

【0035】この補正目標駆動力演算手段2は、種類別
増加走行抵抗演算手段3で求めたこれら各種抵抗増加量
に各抵抗係数を乗じたものを合算し、駆動力補正量ΔR
FORCEとして演算する駆動力補正量演算手段21
と、この駆動力補正量ΔRFORCEを通常目標駆動力
tTd_nに加算して目標駆動力tTdを演算する加算
手段22から構成される。
The corrected target driving force calculating means 2 adds up the various resistance increase amounts obtained by the type-specific increasing running resistance calculating means 3 and the respective resistance coefficients, and adds the driving force correction amount ΔR.
Driving force correction amount calculation means 21 for calculating as FORCE
And the driving force correction amount ΔRFORCE is added to the normal target driving force tTd_n to calculate the target driving force tTd.

【0036】そして、各種走行抵抗の増加量を求める種
類別増加走行抵抗演算手段3では、運転者が視認または
認識可能な走行抵抗の増大と、視認または認識不能な走
行抵抗の増大に分けて各抵抗係数を設定する。
Then, the type-dependent increase running resistance calculation means 3 for determining the amount of increase in each running resistance is divided into an increase in the running resistance visually or recognizable by the driver and an increase in the running resistance visually or unrecognizable by the driver. Set the resistance coefficient.

【0037】本願出願人の実験などによれば、登坂路や
搭乗者または積載量の増大など、運転者が視認可能なも
のについては、運転者はこれらの増大を走行抵抗の増大
と認識して、アクセル踏み込み量APOを通常走行時よ
りも大きく踏み込むことが多く、通常目標駆動力演算手
段1のマップから求めた通常目標駆動力tTd_nに、
検出した走行抵抗の増加量を、そのまま加算すると、目
標駆動力tTdは、運転者が期待する駆動力よりも過大
になって、加速し過ぎることが判明した。
According to experiments conducted by the applicant of the present application, if the driver can visually recognize an increase in a climbing road, an occupant, or an increased load, the driver recognizes that the increase is an increase in running resistance. , The accelerator depression amount APO is often depressed more than during normal traveling, and the normal target driving force tTd_n obtained from the map of the normal target driving force calculating means 1 is
If the detected increase amount of the running resistance is added as it is, it is found that the target driving force tTd becomes excessively larger than the driving force expected by the driver, and the vehicle accelerates too much.

【0038】一方、エアコンディショナやパワーステア
リング装置のポンプの負荷や自動変速機103の損失抵
抗は、運転者の運転意図に係わらず変動する。そして、
これら走行抵抗の増加量は運転者が視認することができ
ないため、これら視認または認識不能な走行抵抗の増加
に対して駆動力が不足することが判明した。
On the other hand, the load of the pump of the air conditioner and the power steering device and the loss resistance of the automatic transmission 103 fluctuate regardless of the driving intention of the driver. And
It has been found that the driving force is insufficient with respect to the increase in the running resistance that cannot be visually recognized or recognized because the driver cannot visually recognize the increased amount of the running resistance.

【0039】そこで、視認可能な走行抵抗増加量とし
て、道路勾配と車重の抵抗増加量を検出し、視認不能な
走行抵抗増加量として自動変速機103の損失抵抗と補
機の抵抗増加量を検出する場合について、以下に説明す
る。
Therefore, the road resistance and vehicle weight resistance increase amount are detected as the visually recognizable running resistance increase amount, and the loss resistance of the automatic transmission 103 and the auxiliary machine resistance increase amount are detected as the invisible running resistance increase amount. The case of detection will be described below.

【0040】まず、視認不能な自動変速機103の損失
抵抗は、図3に示すように、図示しない油圧センサが検
出したライン圧LinePRSと、予め設定した関数またはマ
ップに基づいてポンプロスによる抵抗増加量TMLOS
S_Pを求める。
First, as shown in FIG. 3, the loss resistance of the invisible automatic transmission 103 is a line pressure LinePRS detected by a hydraulic sensor (not shown) and a resistance increase amount due to a pump loss based on a preset function or map. TMLOS
Find S_P.

【0041】次に、入力軸回転センサ12が検出した入
力軸回転数IMPREVと、予め設定した関数またはマ
ップに基づいて、回転数に応じた抵抗増加量TMLOS
S_iを求める。
Next, based on the input shaft rotation speed IMPREV detected by the input shaft rotation sensor 12 and the preset function or map, the resistance increase amount TMLOS corresponding to the rotation speed is obtained.
Find S_i.

【0042】同様に、車速センサ11が検出した車速V
SPに所定の定数を乗じた出力軸回転数と入力軸回転数
IMPREVとの比から求めた変速比RATIOと、予
め設定した関数またはマップに基づいて、変速機構の抵
抗増加量TMLOSS_Rを求める。
Similarly, the vehicle speed V detected by the vehicle speed sensor 11
The resistance increase amount TMLOSS_R of the speed change mechanism is calculated based on the speed change ratio RATIO calculated from the ratio between the output shaft speed and the input shaft speed IMPREV obtained by multiplying SP by a predetermined constant, and a preset function or map.

【0043】そして、これら各損失量を合算し、ライン
圧(作動油供給圧)、入力軸回転数IMPREV、変速
比RATIOに応じてトルク伝達効率が変動する自動変
速機103のTM損失抵抗増加量TMLOSSTRQを
求める。
Then, by summing up these respective loss amounts, the TM loss resistance increase amount of the automatic transmission 103 in which the torque transmission efficiency fluctuates according to the line pressure (hydraulic oil supply pressure), the input shaft rotational speed IMPREV, and the gear ratio RATIO. Calculate TMLOSTRQ.

【0044】さらに、図4に示すように、このTM損失
抵抗増加量TMLOSSTRQに基づいて、予め設定し
た関数またはマップより、TM損失抵抗係数αtmを演算
する。
Further, as shown in FIG. 4, the TM loss resistance coefficient αtm is calculated from a preset function or map based on the TM loss resistance increase amount TMLOSTRQ.

【0045】この図4は、TM損失抵抗係数αtmが基本
的に1となるように設定されて、自動変速機103の損
失抵抗増加量TMLOSSTRQを100%加算補正す
るように設定し、運転者が視認不能な自動変速機103
の損失抵抗を確実に加算補正する。
In FIG. 4, the TM loss resistance coefficient αtm is basically set to 1, and the loss resistance increase amount TMLOSTRRQ of the automatic transmission 103 is set to be 100% added and corrected. Invisible automatic transmission 103
Make sure to correct the loss resistance of.

【0046】ただし、損失抵抗増加量TMLOSSTR
Qが所定値を超えると、TM損失抵抗係数αtmが0にな
るように設定しているが、これは、例えば、自動変速機
103の損失抵抗TMLOSSTRQが実用上考えにく
い大きさとなった場合には、油圧回路や変速機構等の故
障が考えられるため、目標駆動力への加算補正によっ
て、自動変速機103の負担が増大するのを防ぐもの
で、自動変速機103の状態に応じて最適な駆動力補正
量を得ることができる。
However, the loss resistance increase amount TMLOSTR
When Q exceeds a predetermined value, the TM loss resistance coefficient αtm is set to 0. This is, for example, when the loss resistance TMLOSTRQ of the automatic transmission 103 becomes a size that is difficult to consider in practice. Since the hydraulic circuit, the speed change mechanism, etc. may be out of order, the load on the automatic transmission 103 is prevented from increasing due to the addition correction to the target driving force. Therefore, the optimum drive according to the state of the automatic transmission 103 can be performed. A force correction amount can be obtained.

【0047】次に、視認不能な補機類の損失抵抗は、図
5に示すように、コンプレッサ120等に設けた図示し
ない液圧センサが検出した冷媒の液圧Paと、予め設定
した関数またはマップに基づいてコンプレッサ120が
吸収したトルクによる抵抗増加量ACLOSSを求め
る。
Next, as shown in FIG. 5, the loss resistance of the invisible auxiliary machinery is calculated by a hydraulic pressure Pa of the refrigerant detected by a hydraulic pressure sensor (not shown) provided in the compressor 120 and a preset function or The resistance increase amount ACLOSS due to the torque absorbed by the compressor 120 is calculated based on the map.

【0048】また、パワーステアリング装置の油圧ポン
プ121等に設けた図示しない油圧センサが検出した油
圧Ppと、予め設定した関数またはマップに基づいて、
油圧ポンプ121が吸収したトルクに応じて抵抗増加量
PSLOSS_iを求める。
Further, based on the hydraulic pressure Pp detected by a hydraulic sensor (not shown) provided in the hydraulic pump 121 of the power steering device and a preset function or map,
The resistance increase amount PSLOSS_i is calculated according to the torque absorbed by the hydraulic pump 121.

【0049】そして、これら各損失量を合算したもの
に、上記変速比RATIOと、トルクコンバータ入出力
トルク比τRATIOを乗じて補機抵抗増加量ACLO
SSTRQを求める。
Then, the sum of these respective loss amounts is multiplied by the gear ratio RATIO and the torque converter input / output torque ratio τRATIO to multiply the auxiliary machine resistance increase amount ACLO.
Find SSTRQ.

【0050】さらに、図6に示すように、この補機抵抗
増加量ACLOSSTRQに基づいて、予め設定した関
数またはマップより、補機抵抗係数αacを演算する。
Further, as shown in FIG. 6, an auxiliary machine resistance coefficient αac is calculated from a preset function or map based on the auxiliary machine resistance increase amount ACLOSTRQ.

【0051】この図6は、補機抵抗係数αacが基本的に
1となるように設定されて、補機類の損失抵抗増加量A
CLOSSTRQを100%加算補正するように設定
し、運転者が視認不能な補機類の損失抵抗を確実に加算
補正する。
In FIG. 6, the auxiliary machine resistance coefficient αac is basically set to 1, and the loss resistance increase amount A of the auxiliary machines is set.
The CLOSSTRQ is set to be 100% added and corrected, and the loss resistance of the auxiliary machinery that cannot be visually recognized by the driver is surely added and corrected.

【0052】ただし、補機抵抗増加量ACLOSSTR
Qが所定値を超えると、補機抵抗係数αacが0になるよ
うに設定しているが、これは、例えば、補機抵抗増加量
ACLOSSTRQが実用上考えにくい大きさとなった
場合には、コンプレッサ120や油圧ポンプ121等の
故障が考えられるため、目標駆動力への加算補正によっ
て、補機類の負担が増大するのを防ぐもので、補機類の
状態に応じて最適な駆動力補正量を得ることができる。
However, the auxiliary machine resistance increase amount ACROSSTR
When Q exceeds a predetermined value, the auxiliary machine resistance coefficient αac is set to 0. This is because, for example, when the auxiliary machine resistance increase amount ACROSSTRQ becomes a value that is practically unthinkable. Since the failure of 120 or the hydraulic pump 121 or the like is considered, it is possible to prevent an increase in the load on the auxiliary machinery due to the addition correction to the target driving force, and the optimum driving force correction amount according to the state of the auxiliary machinery. Can be obtained.

【0053】一方、視認可能な車重の増大による損失抵
抗は、図7に示すように、上記車重検出装置130が検
出または推定した各車輪の荷重FRMS〜RLMSを合
算したものから、予め設定した基本車重fMSを差し引
き、この値に所定の重量抵抗力変換係数を乗じて車両重
量抵抗増加量MSLOSSTRQを求める。
On the other hand, the loss resistance due to an increase in the visible vehicle weight is preset from the sum of the loads FRMS to RLMS of the wheels detected or estimated by the vehicle weight detection device 130, as shown in FIG. The basic vehicle weight fMS is subtracted, and this value is multiplied by a predetermined weight resistance conversion coefficient to obtain a vehicle weight resistance increase amount MSLOSTRQ.

【0054】なお、重量抵抗力変換係数は、他の走行抵
抗増加量と次元を揃えるためのもので、例えば、各走行
抵抗が自動変速機103の出力軸トルクに統一する場合
では、タイヤの半径rTIREを乗算すればよい。
The weight resistance conversion coefficient is used to make the dimensions equal to those of other running resistance increments. For example, when each running resistance is unified with the output shaft torque of the automatic transmission 103, the tire radius is changed. It only has to be multiplied by rTIRE.

【0055】そして、図8に示すように車両重量抵抗増
加量MSLOSSTRQに基づいて、予め設定した関数
またはマップより、車両重量抵抗係数αmsを演算する。
Then, as shown in FIG. 8, the vehicle weight resistance coefficient αms is calculated from a preset function or map based on the vehicle weight resistance increase amount MSLOSTRQ.

【0056】この図8は、車両重量抵抗係数αmsが基本
的に約0.7となるように設定されて、車両重量抵抗増
加量MSLOSSTRQのうち、おおよそ70%だけ加
算補正するように設定し、乗員数や積載量に応じて運転
者が認識したアクセル踏み込み量APOの踏み増し分を
考慮して、車両重量抵抗増加量MSLOSSTRQの加
算補正が過大とならないように補正する。
In FIG. 8, the vehicle weight resistance coefficient αms is basically set to about 0.7, and the vehicle weight resistance increase amount MSLOSTRQ is set to be added and corrected by about 70%. In consideration of the increase in the accelerator depression amount APO recognized by the driver according to the number of occupants and the load amount, the addition correction of the vehicle weight resistance increase amount MSLOSTRQ is corrected so as not to be excessive.

【0057】また、図8では、車両重量抵抗増加量MS
LOSSTRQが所定値以下のときには、車両重量抵抗
係数αmsが0になるように設定し、車両重量の推定誤差
や乗員の体重のばらつきなどに応じて駆動力補正量が大
きく変動するのを防止する不感帯を設けた一例である。
Further, in FIG. 8, the vehicle weight resistance increase amount MS
When ROSSTRQ is less than or equal to a predetermined value, the vehicle weight resistance coefficient αms is set to 0, and the dead band is set to prevent the driving force correction amount from largely fluctuating according to the estimation error of the vehicle weight or the variation of the weight of the occupant. Is an example of providing.

【0058】次に、図9のブロック図及び図10のフロ
ーチャートは、視認可能な勾配による損失抵抗を求める
場合の一例を示し、位置情報処理装置54が検出した自
車位置と、標高を含んだ地図情報から路面の勾配を推定
するものである。
Next, the block diagram of FIG. 9 and the flowchart of FIG. 10 show an example of the case where the loss resistance based on the visible gradient is calculated, and the vehicle position detected by the position information processing device 54 and the altitude are included. The road surface gradient is estimated from the map information.

【0059】この例では、地図情報を図中X軸方向(東
西方向)と図中Y軸方向(南北方向)で格子状に分割
し、自車位置から至近の格子点(図中NW、NE、S
E、SW)に予め設定された標高データhtNW、ht
NE、htSE、htSWをそれぞれ読み込む(ステッ
プS1、S2)。なお、地図情報上では、各格子点には
メッシュ番号MESHNOが付されており、位置情報処
理装置54及び外部環境情報処理モジュール52は、そ
して、車両が走行中の格子点内において、X軸方向の平
均勾配を、 SUBG#E=(htSE−htSW+htNE−htNW)
/2LEN また、Y軸方向の平均勾配を SUBG#N=(htNW−htSW+htNE−htSE)
/2LEN として演算する(ステップS3)。なお、LENは格子
点間の距離を示す。
In this example, the map information is divided into a grid shape in the X-axis direction (east-west direction) and the Y-axis direction (south-north direction) in the figure, and grid points (NW, NE in the figure) closest to the vehicle position are divided. , S
E, SW) preset altitude data htNW, ht
NE, htSE, and htSW are read (steps S1 and S2). In addition, in the map information, each grid point is attached with a mesh number MESHNO, and the position information processing device 54 and the external environment information processing module 52 are in the X-axis direction within the grid point where the vehicle is traveling. SUBG # E = (htSE-htSW + htNE-htNW)
/ 2LEN Moreover, the average gradient in the Y-axis direction is SUBG # N = (htNW-htSW + htNE-htSE).
It is calculated as / 2LEN (step S3). LEN indicates the distance between the lattice points.

【0060】ここで、車両の進行方向が、図中X軸に対
して角度ξにあるとすると、車両が走行中の道路勾配θ
は、 tanθ=(SUBG#E×cosξ)+(SUBG#N×sinξ) として推定演算する(ステップS4)。
Here, assuming that the traveling direction of the vehicle is at an angle ξ with respect to the X axis in the figure, the road gradient θ on which the vehicle is traveling is
Is estimated and calculated as tan θ = (SUBG # E × cosξ) + (SUBG # N × sinξ) (step S4).

【0061】さらに、勾配抵抗増加量GRLOSSTR
Qは、上記基本車重fMS、タイヤ半径rTIRE及び
道路勾配θより、 GRLOSSTRQ=fMS×sinθ×9.8×rTIRE として求めることができる(ステップS5)。
Further, the gradient resistance increase amount GRLOSTR
Q can be obtained from the basic vehicle weight fMS, the tire radius rTIRE, and the road gradient θ as GRLOSTRQ = fMS × sin θ × 9.8 × rTIRE (step S5).

【0062】そして、図11に示すように勾配抵抗増加
量GRLOSSTRQに基づいて、予め設定した関数ま
たはマップより、勾配抵抗係数αgrを演算する。
Then, as shown in FIG. 11, the gradient resistance coefficient αgr is calculated from a preset function or map based on the gradient resistance increase amount GRLOSTRQ.

【0063】この図11は、勾配抵抗係数αgrが基本的
に約0.5となるように設定されて、勾配抵抗増加量G
RLOSSTRQのうちおおよそ50%だけ加算補正す
るように設定し、登坂路の傾斜に応じて運転者が認識し
たアクセル踏み込み量APOの踏み増し分を考慮して、
勾配抵抗増加量GRLOSSTRQの加算補正が過大と
ならないように補正する。
In FIG. 11, the gradient resistance coefficient αgr is basically set to about 0.5, and the gradient resistance increase amount G is set.
It is set so that only about 50% of RLOSTRQ is added and corrected, and in consideration of the additional step of the accelerator depression amount APO recognized by the driver according to the inclination of the uphill road,
The addition correction of the gradient resistance increase amount GRLOSTRQ is corrected so as not to be excessive.

【0064】また、図11では、勾配抵抗増加量GRL
OSSTRQが所定値以下となる道路勾配が小さいとき
には、勾配抵抗係数αgrが0になるように設定し、勾配
抵抗増加量GRLOSSTRQの推定誤差などに応じて
駆動力補正量が大きく変動するのを防止する不感帯を設
けた一例である。
Further, in FIG. 11, the gradient resistance increase amount GRL
When the road gradient at which OSSTRQ is less than or equal to the predetermined value is small, the gradient resistance coefficient αgr is set to 0, and the driving force correction amount is prevented from largely fluctuating in accordance with an estimation error of the gradient resistance increase amount GRLOSSTRQ. This is an example of providing a dead zone.

【0065】さらに、図11では、勾配抵抗増加量GR
LOSSTRQが所定値を超えて増大すると、勾配抵抗
係数αgrも徐々に小さくなるように設定され、急な登坂
路など勾配抵抗が増大するほど、運転者は勾配を認識し
やすくなり、運転者が自分でアクセルを踏み増すことで
駆動力の補正を行う割合が大きくなるためで、このよう
な場合には、運転者の意図に応じてPCM50による補
正量を低減して目標駆動力tTdが過大になるのを防
ぎ、運転者に違和感を与えることなく円滑な駆動力制御
を行うことが可能となるのである。
Further, in FIG. 11, the gradient resistance increase amount GR
When ROSSTRQ increases beyond a predetermined value, the gradient resistance coefficient αgr is also set to gradually decrease, and as the gradient resistance such as a steep uphill road increases, the driver is more likely to recognize the gradient and the driver himself or herself. Since the rate of correcting the driving force is increased by increasing the accelerator pedal, the target driving force tTd becomes excessive by reducing the correction amount by the PCM 50 according to the driver's intention in such a case. Thus, it becomes possible to smoothly control the driving force without giving the driver a feeling of strangeness.

【0066】次に、図12は、上記駆動力制御の一例を
示すフローチャートで、所定時間毎、例えば、10msec
毎に実行される。
Next, FIG. 12 is a flow chart showing an example of the above-mentioned driving force control, and for every predetermined time, for example, 10 msec.
It is executed every time.

【0067】図12では、まず、ステップS11で上記
したような各センサから車速VSPとアクセル踏み込み
量APOを読み込み、ステップS12では、図2示した
マップより、通常目標駆動力tTd_nを演算する。
In FIG. 12, first, in step S11, the vehicle speed VSP and the accelerator depression amount APO are read from the above-mentioned sensors, and in step S12, the normal target driving force tTd_n is calculated from the map shown in FIG.

【0068】そして、ステップS13〜S16では、図
2の種類別増加走行抵抗演算手段3と同様にして、TM
損失抵抗増加量TMLOSSTRQ、補機抵抗増加量A
CLOSSTRQ、車両重量抵抗増加量MSLOSST
RQ、勾配抵抗増加量GRLOSSTRQを演算してか
ら、上記図4、図6、図8、図11と同様に、各抵抗増
加量に基づいてTM損失抵抗係数αtm、補機抵抗係数α
ac、車両重量抵抗係数αms、勾配抵抗係数αgrをそれぞ
れ求める。
Then, in steps S13 to S16, TM is used in the same manner as the type-specific increase running resistance calculation means 3 in FIG.
Loss resistance increase amount TMLOSTRQ, accessory resistance increase amount A
CLOSSTRQ, vehicle weight resistance increase MSLOSST
After calculating the RQ and the gradient resistance increase amount GRLOSTRSTR, the TM loss resistance coefficient αtm and the auxiliary machine resistance coefficient α are calculated based on the respective resistance increase amounts, as in FIGS. 4, 6, 8 and 11.
Ac, vehicle weight resistance coefficient αms, and gradient resistance coefficient αgr are obtained.

【0069】ステップS17では、各走行抵抗の増加量
に抵抗係数αを乗じたものを合算したものを、駆動力補
正量ΔRFORCEとして演算する。
In step S17, the sum of the products obtained by multiplying the increase amount of each running resistance by the resistance coefficient α is calculated as the driving force correction amount ΔRFORCE.

【0070】最後に、ステップS18では、上記ステッ
プS12で、求めた通常目標駆動力tTd_nに駆動力
補正量ΔRFORCEを加算して目標駆動力tTdを演
算するのである。
Finally, in step S18, the target driving force tTd is calculated by adding the driving force correction amount ΔRFORCE to the normal target driving force tTd_n obtained in step S12.

【0071】こうして、車両の走行抵抗増加量を、運転
者が視認または認識可能なものと、運転者が視認または
認識不能なものに分類し、運転者が視認または認識可能
な走行抵抗増加量には0.5ないし0.7の係数を乗じ
る一方、運転者が視認または認識不能な走行抵抗増加量
には1を乗じることで、認識した走行抵抗の増加量に応
じて運転者がアクセル踏み込み量APOを増大しても、
目標駆動力tTdが過大になるのを防ぎ、また、運転者
が認識不能な走行抵抗増加量についてはその全量を加算
補正することにより、円滑な駆動力制御を行うことが可
能となるのである。
In this way, the amount of increase in the running resistance of the vehicle is classified into those that can be visually recognized or recognized by the driver and those that cannot be visually recognized or recognized by the driver, and can be classified into the amount of increased running resistance that can be visually recognized or recognized by the driver. Is multiplied by a coefficient of 0.5 to 0.7, while the driving resistance increase amount that the driver cannot visually recognize or recognize is multiplied by 1, so that the driver can depress the accelerator pedal according to the recognized driving resistance increase amount. Even if you increase APO,
It is possible to perform smooth driving force control by preventing the target driving force tTd from becoming excessively large and by additionally correcting the total amount of increase in running resistance that the driver cannot recognize.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示し、駆動力を制御する
車両の概略構成図。
FIG. 1 is a schematic configuration diagram of a vehicle that controls a driving force according to an embodiment of the present invention.

【図2】パワートレイン・コントロール・モジュールで
行われる駆動力制御の一例を示すブロック図。
FIG. 2 is a block diagram showing an example of driving force control performed by a powertrain control module.

【図3】同じく、種類別増加走行抵抗演算手段のうちT
M損失抵抗増加量を演算するブロック図。
FIG. 3 is likewise T of the types of increased running resistance calculation means.
FIG. 6 is a block diagram for calculating an M loss resistance increase amount.

【図4】同じく、TM損失抵抗係数を演算するブロック
図。
FIG. 4 is a block diagram which similarly calculates a TM loss resistance coefficient.

【図5】同じく、種類別増加走行抵抗演算手段のうち補
機抵抗増加量を演算するブロック図。
FIG. 5 is a block diagram for calculating an auxiliary machine resistance increase amount in the type-specific increase running resistance calculation means.

【図6】同じく、補機抵抗係数を演算するブロック図。FIG. 6 is a block diagram which similarly calculates an auxiliary machine resistance coefficient.

【図7】同じく、種類別増加走行抵抗演算手段のうち車
両重量抵抗増加量を演算するブロック図。
FIG. 7 is a block diagram for calculating the vehicle weight resistance increase amount of the type-specific increase running resistance calculation means.

【図8】同じく、車両重量抵抗係数を演算するブロック
図。
FIG. 8 is a block diagram for similarly calculating a vehicle weight resistance coefficient.

【図9】同じく、勾配抵抗増加量の演算内容を示す概念
図。
FIG. 9 is a conceptual diagram showing the calculation contents of the gradient resistance increase amount.

【図10】同じく、勾配抵抗増加量の演算内容を示すフ
ローチャート。
FIG. 10 is a flowchart showing the calculation contents of the gradient resistance increase amount.

【図11】同じく、勾配抵抗係数を演算するブロック
図。
FIG. 11 is a block diagram for similarly calculating a gradient resistance coefficient.

【図12】パワートレイン・コントロール・モジュール
で行われる駆動力制御の一例を示すフローチャート。
FIG. 12 is a flowchart showing an example of driving force control performed by a powertrain control module.

【符号の説明】[Explanation of symbols]

11 車速センサ 12 入力軸回転センサ 50 パワートレイン・コントロール・モジュール(P
CM) 51 スロットル・コントロール・モジュール(TC
M) 54 位置情報処理装置 101 エンジン 102 電子制御スロットル 103 自動変速機 105 アクセルペダル開度センサ 120 コンプレッサ 121 油圧ポンプ 130 車重検出装置
11 vehicle speed sensor 12 input shaft rotation sensor 50 powertrain control module (P
CM) 51 Throttle control module (TC
M) 54 Position information processing device 101 Engine 102 Electronically controlled throttle 103 Automatic transmission 105 Accelerator pedal opening sensor 120 Compressor 121 Hydraulic pump 130 Vehicle weight detection device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // F16H 59:18 F16H 59:18 59:44 59:44 59:50 59:50 59:52 59:52 59:66 59:66 (56)参考文献 特開2000−211407(JP,A) 特開 平11−182665(JP,A) 特開 平10−169765(JP,A) 特開 平10−213220(JP,A) 特開 平9−240322(JP,A) 特開 平8−136572(JP,A) 特開 平6−201523(JP,A) 特開 平5−149424(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16H 59/00 - 61/12 F16H 61/16 - 61/24 F16H 63/40 - 63/48 B60K 41/00 - 41/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI // F16H 59:18 F16H 59:18 59:44 59:44 59:50 59:50 59:52 59:52 59:66 59 : 66 (56) Reference JP 2000-211407 (JP, A) JP 11-182665 (JP, A) JP 10-169765 (JP, A) JP 10-213220 (JP, A) JP-A-9-240322 (JP, A) JP-A-8-136572 (JP, A) JP-A-6-201523 (JP, A) JP-A-5-149424 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F16H 59/00-61/12 F16H 61/16-61/24 F16H 63/40-63/48 B60K 41/00-41/18

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アクセルペダルの踏み込み量を検出するア
クセルペダル操作位置検出手段と、 車両の速度を検出する車速検出手段と、 前記アクセルペダルの踏み込み量と車速に基づいて、平
坦路相当の目標駆動力を設定する通常目標駆動力設定手
段と、 前記平坦路相当の目標駆動力に対して増加した走行抵抗
を演算する増加抵抗演算手段と、 前記平坦路相当の目標駆動力に増加した走行抵抗を加算
したものを目標駆動力として演算する駆動力補正手段と
を備えた車両の駆動力制御装置において、 前記増加抵抗演算手段は、車両に加わる各種走行抵抗の
増加量と各抵抗係数をそれぞれ検出または推定する種類
別増加走行抵抗演算手段を備え、 前記種類別増加走行抵抗演算手段は、運転者が視認また
は認識可能な第1の走行抵抗増加量と、運転者が視認ま
たは認識不能な第2の走行抵抗増加量の増大に分けて各
抵抗係数を設定し、これら抵抗増加量に各抵抗係数を乗
じたものを合算する ことを特徴とする車両の駆動力制御
装置。
1. An accelerator pedal operation position detecting means for detecting an accelerator pedal depression amount, a vehicle speed detecting means for detecting a vehicle speed, and a target drive corresponding to a flat road based on the accelerator pedal depression amount and a vehicle speed. A normal target driving force setting means for setting a force, an increasing resistance calculating means for calculating a running resistance increased with respect to the target driving force corresponding to the flat road, and a running resistance increased to the target driving force corresponding to the flat road. In a driving force control device for a vehicle, comprising: a driving force correction unit that calculates the added value as a target driving force ;
Type to detect or estimate the amount of increase and each resistance coefficient
A separate increasing running resistance calculating means is provided, and the increasing running resistance calculating means for each type is visually recognized by a driver.
Is the recognizable first increase in running resistance and is visible to the driver.
Or unrecognizable second increase in running resistance
Set the resistance coefficient and multiply these resistance increase amounts by each resistance coefficient.
A driving force control device for a vehicle, which is characterized by adding up the two .
【請求項2】前記種類別増加抵抗演算手段は、車両重量
の増大に伴う走行抵抗の増加量または道路勾配の増大に
伴う走行抵抗の増加量を前記第1走行抵抗増加量として
演算するとともに、変速機の伝達トルクの損失量または
エンジン補機の作動により増加する走行抵抗を前記第2
走行抵抗増加量として演算することを特徴とする請求項
に記載の車両の駆動力制御装置。
2. The increasing resistance calculating means for each type is a vehicle weight.
Increase in running resistance or increase in road slope
The increase amount of the traveling resistance accompanying it is defined as the first traveling resistance increase amount.
Calculate and calculate the transmission torque loss of the transmission or
The running resistance, which is increased by the operation of the engine accessory, is increased by the second
The calculation is performed as a running resistance increase amount.
1. The vehicle driving force control device according to 1.
【請求項3】前記種類別増加抵抗演算手段は、道路勾配
の増大に伴う走行抵抗増加量に予め設定した値を乗じて
低減したものを第1走行抵抗増加量とすることを特徴と
する請求項2に記載の車両の駆動力制御装置。
3. The increase resistance calculating means for each type is a road gradient.
Multiply the amount of increase in running resistance due to
The driving force control device for a vehicle according to claim 2, wherein the reduced amount is set as the first running resistance increase amount .
【請求項4】前記予め設定した値が、50%未満である
ことを特徴とする請求項3に記載の車両の駆動力制御装
置。
4. The driving force control device for a vehicle according to claim 3, wherein the preset value is less than 50% .
【請求項5】前記種類別増加抵抗演算手段は、車両重量
の増大に伴う走行抵抗の増加量に予め設定した値を乗じ
て低減したものを第1走行抵抗増加量とすることを特徴
とする請求項2に記載の車両の駆動力制御装置。
5. The increasing resistance calculating means for each type is a vehicle weight.
Multiply the amount of increase in running resistance due to
The driving force control device for a vehicle according to claim 2 , wherein the reduced amount is set as the first running resistance increase amount .
【請求項6】前記予め設定した値が、70%未満である
ことを特徴とする請求項5に記載の車両の駆動力制御装
置。
6. The driving force control device for a vehicle according to claim 5 , wherein the preset value is less than 70% .
【請求項7】前記種類別増加抵抗演算手段は、前記第2
走行抵抗増加量をそのまま平坦路相当の目標駆動力に加
算して補正することを特徴とする請求項2に記載の車両
の駆動力制御装置。
7. The increasing resistance calculating means for each type is the second
The amount of increase in running resistance is directly added to the target driving force equivalent to a flat road.
The driving force control device for a vehicle according to claim 2 , wherein the driving force control device calculates and corrects .
JP04586699A 1999-02-24 1999-02-24 Vehicle driving force control device Expired - Fee Related JP3508603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04586699A JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04586699A JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2000240779A JP2000240779A (en) 2000-09-05
JP3508603B2 true JP3508603B2 (en) 2004-03-22

Family

ID=12731139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04586699A Expired - Fee Related JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP3508603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160042977A (en) * 2013-10-24 2016-04-20 쟈트코 가부시키가이샤 Oil pressure control device for belt-type continuously variable transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978350B1 (en) * 2017-05-18 2019-05-15 콘티넨탈 오토모티브 시스템 주식회사 Target slip amount determination apparatus and method of lockup clutch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897196B2 (en) * 1991-11-28 1999-05-31 本田技研工業株式会社 Control device for automatic transmission for vehicles
JP3260190B2 (en) * 1993-01-08 2002-02-25 株式会社日立製作所 Vehicle output shaft torque estimation device and vehicle weight calculation device
JP3241549B2 (en) * 1994-11-07 2001-12-25 トヨタ自動車株式会社 Acceleration sensor device for vehicle
JPH09240322A (en) * 1996-03-08 1997-09-16 Nissan Motor Co Ltd Controller for vehicular power train
JPH10169765A (en) * 1996-12-04 1998-06-26 Toyota Motor Corp Driving direction judging device
JPH10213220A (en) * 1997-01-28 1998-08-11 Unisia Jecs Corp Shift control device for vehicular automatic transmission
JP3463855B2 (en) * 1997-12-18 2003-11-05 富士重工業株式会社 Transmission control device for continuously variable transmission
JP2000211407A (en) * 1999-01-27 2000-08-02 Hitachi Ltd Vehicle control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160042977A (en) * 2013-10-24 2016-04-20 쟈트코 가부시키가이샤 Oil pressure control device for belt-type continuously variable transmission
KR102042310B1 (en) 2013-10-24 2019-11-07 쟈트코 가부시키가이샤 Oil pressure control device for belt-type continuously variable transmission

Also Published As

Publication number Publication date
JP2000240779A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US6626797B2 (en) Vehicular control apparatus and method for controlling automatic gear change
JP3815111B2 (en) Vehicle driving force control device
US7647152B2 (en) Control device for vehicle
US6042505A (en) System for controlling operation of an internal combustion engine
JP5388303B2 (en) Shift control device for continuously variable transmission
US20050234626A1 (en) Deceleration control apparatus and deceleration control method for vehicle
US7899587B2 (en) Front and rear wheel drive vehicle
JP3397523B2 (en) Shift control device for automatic transmission for vehicle
US6269296B1 (en) Control of vehicle driving force
JP3601347B2 (en) Vehicle control device and measuring method of running resistance
US5890993A (en) Method of controlling the downhill running of a vehicle and apparatus therefor
JPH07239021A (en) Control device for automatic transmission
JP3536523B2 (en) Driving force control device for vehicles
JP3508603B2 (en) Vehicle driving force control device
JP3460528B2 (en) Vehicle driving force control device
CN101048291B (en) Automobile
JP3551772B2 (en) Vehicle driving force control device
JPH06344802A (en) Constant speed controller of automobile
JP2000027674A (en) Vehicle drive force control device
JP2897196B2 (en) Control device for automatic transmission for vehicles
JP4535785B2 (en) Vehicle running resistance detection device
JP2523451B2 (en) Engine throttle valve control device
JP3407662B2 (en) Vehicle driving force control device
JP4483646B2 (en) Engine control device
JP2929396B2 (en) Automatic transmission control device for vehicles

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees