JP3503195B2 - Regenerative controller for electric vehicles - Google Patents

Regenerative controller for electric vehicles

Info

Publication number
JP3503195B2
JP3503195B2 JP14773994A JP14773994A JP3503195B2 JP 3503195 B2 JP3503195 B2 JP 3503195B2 JP 14773994 A JP14773994 A JP 14773994A JP 14773994 A JP14773994 A JP 14773994A JP 3503195 B2 JP3503195 B2 JP 3503195B2
Authority
JP
Japan
Prior art keywords
charging
regenerative
voltage
battery
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14773994A
Other languages
Japanese (ja)
Other versions
JPH0819107A (en
Inventor
泰之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14773994A priority Critical patent/JP3503195B2/en
Publication of JPH0819107A publication Critical patent/JPH0819107A/en
Application granted granted Critical
Publication of JP3503195B2 publication Critical patent/JP3503195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池によって駆動
される電気自動車の回生量、すなわち減速時(制動時を
含む)における回生充電量を制御する電気自動車用回生
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative control device for an electric vehicle which controls a regenerative amount of an electric vehicle driven by a secondary battery, that is, a regenerative charge amount during deceleration (including braking).

【0002】[0002]

【従来技術】従来における電気自動車の回生制御装置と
しては、例えば、“日産FEVパンフレット”に記載さ
れたものがある。上記の従来例には、アクセルペダルが
オフ、またはアクセルペダルがオフでブレーキが作動し
たとき、すなわち、減速時や制動時に、駆動用のモータ
を発電機として二次電池に回生充電を行なう装置が記載
されている。上記の装置においては、回生量の大きさは
一定であり、電池の満充電時には回生充電を停止させる
ようになっている。
2. Description of the Related Art As a conventional regeneration control device for an electric vehicle, for example, there is one described in "Nissan FEV Pamphlet". In the above-mentioned conventional example, when the accelerator pedal is off, or when the accelerator pedal is off and the brake is operated, that is, at the time of deceleration or braking, a device for performing regenerative charging of a secondary battery using a driving motor as a generator. Have been described. In the above-mentioned device, the amount of regeneration is constant, and regenerative charging is stopped when the battery is fully charged.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来の
装置においては、過充電を防止するために満充電時の回
生充電は停止するようになっているが、それ以外は、減
速時または制動時に常に一定量の回生充電が行なわれる
ようになっていたので、電池の寿命に悪影響を及ぼすお
それがある、という問題があった。以下、詳細に説明す
る。二次電池は、充放電を繰り返すごとにその放電容量
(放電可能な電気量)が減少するが、複数個の二次電池
を直列もしくは直並列に接続した組電池の場合には、放
電容量の減少程度が各電池によって異なっている。その
ためDOD(放電深度:全放電で100%、満充電で0
%)0%からの放電容量には各電池にバラツキが生じ、
それによって組電池としての放電容量が減少する。すな
わち、放電時には、放電容量の小さくなった電池は早く
放電終了して過放電状態となり、この過放電になってい
る電池が他の電池の負荷となって、全ての電池がDOD
100%にならないうちに電圧が低下し、組電池として
は放電終了になってしまう。一方、充電時には、放電時
にDOD100%にならなかった電池が先にDOD0%
に達して電圧が上昇し、充電が終了してしまうが、放電
時に過放電になった電池はDOD0%にならないままで
充電が終了するので、DODの差は広がり、各電池の放
電容量の差も広がる。したがって、充放電を繰り返す
と、放電容量の小さかった電池は常に充電不足になるの
で、組電池全体としての放電容量が減少すると共に、上
記の電池は過放電、充電不足を繰り返すので寿命的にも
劣化して行く。上記のように、回生充電量を一定にして
おくと、組電池のうちの特定の電池の放電容量低下が大
きくなり、組電池全体としての放電容量が低下し、か
つ、減速時等に常に回生充電を行なわせると、充電回数
が増加することから電池の寿命も劣化するという問題が
あった。
As described above, in the conventional device, the regenerative charge at the time of full charge is stopped in order to prevent overcharge, but otherwise, at the time of deceleration or Since a fixed amount of regenerative charging is always performed during braking, there is a problem that the life of the battery may be adversely affected. The details will be described below. The discharge capacity (the amount of electricity that can be discharged) of a secondary battery decreases each time charging and discharging are repeated.However, in the case of an assembled battery in which a plurality of secondary batteries are connected in series or series-parallel, the discharge capacity The degree of decrease differs for each battery. Therefore, DOD (depth of discharge: 100% at full discharge, 0 at full charge)
%) The discharge capacity from 0% varies from battery to battery,
As a result, the discharge capacity of the assembled battery is reduced. That is, at the time of discharging, a battery whose discharge capacity has become small is quickly discharged and becomes an over-discharged state, and this over-discharged battery becomes a load of other batteries, and all the batteries become DOD.
The voltage drops before it reaches 100%, and the battery pack ends discharging. On the other hand, when charging, the battery that did not reach 100% DOD when discharged first
The voltage rises and the charging ends, but the battery that has been over-discharged at the time of discharging ends charging without DOD 0%, so the difference in DOD widens and the difference in the discharge capacity of each battery Also spreads. Therefore, when charging and discharging are repeated, the battery with a small discharge capacity always becomes insufficiently charged, and the discharge capacity of the entire assembled battery decreases, and the above battery is repeatedly over-discharged and insufficiently charged, so that the battery life is also shortened. It deteriorates. As described above, if the regenerative charge amount is kept constant, the discharge capacity of a specific battery in the battery pack will decrease significantly, the discharge capacity of the battery pack as a whole will decrease, and regeneration will always occur during deceleration. When the battery is charged, there is a problem that the life of the battery is deteriorated because the number of times of charging increases.

【0004】本発明は、上記のような従来技術の問題を
解決するためになされたものであり、電池寿命の劣化を
低減し、かつ組電池としての放電容量の低下も補うこと
の出来る電気自動車用回生制御装置を提供することを目
的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and is an electric vehicle capable of reducing deterioration of battery life and compensating for reduction of discharge capacity as an assembled battery. An object of the present invention is to provide a regeneration control device for use.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明にお
いては、複数の二次電池を直列もしくは直並列に接続し
た組電池と、電気自動車の減速時(制動時を含む)にお
ける回生発電によって上記組電池を充電する回生充電手
段と、上記組電池を構成する各電池の電圧を検出する電
圧検出手段と、上記電圧検出手段の検出結果に基づき、
充電時における各電池電圧のバラツキの最大幅、すなわ
ち電圧の最も高い電池の電圧値と最も低い電池の電圧値
との差を検出し、その最大幅に応じて上記回生充電手段
における回生量を変化させる制御手段と、を備え、上
制御手段は、上記最大幅が第1の所定値以上の場合にの
み回生充電を行なわせ、かつ、上記バラツキの最大幅が
大きくなるに従って回生量を大きくするように制御する
ものである。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, in the invention according to claim 1, the assembled battery in which a plurality of secondary batteries are connected in series or in series-parallel and the assembled battery is charged by regenerative power generation during deceleration (including braking) of the electric vehicle Regenerative charging means, voltage detection means for detecting the voltage of each battery constituting the assembled battery, based on the detection result of the voltage detection means,
The maximum width of variation of each battery voltage during charging, that is, the difference between the voltage value of the battery having the highest voltage and the voltage value of the battery having the lowest voltage is detected, and the regeneration amount in the regenerative charging means is changed according to the maximum width. and a control means for, on SL control unit only when the upper Symbol maximum width of the first predetermined value or more to perform the regenerative charging and increase the amount of regeneration according to the maximum width of the variation is large It is controlled to do so.

【0006】また、請求項に記載の発明においては、
上記電圧検出手段は、回生充電ではない通常の充電装置
による充電の終了時(例えば終了直前、以下同じ)に、
各電池の電圧を検出し、上記制御手段は、上記充電終了
時の各電池電圧に応じて上記バラツキの最大幅を検出
し、その値に応じた回生量を記憶しておき、次の回生充
電時に、上記の記憶しておいた値に応じて上記回生充電
手段における回生量を制御するものである。なお、この
構成は、例えば、後記第1の実施例(図4のフローチャ
ート)に相当する。
According to the invention of claim 2 ,
The voltage detection means, when charging by a normal charging device that is not regenerative charging is completed (for example, immediately before completion, the same applies hereinafter),
Detecting the voltage of each battery, the control means detects the maximum width of the variation according to each battery voltage at the end of charging, stores the regenerative amount according to that value, and stores the next regenerative charging. At times, the regenerative amount in the regenerative charging means is controlled according to the stored value. Note that this configuration corresponds to, for example, a first embodiment (flowchart in FIG. 4) described later.

【0007】また、請求項に記載の発明においては、
上記電圧検出手段は、通常の充電装置による充電の終了
時および回生充電の終了時に、各電池の電圧を検出し、
上記制御手段は、上記充電終了時の各電池電圧に応じて
上記バラツキの最大幅を検出し、その値に応じた回生量
を記憶しておき、次の回生充電時に、上記の記憶してお
いた値に応じて上記回生充電手段における回生量を制御
するものである。なお、上記の構成は、例えば後記第2
の実施例(図5のフローチャート)に相当する。
Further, in the invention described in claim 3 ,
The voltage detection means detects the voltage of each battery at the end of charging by a normal charging device and at the end of regenerative charging,
The control means detects the maximum width of the variation according to each battery voltage at the end of the charging, stores the regenerative amount corresponding to the value, and stores the regenerative amount at the next regenerative charging. The regenerative amount in the regenerative charging means is controlled according to the value that has been set. Note that the above-described configuration is, for example, the second
Of the embodiment (flow chart of FIG. 5).

【0008】また、請求項に記載の発明においては、
上記電圧検出手段は、通常の充電装置による充電の終了
時および回生充電の終了時に、各電池の電圧を検出し、
上記制御手段は、上記充電終了時の各電池電圧に応じて
上記バラツキの最大幅を検出し、その値に応じた回生量
を記憶しておき、次の回生充電時に、上記の記憶してお
いた値に応じて上記回生充電手段における回生量を制御
し、かつ、上記バラツキの最大幅が第2の所定値以上の
場合には、次回の通常の充電装置による充電時に、充電
終了条件に達しても充電を終了させず、均等充電を行な
うように制御するものである。なお、上記の構成は、例
えば後記第3の実施例に相当する。
Further, in the invention described in claim 4 ,
The voltage detection means detects the voltage of each battery at the end of charging by a normal charging device and at the end of regenerative charging,
The control means detects the maximum width of the variation according to each battery voltage at the end of the charging, stores the regenerative amount corresponding to the value, and stores the regenerative amount at the next regenerative charging. The regenerative amount in the regenerative charging means is controlled according to the value that has been exceeded, and when the maximum width of the variation is equal to or greater than the second predetermined value, the charging end condition is reached at the next charging by the normal charging device. However, the charging is not terminated but is controlled to be performed uniformly. The above configuration corresponds to, for example, a third embodiment described below.

【0009】[0009]

【作用】複数の二次電池を直列接続した組電池におい
て、各電池電圧のバラツキの最大幅、すなわち電圧の最
も高い電池の電圧値と最も低い電池の電圧値との差ΔV
と組電池の放電容量とは、図2に示すごとき関係を有す
る。すなわち、電圧差ΔVが大きいほど放電容量は小さ
くなる。このように、電圧差ΔVが大きいということは
組電池としての放電容量が低下していることを示す。ま
た、二次電池は、一般に充放電回数に応じて劣化するの
で、不要な場合、すなわち放電容量の大きいときにはな
るべく充電しない方が寿命が長くなる。したがって請求
1に記載のように、電池電圧のバラツキの最大幅が第
1の所定値よりも小さい場合、すなわち、各電池の状態
が均一で充電がよく行なわれている場合には、回生充電
を行なわせず、バラツキの最大幅が大きい場合、すなわ
ち、放電容量が低下した電池がある場合には、上記最大
幅に応じて回生充電量を大きくし、低下した電池にも充
電がよく行なわれるようにすることによって、他との差
を少なくする。このように放電容量の低下した電池の充
電量を増やして他との差を少なくすれば、全体としての
低下の程度を低減することが出来、放電容量を増加させ
ることが出来るので、航続距離を伸ばすことが出来る。
なお、回生充電量を大きくすれば、均等充電(詳細後
述)と類似の効果が得られるので、放電容量の低下した
電池の充電量を回復することが出来る。また、バラツキ
の最大幅が小さい場合には回生充電を行なわせないこと
により、充電回数を低減して電池の寿命を向上させるこ
とが出来る。図3は、回生量と電圧差ΔVの変化率との
関係を示す特性図である。なお、電圧差ΔVの変化率と
は、前回の充電時における電圧差ΔVと今回の充電時に
おける値との変化率を意味する。図3に示すように、回
生量が大きい場合には、電圧差ΔVの変化率は小さくな
り、組電池を形成する各電池を均等に充電できることが
判る。
In a battery pack in which a plurality of secondary batteries are connected in series, the maximum width of variation in each battery voltage, that is, the difference ΔV between the voltage value of the battery having the highest voltage and the voltage value of the battery having the lowest voltage.
And the discharge capacity of the assembled battery have a relationship as shown in FIG. That is, the larger the voltage difference ΔV, the smaller the discharge capacity. As described above, the large voltage difference ΔV indicates that the discharge capacity of the assembled battery has decreased. In addition, since the secondary battery generally deteriorates according to the number of times of charging and discharging, the life of the secondary battery becomes longer if it is not necessary, that is, if the discharge capacity is large, it is not charged as much as possible. Therefore , as described in claim 1, when the maximum width of the variation of the battery voltage is smaller than the first predetermined value, that is, when the state of each battery is uniform and the charging is performed well, the regenerative charging is performed. If the maximum range of variation is large without performing the above, that is, if there is a battery with a reduced discharge capacity, the regenerative charge amount is increased according to the maximum range, and the reduced battery is also often charged. By doing so, the difference with others is reduced. In this way, by increasing the charge amount of the battery with reduced discharge capacity and reducing the difference from other batteries, the degree of overall decrease can be reduced and the discharge capacity can be increased. Can be stretched.
It should be noted that if the regenerative charge amount is increased, an effect similar to that of the uniform charge (described later in detail) can be obtained, so that the charge amount of the battery having the reduced discharge capacity can be recovered. Further, when the maximum width of variation is small, regenerative charging is not performed, so that the number of times of charging can be reduced and the battery life can be improved. FIG. 3 is a characteristic diagram showing the relationship between the regeneration amount and the change rate of the voltage difference ΔV. The rate of change of the voltage difference ΔV means the rate of change between the voltage difference ΔV during the previous charging and the value during the current charging. As shown in FIG. 3, when the amount of regeneration is large, the rate of change of the voltage difference ΔV becomes small, and it can be seen that the batteries forming the assembled battery can be charged uniformly.

【0010】また、請求項の発明は、回生充電ではな
い通常の充電装置による充電の終了時(例えば終了直
前、以下同じ)に、各電池の電圧を検出し、バラツキの
最大幅に応じた回生量を求めて記憶しておき、次の回生
充電時に、上記の記憶しておいた値に応じて上記回生充
電手段における回生量を制御するものである。このよう
に構成することにより、回生時に電池の状態に適合した
回生量で直ちに充電を行なうことが出来る。また、請求
の発明は、通常の充電装置による充電の終了時の他
に、回生充電の終了時にも各電池の電圧を検出し、上記
と同様に回生量を演算して記憶するものである。請求項
の場合には通常の充電が行われるまで回生量は変化し
ないが、請求項においては回生充電時にも回生量の演
算が行なわれるので、電池の状態により適応した制御を
行なうことが出来る。また、請求項の発明は、バラツ
キの最大幅が非常に大きい場合、すなわち、放電容量が
大幅に低下した電池が存在する場合には、通常の充電装
置による充電時に、充電終了条件(例えば電圧が所定に
達した場合)に達しても充電を終了させず、均等充電を
行なうものである。この均等充電とは、定格電圧の10
〜15%増の電圧を印加し、(1/20)C程度の電流
(Cは定格電流)で2〜5時間程度充電する方法であ
り、これによって容量低下の大きな電池(電圧の低い電
池)にも充電することができ、各電池の充電状態を均等
化することが出来る。
Further, the invention of claim 2 detects the voltage of each battery at the end of charging (for example, immediately before completion, the same applies hereinafter) at the end of charging by a normal charging device that is not regenerative charging, and responds to the maximum variation width. The regenerative amount is obtained and stored, and at the time of the next regenerative charging, the regenerative amount in the regenerative charging means is controlled according to the stored value. With this configuration, it is possible to immediately charge the battery with a regeneration amount suitable for the state of the battery during regeneration. Further, the invention of claim 3 detects the voltage of each battery at the end of regenerative charging as well as at the end of charging by the normal charging device, and calculates and stores the regenerative amount in the same manner as above. is there. Claim
In the case of 2, the regenerative amount does not change until normal charging is performed, but in claim 3 , the regenerative amount is calculated even during regenerative charging, so that control suitable for the state of the battery can be performed. Further, in the invention of claim 4 , when the maximum width of variation is very large, that is, when there is a battery whose discharge capacity is significantly reduced, the charging end condition (for example, voltage When the battery reaches a predetermined value), the charging is not terminated even when the battery reaches a predetermined value, and the uniform charging is performed. This equal charge is the rated voltage of 10
This is a method of applying a voltage of ~ 15% increase and charging it with a current of about (1/20) C (C is a rated current) for about 2 to 5 hours, which causes a large decrease in capacity (low voltage battery). Can also be charged, and the state of charge of each battery can be equalized.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。図1は本発明の一実施例のブロック図である。図
1において、1は車外に設置された充電装置であり、例
えば自宅や充電ステーションに設置されている。2およ
び3は充電装置1と車載の組電池8とを接続するコネク
タ、4はアクセルペダルの踏み量を検出するアクセルセ
ンサ、5はブレーキの作動量を検出するブレーキセン
サ、6は組電池8の各電池の電圧を検出する電圧セン
サ、7は電流を検出する電流センサ、8は複数個の電池
を直列に接続した組電池、9は制御装置、10は駆動用
のモータであり、回生時には発電機として動作する。1
1は組電池8の直流出力を三相交流に変換するインバー
タ、12はタイヤ、13はモータ10とタイヤ12とを
接続する駆動装置(例えばギヤ等)である。なお、この
実施例では、組電池8として複数の電池を直列接続した
場合を例示しているが、直並列接続であってもよい。図
1に示す電気自動車においては、組電池8の直流電力を
インバータ11で交流電力に変換し、その電力でモータ
10を駆動し、駆動装置13を介してタイヤ12を回転
させることによって走行する。また、制御装置9は、ア
クセルセンサ4とブレーキセンサ5の信号から車両の減
速時(制動時を含む)を検出し、モータ10を発電機と
して動作させて回生充電を行なわせる(詳細後述)。ま
た、車外に設けられた充電装置1から組電池8に充電す
る場合にも後述する充電制御を行なう。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a block diagram of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a charging device installed outside the vehicle, for example, installed at home or at a charging station. 2 and 3 are connectors for connecting the charging device 1 and the on-vehicle assembled battery 8, 4 is an accelerator sensor for detecting the amount of depression of the accelerator pedal, 5 is a brake sensor for detecting the amount of operation of the brake, and 6 is for the assembled battery 8. A voltage sensor that detects the voltage of each battery, 7 is a current sensor that detects current, 8 is an assembled battery in which a plurality of batteries are connected in series, 9 is a controller, 10 is a driving motor, and power is generated during regeneration. Operates as a machine. 1
Reference numeral 1 is an inverter that converts the DC output of the assembled battery 8 into three-phase AC, 12 is a tire, and 13 is a drive device (for example, a gear) that connects the motor 10 and the tire 12. In addition, in this embodiment, the case where a plurality of batteries are connected in series as the assembled battery 8 is illustrated, but the batteries may be connected in series and parallel. In the electric vehicle shown in FIG. 1, the DC power of the assembled battery 8 is converted into AC power by the inverter 11, the motor 10 is driven by the power, and the tire 12 is rotated via the drive device 13 to travel. Further, the control device 9 detects when the vehicle is decelerating (including braking) from the signals of the accelerator sensor 4 and the brake sensor 5, and operates the motor 10 as a generator to perform regenerative charging (details will be described later). Further, when charging the assembled battery 8 from the charging device 1 provided outside the vehicle, the charging control described later is also performed.

【0012】次に、作用を説明する。図4は、充電時に
おける制御の第1の実施例を示すフローチャートであ
る。
Next, the operation will be described. FIG. 4 is a flowchart showing a first embodiment of control at the time of charging.

【0013】図4において、まずステップS1では、車
外の充電装置1による通常充電を行なうのか回生充電を
行なうのかを判断する。なお、回生充電は、例えばアク
セルセンサ4とブレーキセンサ5の信号から、アクセル
がオフでブレーキがオン(減速時)であることを検出し
た場合に行なう。ステップS1で通常充電と判断して充
電を開始した場合には、次にステップS2で、充電を終
了するか否かを判断する。この判断は、電池の定格電
流、電圧値等から判断する。例えば、(1/3)Cの定
電流で充電を開始し、電圧値が定格値になった時点から
定電圧充電に切り替え、それから4時間経過した後に、
或いは、定電圧充電に切り替えた後、電流値が1A以下
になった時点から1時間後に、充電を終了すると判断す
る。なお、上記の電圧値と電流値は電圧センサ6と電流
センサ7で検出した値を用いる。次に、ステップS3で
は、充電を終了する直前における組電池8の各電池電圧
を検出して記憶する。このデータは、例えばそれぞれの
電池の電圧を全て計測したデータを1セットとした場合
に、経時的に10セット程度を記憶すれば十分である。
次に、ステップS4では、各電池電圧のバラツキの最大
幅、すなわち電圧の最も高い電池の電圧値と最も低い電
池の電圧値との電圧差ΔVを演算し、ステップS5で、
回生量τを演算する。この回生量τは、その時点の電圧
差ΔVと所定値α(例えば、前記図2に示した目標放電
容量Cに対応した電圧差α)との差の関数として演算す
る。この場合、ΔVの値が小さくて(ΔV−α)≦0の
とき、すなわちΔV≦αの場合には回生充電を行なわせ
ず、また、回生量τの値はΔVとαとの差が大きいほど
大きな値とする。例えば、回生量τをΔVとαとの差に
比例した値とするように設定する。次に、ステップS6
で、上記の演算した回生量τを次回の回生時に用いるた
めメモリに記憶しておく。一方、ステップS1で“回生
充電”と判断した場合には、ステップS7で、上記のメ
モリに記憶しておいた回生量τを読み出す。そしてステ
ップS8では、回生トルク指令演算を行なう。この演算
は、回生量τとブレーキ踏力Tとに基づいて、回生発電
による回生制動力と制動装置によるブレーキ力との割合
を求め、それに応じた回生トルクを演算する。そしてス
テップS9で、上記の回生トルクに応じた回生充電を開
始する。また、ステップS10では、回生充電を終了す
るか否かを判断する。なお、この判断は、制動後の再加
速状態(アクセルペダルが踏まれた場合)やブレーキペ
ダルが開放された場合などに回生充電終了と判断する。
上記のように構成すれば、通常充電時に計測した電圧値
に応じて回生量τを演算して記憶しておき、次の回生充
電時にその値を読み出して回生充電制御を行なうことが
出来る。
In FIG. 4, first, in step S1, it is determined whether the charging device 1 outside the vehicle performs normal charging or regenerative charging. The regenerative charging is performed, for example, when it is detected from the signals of the accelerator sensor 4 and the brake sensor 5 that the accelerator is off and the brake is on (during deceleration). When it is determined in step S1 that the charging is normal and the charging is started, it is then determined in step S2 whether or not the charging is ended. This judgment is made based on the rated current, voltage value, etc. of the battery. For example, charging is started at a constant current of (1/3) C, switching to constant voltage charging from the time when the voltage value reaches the rated value, and 4 hours after that,
Alternatively, after switching to the constant voltage charging, it is determined that the charging is completed one hour after the current value becomes 1 A or less. The values detected by the voltage sensor 6 and the current sensor 7 are used as the above voltage value and current value. Next, in step S3, each battery voltage of the assembled battery 8 immediately before the end of charging is detected and stored. It is sufficient to store about 10 sets of this data over time, for example, when one set of data obtained by measuring all the voltages of the respective batteries is used.
Next, in step S4, the maximum width of variation in each battery voltage, that is, the voltage difference ΔV between the voltage value of the battery having the highest voltage and the voltage value of the battery having the lowest voltage is calculated, and in step S5,
Calculate the regeneration amount τ. This regeneration amount τ is calculated as a function of the difference between the voltage difference ΔV at that time and a predetermined value α (for example, the voltage difference α corresponding to the target discharge capacity C shown in FIG. 2). In this case, when the value of ΔV is small and (ΔV−α) ≦ 0, that is, when ΔV ≦ α, regenerative charging is not performed, and the value of the regeneration amount τ has a large difference between ΔV and α. Set to a large value. For example, the regeneration amount τ is set to be a value proportional to the difference between ΔV and α. Next, step S6
Then, the calculated regenerative amount τ is stored in the memory for use at the next regenerative operation. On the other hand, when it is determined in step S1 that "regenerative charging" is performed, the regenerative amount τ stored in the memory is read in step S7. Then, in step S8, a regenerative torque command calculation is performed. In this calculation, the ratio between the regenerative braking force by the regenerative power generation and the braking force by the braking device is calculated based on the regenerative amount τ and the brake pedal force T, and the regenerative torque is calculated accordingly. Then, in step S9, regenerative charging according to the regenerative torque is started. Further, in step S10, it is determined whether or not the regenerative charging is ended. Note that this determination is determined to be the end of regenerative charging when the vehicle is in a re-accelerated state after braking (when the accelerator pedal is depressed) or when the brake pedal is released.
With the above configuration, the regenerative amount τ can be calculated and stored according to the voltage value measured during normal charging, and the value can be read out during the next regenerative charging to perform regenerative charging control.

【0014】次に、図5は、充電時における制御の第2
の実施例を示すフローチャートである。図5において
は、ステップS10で回生充電終了と判断した場合に、
ステップS3へ行き、回生充電終了直前の各電池電圧を
検出して記憶する。以下の制御は前記図4の場合と同様
である。上記のように構成すれば、回生充電時にも回生
量の演算が行なわれるので、電池の状態により適応した
制御を行なうことが出来る。
Next, FIG. 5 shows a second control of charging.
3 is a flowchart showing an example of the above. In FIG. 5, when it is determined in step S10 that the regenerative charging is completed,
Going to step S3, each battery voltage immediately before the end of regenerative charging is detected and stored. The following control is the same as in the case of FIG. According to the above configuration, the regenerative amount is calculated even during regenerative charging, so that control suitable for the state of the battery can be performed.

【0015】次に、充電制御の第3の実施例について説
明する。前記図4または図5のフローチャートにおける
ステップS3で検出・記憶した各電池電圧値に基づい
て、ステップS4で求めたバラツキの最大幅ΔVが第2
の所定値以上である場合、すなわち、各電池電圧のバラ
ツキが非常に大きい場合には、次回の通常充電時に、ス
テップS2で充電終了条件に達しても充電を終了させ
ず、新たに均等充電を行なわせるように制御する。この
均等充電とは、定格電圧の10〜15%増の電圧を印加
し、(1/20)C程度の電流(Cは定格電流)で2〜
5時間程度充電する方法であり、これによって容量低下
の大きな電池(電圧の低い電池)にも充電することがで
き、各電池の充電状態を均等化することが出来る。
Next, a third embodiment of charge control will be described. Based on the battery voltage values detected and stored in step S3 in the flowchart of FIG. 4 or 5, the maximum width ΔV of the variation obtained in step S4 is the second value.
Is equal to or more than the predetermined value, that is, when the variations in the battery voltages are extremely large, the charging is not terminated even if the charging termination condition is reached in step S2 at the next normal charging, and a new equal charging is performed. Control it to be performed. This equal charging is a voltage of 10 to 15% higher than the rated voltage, and a current of about (1/20) C (C is the rated current) is 2 to
This is a method of charging for about 5 hours, whereby a battery with a large decrease in capacity (battery with a low voltage) can be charged, and the charging state of each battery can be equalized.

【0016】次に、特開昭51−85437号に記載さ
れている充電制御方法と本発明との差異について説明す
る。上記公知例においては、組電池を構成する各電池電
圧を計測し、それらの値と所定の基準電圧範囲(基準値
を中心として上限値と下限値の間)とを比較し、基準範
囲から外れた電池の数に応じて充電電圧や充電方法を変
更するように制御している。これに対して、本発明にお
いては、組電池を構成する各電池電圧のバラツキの最大
幅、すなわち電圧の最も高い電池の電圧値と最も低い電
池の電圧値との差に応じて、回生充電を行なうか否かの
判断と回生量とを制御している。
Next, the difference between the charging control method described in JP-A-51-85437 and the present invention will be described. In the above-mentioned publicly known example, each battery voltage which constitutes the assembled battery is measured, and those values are compared with a predetermined reference voltage range (between the upper limit value and the lower limit value centering on the reference value) and deviated from the reference range. The charging voltage and charging method are controlled according to the number of batteries. On the other hand, in the present invention, the regenerative charging is performed according to the maximum width of the variations in the voltages of the batteries forming the assembled battery, that is, the difference between the voltage value of the battery having the highest voltage and the voltage value of the lowest battery. It controls whether to perform or not and the amount of regeneration.

【0017】図6および図7は、8個の電池を直列接続
した組電池における各電池電圧のバラツキ例を示す図で
ある。上記公知例の場合には、図6に示すように、1個
の電池(No.5)のみが大きく外れた場合には、1個
の電池が基準から外れたとしか判断しないので、充電量
等に大きな変更はない。本発明の場合には、電圧差を基
準として判断するので、図6のような場合には、回生充
電量を大きくするか、或いは次回の通常充電時に均等充
電を行うように制御する。また、図7に示すように、基
準範囲から少しだけ外れた電池が多数ある場合には、上
記公知例では充電量等を大幅に変更するが、本発明で
は、電圧差が小さければ回生充電量は小さな値となる。
組電池においては、充放電を繰り返すと組電池全体の放
電容量は徐々に減少して行くが、このとき各電池の電圧
は、全体的にバラツクのではなく、特定の一つの電池が
特に低下する。すなわち、組電池の場合には、放電容量
の減少程度が各電池によって異なっているため、放電時
には、放電容量の小さくなった電池は早く放電終了して
過放電状態となり、過放電になっている電池が他の電池
の負荷となって、全ての電池がDOD100%にならな
いうちに電圧が低下し、組電池としては放電終了になっ
てしまう。一方、充電時には、放電時にDOD100%
にならなかった電池が先にDOD0%に達して電圧が上
昇し、充電が終了してしまうが、放電時に過放電になっ
た電池はDOD0%にならないままで充電が終了するの
で、DODの差は広がり、各電池の放電容量の差も広が
る。したがって、充放電を繰り返すと、放電容量の小さ
かった特定の電池は常に充電不足になり、他の電池との
差が大きくなる。このように、組電池においては、特定
の電池が他の電池よりも大幅に電圧値が変化する傾向が
あるので、上記公知例のように基準範囲を逸脱した電池
の数で制御するよりも、本発明のように電圧差に基づい
て制御する方が組電池の特性に適合した充電制御を行う
ことが出来る。
FIG. 6 and FIG. 7 are diagrams showing examples of variations in battery voltage in an assembled battery in which eight batteries are connected in series. In the case of the above-mentioned publicly known example, as shown in FIG. 6, when only one battery (No. 5) largely deviates, it is judged that only one battery deviates from the reference. There is no big change in. In the case of the present invention, the voltage difference is used as a reference for determination, so in the case of FIG. 6, the regenerative charge amount is increased or control is performed so as to perform uniform charge at the next normal charge. Further, as shown in FIG. 7, when there are a large number of batteries that are slightly out of the reference range, the charge amount and the like are significantly changed in the above-mentioned known example, but in the present invention, when the voltage difference is small, the regenerative charge amount Is a small value.
In the assembled battery, the discharge capacity of the entire assembled battery gradually decreases when charging and discharging are repeated, but at this time, the voltage of each battery does not vary as a whole, but a particular one battery drops in particular. . In other words, in the case of the assembled battery, the degree of decrease in discharge capacity differs depending on the battery, so during discharge, a battery with a reduced discharge capacity is quickly discharged and overdischarged, resulting in overdischarge. The battery becomes a load of other batteries, and the voltage drops before all the batteries reach DOD 100%, and the assembled battery ends the discharge. On the other hand, when charging, discharging 100% DOD
The battery that did not become DOD reaches 0% first and the voltage rises, and charging ends, but the battery that is over-discharged at the time of discharging ends charging without DOD 0%, so the difference in DOD Spread, and the difference in discharge capacity of each battery also spreads. Therefore, when charging and discharging are repeated, the specific battery having a small discharge capacity is always insufficiently charged, and the difference from other batteries becomes large. As described above, in the assembled battery, the voltage value of the specific battery tends to change more drastically than that of the other batteries, so rather than controlling by the number of batteries deviating from the reference range as in the above-mentioned known example, As in the present invention, the control based on the voltage difference enables the charge control suitable for the characteristics of the assembled battery.

【0018】[0018]

【発明の効果】以上説明したごとく、本発明において
は、組電池を構成する各電池電圧のバラツキの最大幅に
応じて回生量を変化させるように構成したことにより、
放電容量の低下した電池の充電量を回復することが出来
ると共に、充電回数を低減することが出来るので、組電
池としての放電容量の低下を補うことが出来ると共に電
池の寿命を向上させることが出来る、という効果が得ら
れる。
As described above, according to the present invention, the regenerative amount is changed according to the maximum width of the variation in the voltage of each battery forming the assembled battery.
It is possible to recover the amount of charge of a battery with reduced discharge capacity and reduce the number of times of charging, so it is possible to compensate for the decrease in discharge capacity as an assembled battery and improve the life of the battery. The effect of, is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】組電池を構成する各電池の最大電圧差ΔVと放
電容量との関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the maximum voltage difference ΔV and the discharge capacity of each battery included in the assembled battery.

【図3】回生量と最大電圧差ΔVの変化率との関係を示
す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a regeneration amount and a change rate of a maximum voltage difference ΔV.

【図4】充電制御の第1の実施例を示すフローチャー
ト。
FIG. 4 is a flowchart showing a first embodiment of charging control.

【図5】充電制御の第2の実施例を示すフローチャー
ト。
FIG. 5 is a flowchart showing a second embodiment of charging control.

【図6】組電池における電圧バラツキ状態を示す特性
図。
FIG. 6 is a characteristic diagram showing a voltage variation state in the assembled battery.

【図7】組電池における電圧バラツキ状態を示す特性
図。
FIG. 7 is a characteristic diagram showing a voltage variation state in the assembled battery.

【符号の説明】[Explanation of symbols]

1…車外に設置された充電装置 8…組電池 2、3…コネクタ 9…制
御装置 4…アクセルセンサ 10…駆動用
のモータ 5…ブレーキセンサ 11…インバ
ータ 6…電圧センサ 12…タイヤ 7…電流センサ 13…駆動装
DESCRIPTION OF SYMBOLS 1 ... Charging device installed outside the vehicle 8 ... Batteries 2, 3 ... Connector 9 ... Control device 4 ... Accelerator sensor 10 ... Driving motor 5 ... Brake sensor 11 ... Inverter 6 ... Voltage sensor 12 ... Tire 7 ... Current sensor 13 ... Drive device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60L 7/00 - 7/28 B60L 3/00 - 3/12 B60L 11/18 G01R 31/36 H02J 7/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B60L 7/00-7/28 B60L 3/00-3/12 B60L 11/18 G01R 31/36 H02J 7 / 00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の二次電池を直列もしくは直並列に接
続した組電池と、 電気自動車の減速時における回生発電によって上記組電
池を充電する回生充電手段と、 上記組電池を構成する各電池の電圧を検出する電圧検出
手段と、 上記電圧検出手段の検出結果に基づき、充電時における
各電池電圧のバラツキの最大幅、すなわち電圧の最も高
い電池の電圧値と最も低い電池の電圧値との差を検出
し、その最大幅に応じて上記回生充電手段における回生
量を変化させる制御手段と、を備え、上記制御手段は、上記最大幅が第1の所定値以上の場合
にのみ回生充電を行なわせ、かつ、上記最大幅が大きく
なるに従って回生量を大きくするように制御するもので
ある、 ことを特徴とする電気自動車用回生制御装置。
1. An assembled battery in which a plurality of secondary batteries are connected in series or series-parallel, regenerative charging means for charging the assembled battery by regenerative power generation during deceleration of an electric vehicle, and each battery constituting the assembled battery. Based on the detection result of the voltage detection means for detecting the voltage of, the maximum width of the variation of each battery voltage at the time of charging, that is, the voltage value of the battery with the highest voltage and the voltage value of the lowest battery A control unit that detects a difference and changes the amount of regeneration in the regenerative charging unit according to the maximum width, the control unit being configured to control the maximum width to be equal to or larger than a first predetermined value.
Regenerative charging only, and the maximum width above is large
It controls to increase the amount of regeneration as
There is a regenerative control device for an electric vehicle.
【請求項2】上記電圧検出手段は、回生充電ではない通
常の充電装置による充電の終了時に、各電池の電圧を検
出し、 上記制御手段は、上記充電終了時の各電池電圧に応じて
上記バラツキの最大幅を検出し、その値に応じた回生量
を記憶しておき、次の回生充電時に、上記の記憶してお
いた値に応じて上記回生充電手段における回生量を制御
するものである、ことを特徴とする請求項1に記載の電
気自動車用回生制御装置。
2. The voltage detecting means detects the voltage of each battery at the end of charging by a normal charging device that is not regenerative charging, and the control means sets the voltage according to each battery voltage at the end of charging. The maximum amount of variation is detected, the regenerative amount corresponding to the value is stored, and at the time of the next regenerative charging, the regenerative amount in the regenerative charging means is controlled according to the stored value. The regenerative control device for an electric vehicle according to claim 1, wherein:
【請求項3】上記電圧検出手段は、回生充電ではない通
常の充電装置による充電の終了時および回生充電の終了
時に、各電池の電圧を検出し、 上記制御手段は、上記充電終了時の各電池電圧に応じて
上記バラツキの最大幅を検出し、その値に応じた回生量
を記憶しておき、次の回生充電時に、上記の記憶してお
いた値に応じて上記回生充電手段における回生量を制御
するものである、ことを特徴とする請求項1に記載の電
気自動車用回生制御装置。
3. The voltage detecting means detects the voltage of each battery at the end of charging by an ordinary charging device that is not regenerative charging and at the end of regenerative charging, and the control means detects each voltage at the end of charging. The maximum width of the variation is detected according to the battery voltage, and the regeneration amount according to the value is stored, and at the time of the next regenerative charging, the regeneration by the regenerative charging means is performed according to the stored value. The regenerative control device for an electric vehicle according to claim 1, wherein the regenerative control device controls an amount.
【請求項4】上記電圧検出手段は、回生充電ではない通
常の充電装置による充電の終了時および回生充電の終了
時に、各電池の電圧を検出し、 上記制御手段は、上記充電終了時の各電池電圧に応じて
上記バラツキの最大幅を検出し、その値に応じた回生量
を記憶しておき、次の回生充電時に、上記の記憶してお
いた値に応じて上記回生充電手段における回生量を制御
し、かつ、上記バラツキの最大幅が第2の所定値以上の
場合には、次回の通常の充電装置による充電時に、充電
終了条件に達しても充電を終了させず、均等充電を行な
うように制御するものである、ことを特徴とする請求項
1に記載の電気自動車用回生制御装置。
4. The voltage detecting means detects the voltage of each battery at the end of charging by an ordinary charging device other than regenerative charging and at the end of regenerative charging, and the control means detects each voltage at the end of charging. The maximum width of the variation is detected according to the battery voltage, and the regeneration amount according to the value is stored, and at the time of the next regenerative charging, the regeneration by the regenerative charging means is performed according to the stored value. When the amount is controlled and the maximum width of the variation is equal to or larger than the second predetermined value, the charging is not terminated even if the charging termination condition is reached at the next charging by the normal charging device, and the uniform charging is performed. The control is performed so as to perform.
The regenerative control device for an electric vehicle according to 1 .
JP14773994A 1994-06-29 1994-06-29 Regenerative controller for electric vehicles Expired - Fee Related JP3503195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14773994A JP3503195B2 (en) 1994-06-29 1994-06-29 Regenerative controller for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14773994A JP3503195B2 (en) 1994-06-29 1994-06-29 Regenerative controller for electric vehicles

Publications (2)

Publication Number Publication Date
JPH0819107A JPH0819107A (en) 1996-01-19
JP3503195B2 true JP3503195B2 (en) 2004-03-02

Family

ID=15437054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14773994A Expired - Fee Related JP3503195B2 (en) 1994-06-29 1994-06-29 Regenerative controller for electric vehicles

Country Status (1)

Country Link
JP (1) JP3503195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3701277A1 (en) * 2017-10-23 2020-09-02 CPS Technology Holdings LLC User interface for a battery tester
CN109895717B (en) * 2019-01-30 2020-04-14 青岛海尔空调器有限总公司 Parking air conditioner and service life early warning method and system of vehicle battery

Also Published As

Publication number Publication date
JPH0819107A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
US8237398B2 (en) Electric system, charging device and charging method for electric system for discharging of a power storage mechanism for resetting a state of a charge
JP4118035B2 (en) Battery control device
JP3964635B2 (en) Memory effect detection method and solution
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US6501250B2 (en) Device and method for controlling input/output of secondary battery
US6127806A (en) State of charge indicator
JP3360613B2 (en) Battery control device
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
JP3864590B2 (en) Battery charge state detection device
JP4080817B2 (en) Battery leveling device for battery pack
US20100289452A1 (en) Power supply apparatus for vehicles
US8183837B2 (en) Control device and control method for electric system
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
EP2173017A1 (en) Control device and control method for electric system
JP3849541B2 (en) Charge / discharge control method for battery pack
JPH08251714A (en) Power supply of electric automobile
JP2004015924A (en) Battery pack controller and control system
JP5463810B2 (en) Battery pack capacity adjustment device
JP2005160271A (en) Hybrid power supply device, motor drive and vehicle
JP6879136B2 (en) Charge / discharge control device for secondary batteries
JP3503195B2 (en) Regenerative controller for electric vehicles
JP4149682B2 (en) Battery pack state control method for hybrid vehicles
JPH0998510A (en) Generation controller for hybrid electric vehicle
JP2000217206A (en) Charging controller of electric vehicle

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees