JP3477367B2 - Anisotropic conductive adhesive film - Google Patents

Anisotropic conductive adhesive film

Info

Publication number
JP3477367B2
JP3477367B2 JP12839798A JP12839798A JP3477367B2 JP 3477367 B2 JP3477367 B2 JP 3477367B2 JP 12839798 A JP12839798 A JP 12839798A JP 12839798 A JP12839798 A JP 12839798A JP 3477367 B2 JP3477367 B2 JP 3477367B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
adhesive film
particles
conductive adhesive
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12839798A
Other languages
Japanese (ja)
Other versions
JPH11329069A (en
Inventor
香里 末政
政光 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP12839798A priority Critical patent/JP3477367B2/en
Publication of JPH11329069A publication Critical patent/JPH11329069A/en
Application granted granted Critical
Publication of JP3477367B2 publication Critical patent/JP3477367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、液晶表示
装置(LCD)と回路基板との間の電気的な接続に用い
られる異方導電性接着フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive film used for electrical connection between a liquid crystal display device (LCD) and a circuit board, for example.

【0002】[0002]

【従来の技術】従来より、例えば、液晶表示装置と集積
回路基板等を接続する手段として、異方導電性接着フィ
ルムが用いられている。この異方導電性接着フィルム
は、例えば、TCP(Tape Carieer Package)やICチッ
プの接続電極と、LCDパネルのガラス基板上に形成さ
れたITO(Indium Tin Oxide)電極とを接続する場合を
始めとして、種々の端子間を接着するとともに電気的に
接続する場合に用いられている。
2. Description of the Related Art Conventionally, an anisotropic conductive adhesive film has been used as a means for connecting a liquid crystal display device to an integrated circuit board or the like. This anisotropic conductive adhesive film is used, for example, when connecting a connection electrode of TCP (Tape Carieer Package) or IC chip and an ITO (Indium Tin Oxide) electrode formed on a glass substrate of an LCD panel. It is used when various terminals are bonded and electrically connected.

【0003】従来、異方導電性接着フィルムの絶縁性接
着剤(バインダー)には、例えば、ビスフェノールA型
エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェ
ノキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型
エポキシ樹脂等のエポキシ樹脂を、イミダゾール系の硬
化剤で熱硬化させる熱硬化性樹脂が広く用いられてい
る。
Conventionally, as the insulating adhesive (binder) of the anisotropic conductive adhesive film, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, etc. are used. A thermosetting resin that heat-cures an epoxy resin with an imidazole-based curing agent is widely used.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来のバインダーの場合、高温時における信頼性及び被着
体との間の接着強度を確保するため、ガラス転移温度
(Tg)が高く、しかも硬化時の弾性率が大きい材料が用
いられている。
By the way, in the case of the above-mentioned conventional binder, in order to secure the reliability at high temperature and the adhesive strength between the adherend and the glass transition temperature,
A material having a high (Tg) and a large elastic modulus upon curing is used.

【0005】しかしながら、このような従来の異方導電
性接着フィルムにおいて外部応力に起因する力がバイン
ダーに加わった場合には、バインダーの被着体との界面
部分に大きな内部応力が発生し、これにより異方導電性
接着フィルムの見かけ上の接着強度(実効接着力)が低
下するという問題があった。
However, in such a conventional anisotropically conductive adhesive film, when a force due to external stress is applied to the binder, a large internal stress is generated at the interface between the binder and the adherend, Therefore, there is a problem that the apparent adhesive strength (effective adhesive strength) of the anisotropic conductive adhesive film is reduced.

【0006】本発明は、このような従来の技術の課題を
解決するためになされたもので、バインダーについてガ
ラス転移温度を低下させることなく接着剤としての実効
接着力を向上しうる異方導電性接着フィルムを提供する
ことを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and is an anisotropic conductive material which can improve the effective adhesive force as an adhesive without lowering the glass transition temperature of the binder. The purpose is to provide an adhesive film.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究を重ねた結果、バインダー中
に特定のゴム系の弾性粒子を添加することによって当該
バインダーに生ずる内部応力を低減しうることを見い出
し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the internal stress generated in the binder by adding specific rubber-based elastic particles to the binder. It has been found that the above can be reduced, and the present invention has been completed.

【0008】かかる知見に基づいてなされた請求項1記
載の発明は、絶縁性接着剤中に導電粒子を分散してなる
異方導電性接着フィルムであって、上記絶縁性接着剤中
にゴム系の弾性材料からなる応力吸収粒子が分散され
上記応力吸収粒子の弾性率が、1×10 9 〜1×10 10 d
yn/cm 2 であり、かつ、上記応力吸収粒子のガラス転移温
度が、80〜120℃であることを特徴とする。
The invention according to claim 1 made on the basis of such findings is an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive, wherein the insulating adhesive is a rubber-based adhesive film. The stress absorbing particles made of elastic material are dispersed ,
The elastic modulus of the stress absorbing particles is 1 × 10 9 to 1 × 10 10 d
yn / cm 2 and the glass transition temperature of the stress absorbing particles
Degrees, wherein the 80 to 120 ° C. der Rukoto.

【0009】請求項1記載の発明にあっては、外部応力
に起因する力が絶縁性接着剤に加わった場合に、この応
力吸収粒子が大きく弾性変形することによって、絶縁性
接着剤の被着体との界面部分に生ずる内部応力が吸収さ
れ、絶縁性接着剤全体としての弾性率が低下する。その
結果、本発明によれば、絶縁性接着剤のガラス転移温度
を下げることなく、接着剤としての実効接着力を向上さ
せることが可能になる。特に、本発明においては、応力
吸収粒子の弾性率が、1×10 9 〜1×10 10 dyn/cm 2
あることから、保持力を低下させることなく、絶縁性接
着剤樹脂の内部応力を十分に小さくすることができる。
また、応力吸収粒子のガラス転移温度が、80〜120
℃であることから、耐熱性を低下させることなく絶縁性
接着剤樹脂に生ずる内部応力を十分に小さくすることで
きる。
According to the first aspect of the invention, when a force resulting from external stress is applied to the insulating adhesive, the stress absorbing particles are largely elastically deformed, so that the insulating adhesive is adhered. Internal stress generated at the interface with the body is absorbed, and the elastic modulus of the insulating adhesive as a whole decreases. As a result, according to the present invention, it is possible to improve the effective adhesive force as an adhesive without lowering the glass transition temperature of the insulating adhesive. In particular, in the present invention, stress
Modulus of the absorbent particles, at 1 × 10 9 ~1 × 10 10 dyn / cm 2
Therefore, the insulating contact is maintained without decreasing the holding power.
It is possible to sufficiently reduce the internal stress of the binder resin.
Further, the glass transition temperature of the stress absorbing particles is 80 to 120.
Since it is ℃, it has an insulating property without lowering the heat resistance.
By sufficiently reducing the internal stress generated in the adhesive resin
Wear.

【0010】一方、請求項2記載の発明は、請求項1記
載の発明において、応力吸収粒子の弾性率が、硬化後の
絶縁性接着剤の弾性率より小さいことを特徴とする。
On the other hand, the invention of claim 2 is characterized in that, in the invention of claim 1, the elastic modulus of the stress absorbing particles is smaller than the elastic modulus of the insulating adhesive after curing.

【0011】また、請求項3記載の発明は、請求項1又
は2のいずれか1項記載の発明において、応力吸収粒子
の平均粒径が、導電粒子の平均粒径より小さいことを特
徴とする。
The invention according to claim 3 is characterized in that, in the invention according to any one of claims 1 and 2, the average particle diameter of the stress absorbing particles is smaller than the average particle diameter of the conductive particles. .

【0012】請求項3記載の発明によれば、異方導電性
接着フィルムを圧着する際に、接続電極に対して導電粒
子をより確実に接続させることが可能になる。
According to the third aspect of the present invention, the conductive particles can be more reliably connected to the connection electrode when the anisotropic conductive adhesive film is pressure-bonded.

【0013】さらに、請求項4記載の発明は、請求項1
乃至3のいずれか1項記載の発明において、絶縁性接着
剤中への応力吸収粒子の添加量が0.5〜30重量%で
あることを特徴とする。
Further, the invention according to claim 4 is the same as claim 1.
The invention according to any one of items 1 to 3, wherein the amount of the stress absorbing particles added to the insulating adhesive is 0.5 to 30% by weight.

【0014】さらにまた、請求項5記載の発明は、請求
項1乃至4のいずれか1項記載の発明において、応力吸
収粒子が架橋ポリブタジエンを主体とする材料からなる
ものであることを特徴とする。
Furthermore, the invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the stress absorbing particles are made of a material mainly composed of crosslinked polybutadiene. .

【0015】加えて、請求項6記載の発明は、請求項1
乃至5のいずれか1項記載の発明において、応力吸収粒
子が、低ガラス転移温度の核材の表面に高ガラス転移温
度の表面層を形成したものであることを特徴とする。
In addition, the invention of claim 6 is the same as that of claim 1.
The invention according to any one of items 1 to 5 is characterized in that the stress absorbing particles are obtained by forming a surface layer having a high glass transition temperature on the surface of a core material having a low glass transition temperature.

【0016】請求項5又は6記載の発明によれば、応力
吸収粒子の弾性率を容易に小さくすることができるた
め、絶縁性接着剤樹脂の内部応力を一層小さくすること
ができ、接着剤としての実効接着力をより向上させるこ
とができる。
According to the invention of claim 5 or 6, since the elastic modulus of the stress absorbing particles can be easily reduced, the internal stress of the insulating adhesive resin can be further reduced, and the adhesive can be used as an adhesive. The effective adhesive force of can be further improved.

【0017】特に、請求項6記載の発明のように、応力
吸収粒子として低ガラス転移温度の核材の表面に高ガラ
ス転移温度の表面層を形成したものを用いれば、表面層
のガラス転移温度が絶縁性接着剤樹脂のガラス転移温度
に近くなり絶縁性接着剤樹脂との密着性が向上する。
In particular, as in the invention described in claim 6, when the stress absorbing particles having a surface layer having a high glass transition temperature formed on the surface of the core material having a low glass transition temperature are used, the glass transition temperature of the surface layer is used. Becomes close to the glass transition temperature of the insulating adhesive resin, and the adhesiveness with the insulating adhesive resin is improved.

【0018】一方、応力吸収粒子の内部は低ガラス転移
温度のもので弾性率がより小さいため、絶縁性接着剤樹
脂の内部応力を確実に吸収してこれを一層小さくするこ
とができる。しかも、本発明によれば、環境変化によっ
て生ずる応力をも吸収することができるため、長期にわ
たって導通信頼性及び接続信頼性を確保することが可能
になる。
On the other hand, since the inside of the stress absorbing particles has a low glass transition temperature and a smaller elastic modulus, it is possible to reliably absorb the internal stress of the insulating adhesive resin and further reduce it. Moreover, according to the present invention, the stress caused by the environmental change can be absorbed, so that it becomes possible to secure the conduction reliability and the connection reliability for a long period of time.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る異方導電性接
着フィルムの実施の形態を図面を参照して詳細に説明す
る。図1(a)〜(c)は、本発明に係る異方導電性接
着フィルムの好ましい実施の形態を示すもので、図1
(a)は、熱圧着前の状態を示す構成図、図1(b)
は、熱圧着後の状態を示す構成図、図1(c)は、図1
(b)の一点鎖線Aで示す部分の作用を示す説明図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the anisotropic conductive adhesive film according to the present invention will be described below in detail with reference to the drawings. 1 (a) to 1 (c) show a preferred embodiment of an anisotropic conductive adhesive film according to the present invention.
1A is a configuration diagram showing a state before thermocompression bonding, FIG. 1B.
Is a configuration diagram showing a state after thermocompression bonding, and FIG.
It is explanatory drawing which shows the effect | action of the part shown by the dashed-dotted line A of (b).

【0020】図1に示すように、本発明の異方導電性接
着フィルム1は、例えばLCDパネル2のITO電極3
とLSIチップ4のバンプ5とを接続する際に用いられ
るもので、フィルム状の絶縁性接着剤樹脂(絶縁性接着
剤)6中に導電粒子7が分散されて構成される。
As shown in FIG. 1, the anisotropic conductive adhesive film 1 of the present invention is, for example, an ITO electrode 3 of an LCD panel 2.
It is used to connect the bumps 5 of the LSI chip 4 to the bumps 5 of the LSI chip 4. The conductive particles 7 are dispersed in a film-shaped insulating adhesive resin (insulating adhesive) 6.

【0021】この場合、絶縁性接着剤樹脂6としては、
例えば、ビスフェノールA型エポキシ樹脂、ビスフェノ
ールF型エポキシ樹脂、フェノキシ樹脂、ナフタレン型
エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ
樹脂を主成分として、カップリング剤、硬化剤等を含む
ものなどを用いることができる。
In this case, as the insulating adhesive resin 6,
For example, it is possible to use, for example, an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenoxy resin, a naphthalene type epoxy resin, a novolac type epoxy resin as a main component and a coupling agent and a curing agent. it can.

【0022】ここで、絶縁性接着剤樹脂6の厚さは、L
SIチップのバンプの高さ及び異方導電性接着フィルム
の充填性の観点から、10〜60μmとすることが好ま
しい。
Here, the thickness of the insulating adhesive resin 6 is L
From the viewpoint of the height of the bump of the SI chip and the filling property of the anisotropic conductive adhesive film, it is preferably 10 to 60 μm.

【0023】また、絶縁性接着剤樹脂6は、硬化後の弾
性率が、後述する応力吸収粒子8の弾性率より大きいも
のを用いるとよい。
As the insulating adhesive resin 6, it is preferable to use one whose elastic modulus after curing is higher than that of the stress absorbing particles 8 described later.

【0024】好ましい絶縁性接着剤樹脂6の弾性率は、
常温時において、1×109〜1×1012dyn/cm2であ
り、さらに好ましくは1×1010〜1×1011dyn/cm2
である。
The elastic modulus of the preferred insulating adhesive resin 6 is
At room temperature, it is 1 × 10 9 to 1 × 10 12 dyn / cm 2 , and more preferably 1 × 10 10 to 1 × 10 11 dyn / cm 2.
Is.

【0025】絶縁性接着剤樹脂6の弾性率が1×109d
yn/cm2より小さいと、保持力が低下するという不都合が
あり、1×1012dyn/cm2より大きいと、絶縁性接着剤樹
脂6の内部応力を十分に小さくすることができないとい
う不都合がある。
The elastic modulus of the insulating adhesive resin 6 is 1 × 10 9 d
If it is smaller than yn / cm 2 , the holding force is lowered, and if it is larger than 1 × 10 12 dyn / cm 2 , the internal stress of the insulating adhesive resin 6 cannot be sufficiently reduced. is there.

【0026】また、絶縁性接着剤樹脂6のガラス転移温
度(Tg)は、80〜200℃であることが好ましく、
さらに好ましくは100〜150℃である。
The glass transition temperature (Tg) of the insulating adhesive resin 6 is preferably 80 to 200 ° C.,
More preferably, it is 100 to 150 ° C.

【0027】絶縁性接着剤樹脂6のガラス転移温度が8
0℃より小さいと、異方導電性接着フィルム1の耐熱性
が低下するという不都合があり、200℃より大きい
と、絶縁性接着剤樹脂6に生ずる内部応力を十分に小さ
くすることが困難になるという不都合がある。
The glass transition temperature of the insulating adhesive resin 6 is 8
If it is lower than 0 ° C., the heat resistance of the anisotropic conductive adhesive film 1 is lowered, and if it is higher than 200 ° C., it becomes difficult to sufficiently reduce the internal stress generated in the insulating adhesive resin 6. There is an inconvenience.

【0028】一方、導電粒子7としては、例えば、ニッ
ケル、金、銅等の金属粒子、樹脂粒子に金めっき等を施
したもの、また、樹脂粒子に金めっきを施した粒子の最
外層に絶縁被覆を施したもの等を用いることができる。
On the other hand, the conductive particles 7 are, for example, metal particles of nickel, gold, copper or the like, resin particles plated with gold or the like, and the resin particles plated with gold are insulated on the outermost layer. A coated material or the like can be used.

【0029】ここで、導電粒子7の平均粒径は、導通信
頼性の観点から、1〜20μmとすることが好ましい。
Here, the average particle size of the conductive particles 7 is preferably 1 to 20 μm from the viewpoint of conduction reliability.

【0030】また、絶縁性接着剤樹脂6中への導電粒子
7の分散量は、導通信頼性及び絶縁信頼性の観点から、
2〜50重量%とすることが好ましい。
The amount of the conductive particles 7 dispersed in the insulating adhesive resin 6 is determined from the viewpoint of conduction reliability and insulation reliability.
It is preferably set to 2 to 50% by weight.

【0031】また、図示はしないが、この異方導電性接
着フィルム1は、剥離用の例えば剥離処理を施したポリ
エチレンテレフタレート(PET)フィルム上に形成さ
れており、また、異方導電性接着フィルム1の表面は必
要に応じてカバーフィルムによって覆われている。
Although not shown, the anisotropic conductive adhesive film 1 is formed on a polyethylene terephthalate (PET) film for peeling, for example, which is subjected to a peeling treatment, and the anisotropic conductive adhesive film is also used. The surface of 1 is covered with a cover film as needed.

【0032】一方、本発明においては、絶縁性接着剤樹
脂6中に、ゴム系の弾性材料からなる応力吸収粒子8が
分散されている。
On the other hand, in the present invention, the stress-absorbing particles 8 made of a rubber-based elastic material are dispersed in the insulating adhesive resin 6.

【0033】ここで、応力吸収粒子8としては、その弾
性率が硬化後の絶縁性接着剤樹脂6の弾性率より小さい
ものを用いるとよい。
Here, as the stress absorbing particles 8, those having an elastic modulus smaller than that of the cured insulating adhesive resin 6 may be used.

【0034】好ましい応力吸収粒子8の弾性率は、1×
108〜1×1010dyn/cm2であり、さらに好ましくは1
×109〜1×1010dyn/cm2である。
The elastic modulus of the preferable stress absorbing particles 8 is 1 ×
10 8 to 1 × 10 10 dyn / cm 2 , more preferably 1
× 10 9 to 1 × 10 10 dyn / cm 2 .

【0035】応力吸収粒子8の弾性率が1×108dyn/c
m2より小さいと、保持力が低下するという不都合があ
り、1×1010dyn/cm2より大きいと、絶縁性接着剤樹脂
6の内部応力を十分に小さくすることができないという
不都合がある。
The elastic modulus of the stress absorbing particles 8 is 1 × 10 8 dyn / c.
If it is smaller than m 2 , the holding force is lowered, and if it is larger than 1 × 10 10 dyn / cm 2 , the internal stress of the insulating adhesive resin 6 cannot be sufficiently reduced.

【0036】また、応力吸収粒子8のガラス転移温度
は、80〜120℃であることが好ましく、さらに好ま
しくは80〜100℃である。
The glass transition temperature of the stress absorbing particles 8 is preferably 80 to 120 ° C, more preferably 80 to 100 ° C.

【0037】応力吸収粒子8のガラス転移温度が80℃
より小さいと、異方導電性接着フィルム1の耐熱性が低
下するという不都合があり、120℃より大きいと、絶
縁性接着剤樹脂6に生ずる内部応力を十分に小さくする
ことが困難になるという不都合がある。
The glass transition temperature of the stress absorbing particles 8 is 80 ° C.
If it is smaller, the heat resistance of the anisotropic conductive adhesive film 1 is lowered, and if it is higher than 120 ° C., it is difficult to sufficiently reduce the internal stress generated in the insulating adhesive resin 6. There is.

【0038】さらに、応力吸収粒子8としては、核材に
低ガラス転移温度(−80〜−30℃、より好ましくは
−70〜−40℃)の材料を用い、この核材の表面を上
記高ガラス転移温度(80〜120℃、より好ましくは
80〜100℃)の樹脂で被覆したものがより好まし
い。
Further, as the stress absorbing particles 8, a material having a low glass transition temperature (-80 to -30 ° C, more preferably -70 to -40 ° C) is used as the core material, and the surface of the core material is the above-mentioned high temperature. Those coated with a resin having a glass transition temperature (80 to 120 ° C., more preferably 80 to 100 ° C.) are more preferable.

【0039】この場合、低ガラス転移温度の核材の表面
に高ガラス転移温度の表面層を形成するには、例えば、
核材の表面にエポキシ樹脂等の樹脂をグラフト重合する
とよい。
In this case, for forming a surface layer having a high glass transition temperature on the surface of the core material having a low glass transition temperature, for example,
A resin such as an epoxy resin may be graft-polymerized on the surface of the core material.

【0040】本発明において使用可能な応力吸収粒子8
としては、例えば、架橋アクリロニトリル−ブタジエン
ゴム、架橋アクリルゴム、カルボン酸変性アクリロニト
リル−ブタジエンゴム、シリコーンゴム、架橋ポリブタ
ジエンゴムからなるものがあげられる。
Stress absorbing particles 8 usable in the present invention
Examples thereof include those made of crosslinked acrylonitrile-butadiene rubber, crosslinked acrylic rubber, carboxylic acid-modified acrylonitrile-butadiene rubber, silicone rubber, and crosslinked polybutadiene rubber.

【0041】また、核材としてこれらのゴムを用い、核
材の表面にエポキシ樹脂等の樹脂をグラフト重合して表
面層を形成した応力吸収粒子は、絶縁性接着剤樹脂6
に生ずる内部応力を一層小さくする観点から、より好ま
しいものである。
The stress-absorbing particles 8 formed by using these rubbers as the core material and forming a surface layer by graft-polymerizing a resin such as an epoxy resin on the surface of the core material are insulating adhesive resin 6
It is more preferable from the viewpoint of further reducing the internal stress generated in the.

【0042】また、導電粒子7と接続電極間の電気的な
接続を十分に確保するためには、応力吸収粒子8の平均
粒径は、導電粒子7の平均粒径より小さいことが好まし
い。
In order to sufficiently secure the electrical connection between the conductive particles 7 and the connection electrode, the average particle size of the stress absorbing particles 8 is preferably smaller than the average particle size of the conductive particles 7.

【0043】好ましい応力吸収粒子8の平均粒径は、1
0nm〜2μmであり、さらに好ましくは30〜100
0nmである。
The average particle size of the stress absorbing particles 8 is preferably 1
0 nm to 2 μm, more preferably 30 to 100
It is 0 nm.

【0044】絶縁性接着剤樹脂6の内部応力を小さくす
るためには添加する応力吸収粒子8の粒径が小さくその
表面積が大きい方が望ましいが、応力吸収粒子8の平均
粒径が10nmより小さいと、応力を吸収しきれないと
いう不都合がある。
In order to reduce the internal stress of the insulating adhesive resin 6, it is desirable that the stress absorbing particles 8 to be added have a small particle size and a large surface area, but the average particle size of the stress absorbing particles 8 is smaller than 10 nm. Then, there is an inconvenience that the stress cannot be completely absorbed.

【0045】他方、応力吸収粒子8の平均粒径が2μm
より大きいと、導電粒子7と接続電極間の電気的な接続
が低下するおそれがある。
On the other hand, the average particle diameter of the stress absorbing particles 8 is 2 μm.
If it is larger, the electrical connection between the conductive particles 7 and the connection electrode may be deteriorated.

【0046】一方、絶縁性接着剤中への応力吸収粒子8
の添加量は、0.5〜30重量%であることが好まし
く、さらに好ましくは1.0〜20重量%である。
On the other hand, the stress absorbing particles 8 in the insulating adhesive
The addition amount of is preferably 0.5 to 30% by weight, and more preferably 1.0 to 20% by weight.

【0047】絶縁性接着剤中への応力吸収粒子8の添加
量が0.5重量%より小さいと、絶縁性接着剤樹脂6に
生ずる内部応力を十分に小さくすることができず、30
重量%より大きいと、フィルムになりにくく、また耐熱
性が低下するという不都合がある。
If the amount of the stress absorbing particles 8 added to the insulating adhesive is less than 0.5% by weight, the internal stress generated in the insulating adhesive resin 6 cannot be sufficiently reduced,
If it is more than 10% by weight, it is difficult to form a film and heat resistance is lowered.

【0048】本発明の異方導電性接着フィルム1を作成
するには、まず、所定のエポキシ樹脂を溶解させた溶液
に、ゴム系の弾性材料からなる応力吸収粒子8と硬化剤
等を所定量加えて混合し、溶剤に分散させた導電粒子7
をこの溶液に加えて混合してバインダーを調製する。
To prepare the anisotropic conductive adhesive film 1 of the present invention, first, a predetermined amount of stress absorbing particles 8 made of a rubber-based elastic material and a curing agent are added to a solution prepared by dissolving a predetermined epoxy resin. Conductive particles 7 mixed and dispersed in a solvent
Is added to this solution and mixed to prepare a binder.

【0049】このバインダーを例えばポリエステルフィ
ルム等の剥離フィルム上にコーティングし、乾燥後、カ
バーフィルムをラミネートして異方導電性接着フィルム
1を得る。
This binder is coated on a release film such as a polyester film, dried and then laminated with a cover film to obtain an anisotropic conductive adhesive film 1.

【0050】本発明の異方導電性接着フィルム1を用い
て電極間の接続を行う場合には、図1(a)(b)に示
すように、例えばLCDパネル2側に異方導電性接着フ
ィルム1を貼付し、LSIチップ4の位置合わせ(仮接
続)を行った後に、所定の温度及び圧力で熱圧着を行う
ことにより、LSIチップ4の電極5とLCDパネル2
の電極3とを電気的に接続させた状態で絶縁性接着剤樹
脂6を硬化させる。
When the electrodes are connected using the anisotropic conductive adhesive film 1 of the present invention, as shown in FIGS. 1A and 1B, for example, the anisotropic conductive adhesive is applied to the LCD panel 2 side. After the film 1 is attached and the LSI chip 4 is aligned (temporarily connected), thermocompression bonding is performed at a predetermined temperature and pressure, whereby the electrode 5 of the LSI chip 4 and the LCD panel 2 are
The insulating adhesive resin 6 is cured while being electrically connected to the electrode 3.

【0051】ところで、一般に、異方導電性接着フィル
ムの接着界面に発生する内部応力σは、次の式(1)によ
って算出しうることが知られている。
By the way, it is generally known that the internal stress σ generated at the bonding interface of the anisotropic conductive adhesive film can be calculated by the following equation (1).

【0052】[0052]

【数1】 [Equation 1]

【0053】本発明の異方導電性接着フィルム1におい
て、異方導電性接着フィルム1に対して外部応力に起因
する力Fが加わった場合には、例えば、図1(c)に示
すように、絶縁性接着剤樹脂6より弾性率の小さい各応
力吸収粒子8が絶縁性接着剤樹脂6の各部分より大きく
変形することによってこれらの部分においていわば応力
が吸収された状態となるため、異方導電性接着フィルム
1全体としての弾性率は絶縁性接着剤樹脂6のみの場合
に比べて小さくなる。
In the anisotropic conductive adhesive film 1 of the present invention, when a force F due to external stress is applied to the anisotropic conductive adhesive film 1, as shown in FIG. Since the stress absorbing particles 8 having a smaller elastic modulus than the insulating adhesive resin 6 are deformed more than the respective portions of the insulating adhesive resin 6, the stress is absorbed in these portions, so to speak, it is anisotropic. The elastic modulus of the entire conductive adhesive film 1 is smaller than that of the insulating adhesive resin 6 alone.

【0054】その結果、本発明によれば、式(1)から明
らかなように、従来技術に比べて異方導電性接着フィル
ム1の絶縁性接着剤樹脂6中に生ずる内部応力σを小さ
くすることができる。その一方、絶縁性接着剤樹脂6は
従来と同様のものを用いることができることから、本発
明によれば、ガラス転移温度を低下させることなく接着
剤としての実効接着力を向上させることが可能になる。
As a result, according to the present invention, as is apparent from the equation (1), the internal stress σ generated in the insulating adhesive resin 6 of the anisotropic conductive adhesive film 1 is made smaller than that in the prior art. be able to. On the other hand, since the insulating adhesive resin 6 can be the same as the conventional one, according to the present invention, it is possible to improve the effective adhesive force as an adhesive without lowering the glass transition temperature. Become.

【0055】この場合、応力吸収粒子8としてより弾性
率の小さいものを用いれば、絶縁性接着剤樹脂6の内部
応力を一層小さくすることができ、接着剤としての実効
接着力をより向上させることができる。
In this case, if the stress absorbing particles 8 having a smaller elastic modulus are used, the internal stress of the insulating adhesive resin 6 can be further reduced, and the effective adhesive force of the adhesive can be further improved. You can

【0056】特に、応力吸収粒子8として低ガラス転移
温度の核材の表面に高ガラス転移温度の表面層を形成し
たものを用いれば、表面層のガラス転移温度が絶縁性接
着剤樹脂のガラス転移温度に近くなり絶縁性接着剤樹脂
との密着性が向上する。
In particular, when the stress absorbing particles 8 are those in which a surface layer having a high glass transition temperature is formed on the surface of a core material having a low glass transition temperature, the glass transition temperature of the surface layer is the glass transition of the insulating adhesive resin. The temperature is close to the temperature and the adhesion with the insulating adhesive resin is improved.

【0057】特に、グラフト重合によって核材の表面に
エポキシ樹脂による表面層を形成すれば、絶縁性接着剤
樹脂6と同種の材質となるため、絶縁性接着剤樹脂6と
の密着性がより向上し、熱圧着の際に絶縁性接着剤樹脂
6と応力吸収粒子8との界面において剥離することがな
く、エージングの際において内部応力が吸収されること
によって高い接続信頼性が得られるようになる。
In particular, if a surface layer made of epoxy resin is formed on the surface of the core material by graft polymerization, the same material as the insulating adhesive resin 6 is used, so that the adhesiveness with the insulating adhesive resin 6 is further improved. However, during the thermocompression bonding, there is no peeling at the interface between the insulating adhesive resin 6 and the stress absorbing particles 8, and internal stress is absorbed during aging, so that high connection reliability can be obtained. .

【0058】一方、応力吸収粒子の内部は低ガラス転移
温度のもので弾性率がより小さいため、絶縁性接着剤樹
脂の内部応力を確実に吸収してこれを一層小さくするこ
とができる。しかも、本発明によれば、高い初期接着力
が得られることに加え、環境変化によって生ずる応力を
も吸収することができるため、長期にわたって導通信頼
性及び接続信頼性を確保することが可能になる。
On the other hand, since the inside of the stress absorbing particles has a low glass transition temperature and a smaller elastic modulus, the internal stress of the insulating adhesive resin can be reliably absorbed and further reduced. Moreover, according to the present invention, in addition to obtaining a high initial adhesive force, it is possible to absorb stress caused by environmental changes, so that it is possible to secure continuity reliability and connection reliability for a long period of time. .

【0059】[0059]

【実施例】以下、本発明に係る異方導電性接着フィルム
の実施例を比較例とともに詳細に説明する。 〔実施例1〕まず、フェノキシ樹脂(東都化成社製 Y
P50)50重量部、エポキシ樹脂(油化シェル社製
828)、イミダゾール系硬化剤(旭化成社製 HX3
941HP)100重量部、シランカップリング剤(日
本ユニカー社製 A187)3.2重量部、平均粒径1
00nmの架橋ポリブタジエン粒子0.5重量部を、溶
剤トルエンに溶解して絶縁性接着剤樹脂、すなわち、バ
インダー溶液を調製する。
EXAMPLES Examples of the anisotropic conductive adhesive film according to the present invention will be described in detail below together with comparative examples. [Example 1] First, phenoxy resin (Y, manufactured by Tohto Kasei Co., Ltd.)
P50) 50 parts by weight, epoxy resin (made by Yuka Shell Co., Ltd.
828), an imidazole-based curing agent (HX3 manufactured by Asahi Kasei Corporation)
941 HP) 100 parts by weight, silane coupling agent (A187, manufactured by Nippon Unicar Co., Ltd.) 3.2 parts by weight, average particle size 1
0.5 parts by weight of crosslinked polybutadiene particles of 00 nm are dissolved in a solvent toluene to prepare an insulating adhesive resin, that is, a binder solution.

【0060】そして、このバインダー溶液100重量部
に、導電粒子として、平均粒径5μmのベンゾグアナミ
ン粒子にニッケル−金めっきを施したものを3.5重量
部加えてバインダーとする。
Then, to 100 parts by weight of this binder solution, 3.5 parts by weight of benzoguanamine particles having an average particle diameter of 5 μm plated with nickel-gold as conductive particles are added to form a binder.

【0061】さらに、このバインダーを剥離用のPET
フィルム上に乾燥後の厚みが25μmになるようにコー
ティングし、異方導電性接着フィルムを得る。この異方
導電性接着フィルムを幅2mmのスリット状に切断し、
実施例1のサンプルとした。
Further, this binder is used for peeling PET.
The film is coated so that the thickness after drying is 25 μm to obtain an anisotropic conductive adhesive film. Cut this anisotropic conductive adhesive film into slits with a width of 2 mm,
The sample of Example 1 was used.

【0062】〔実施例2〕架橋ポリブタジエン粒子の添
加量を1重量部とした以外は実施例1と同様の方法によ
って異方導電性接着フィルムのサンプルを作成した。
Example 2 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 1 part by weight.

【0063】〔実施例3〕架橋ポリブタジエン粒子の添
加量を5重量部とした以外は実施例1と同様の方法によ
って異方導電性接着フィルムのサンプルを作成した。
Example 3 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 5 parts by weight.

【0064】〔実施例4〕架橋ポリブタジエン粒子の添
加量を10重量部とした以外は実施例1と同様の方法に
よって異方導電性接着フィルムのサンプルを作成した。
Example 4 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 10 parts by weight.

【0065】〔実施例5〕架橋ポリブタジエン粒子の添
加量を30重量部とした以外は実施例1と同様の方法に
よって異方導電性接着フィルムのサンプルを作成した。
Example 5 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 30 parts by weight.

【0066】〔比較例1〕架橋ポリブタジエン粒子を添
加せずにバインダー溶液を調製した以外は実施例1と同
様の方法によって異方導電性接着フィルムのサンプルを
作成した。
Comparative Example 1 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the binder solution was prepared without adding the crosslinked polybutadiene particles.

【0067】〔比較例2〕架橋ポリブタジエン粒子の添
加量を35重量部とした以外は実施例1と同様の方法に
よって異方導電性接着フィルムのサンプルを作成した。
Comparative Example 2 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 35 parts by weight.

【0068】〔比較例3〕架橋ポリブタジエン粒子の添
加量を40重量部とした以外は実施例1と同様の方法に
よって異方導電性接着フィルムのサンプルを作成した。
Comparative Example 3 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that the amount of crosslinked polybutadiene particles added was 40 parts by weight.

【0069】〔実施例6〕平均粒径10nmの架橋ポリ
ブタジエン粒子を5重量部添加した以外は実施例1と同
様の方法によって異方導電性接着フィルムのサンプルを
作成した。
Example 6 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 1 except that 5 parts by weight of crosslinked polybutadiene particles having an average particle size of 10 nm were added.

【0070】〔実施例7〕架橋ポリブタジエン粒子の平
均粒径を1μmとした以外は実施例6と同様の方法によ
って異方導電性接着フィルムのサンプルを作成した。
Example 7 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 6 except that the average particle size of the crosslinked polybutadiene particles was 1 μm.

【0071】〔実施例8〕架橋ポリブタジエン粒子の平
均粒径を2μmとした以外は実施例6と同様の方法によ
って異方導電性接着フィルムのサンプルを作成した。
Example 8 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 6 except that the average particle size of the crosslinked polybutadiene particles was 2 μm.

【0072】〔比較例4〕架橋ポリブタジエン粒子の平
均粒径を5μmとした以外は実施例6と同様の方法によ
って異方導電性接着フィルムのサンプルを作成した。
Comparative Example 4 An anisotropic conductive adhesive film sample was prepared in the same manner as in Example 6 except that the average particle size of the crosslinked polybutadiene particles was 5 μm.

【0073】〔比較例5〕架橋ポリブタジエン粒子を添
加せずに液状ゴム(日本ゼオン社製 DN−601)を
5重量部添加した以外は実施例1と同様の方法によって
異方導電性接着フィルムのサンプルを作成した。
Comparative Example 5 An anisotropic conductive adhesive film was prepared in the same manner as in Example 1 except that 5 parts by weight of liquid rubber (DN-601 manufactured by Nippon Zeon Co., Ltd.) was added without adding crosslinked polybutadiene particles. I made a sample.

【0074】〔比較例6〕液状ゴムの添加量を10重量
部とした以外は比較例5と同様の方法によって異方導電
性接着フィルムのサンプルを作成した。
Comparative Example 6 An anisotropic conductive adhesive film sample was prepared in the same manner as in Comparative Example 5 except that the amount of liquid rubber added was 10 parts by weight.

【0075】〔比較例7〕液状ゴムの添加量を30重量
部とした以外は比較例5と同様の方法によって異方導電
性接着フィルムのサンプルを作成した。
Comparative Example 7 An anisotropic conductive adhesive film sample was prepared in the same manner as in Comparative Example 5 except that the amount of liquid rubber added was 30 parts by weight.

【0076】<評価結果>次に、上述のサンプルを用
い、プリント基板とガラス基板との圧着を行った。この
場合、プリント基板としては、厚みが75μmのポリイ
ミドからなる基材上に、厚み35μmの銅箔にすずめっ
きを施したパターンを200μmのピッチで形成したも
のを用いた。一方、ガラス基板としては、全面にITO
による電極が形成されたもので、その表面抵抗が10Ω
/□となるものを用いた。そして、このようにして作成
した各サンプルについて、導通抵抗値、接着強度、フィ
ルム性の測定を行った。その結果を表1に示す。
<Evaluation Results> Next, using the above-mentioned sample, the printed circuit board and the glass substrate were pressure bonded. In this case, as the printed circuit board, a substrate having a thickness of 75 μm and made of tin on a copper foil having a thickness of 35 μm formed on a substrate made of polyimide at a pitch of 200 μm was used. On the other hand, as the glass substrate, ITO is used on the entire surface.
The electrode has been formed, and its surface resistance is 10Ω.
/ □ was used. Then, with respect to each of the samples thus prepared, the conduction resistance value, the adhesive strength, and the film property were measured. The results are shown in Table 1.

【0077】[0077]

【表1】 [Table 1]

【0078】この場合、導通抵抗の判定は、3Ω以下の
ものを良好(○)、3〜20Ωのものをやや不良
(△)、20Ωより大きくなったものを不良(×)とし
た。
In this case, the conduction resistance was judged to be good (∘) when the resistance was 3Ω or less, slightly bad (Δ) when the resistance was 3 to 20Ω, and bad (×) when the resistance was more than 20Ω.

【0079】一方、接着強度については、温度85℃、
相対湿度85%〜温度45℃、相対湿度90%の条件下
で1000時間エージング後において、引張り速度が5
0mm/分で、ガラス基板からプリント基板を90°方
向に引き剥がすときの接着力を測定した。
On the other hand, regarding the adhesive strength, the temperature was 85 ° C.
After aging for 1000 hours under the conditions of relative humidity of 85% to temperature of 45 ° C. and relative humidity of 90%, the pulling rate is 5
At 0 mm / min, the adhesive force was measured when the printed board was peeled from the glass board in the 90 ° direction.

【0080】そして、接着強度が600g/cm以上の
ものをきわめて良好(◎)、300g/cmより大きく
600g/cm未満のものを良好(○)、300g/c
m以下のものを不良(×)とした。
Those having an adhesive strength of 600 g / cm or more are very good (⊚), those having an adhesive strength of more than 300 g / cm and less than 600 g / cm are good (∘), 300 g / c.
Those with m or less were regarded as defective (x).

【0081】さらに、フィルム性については、容易にフ
ィルム化したものを良好(○)、フィルムになりにくい
ものをやや不良(△)、フィルムにならなかったものを
不良(×)とした。
Further, regarding the film properties, those easily formed into a film were evaluated as good (∘), those that were difficult to form into a film were evaluated as slightly defective (Δ), and those that did not form a film were evaluated as defective (x).

【0082】表1に示すように、ゴム系の弾性材料から
なる応力吸収粒子を添加した実施例1〜5は、応力吸収
粒子を添加しない比較例1に比べて接着強度が向上し
た。この場合、応力吸収粒子の添加量が多いほど接着強
度が向上したが、35重量%以上添加すると、フィルム
になりにくく(比較例2)、40重量%以上添加した場
合にはフィルム化することができなかった(比較例
3)。
As shown in Table 1, in Examples 1 to 5 in which the stress absorbing particles made of a rubber-based elastic material were added, the adhesive strength was improved as compared with Comparative Example 1 in which the stress absorbing particles were not added. In this case, the larger the amount of the stress absorbing particles added, the more the adhesive strength was improved. However, if it is added in an amount of 35% by weight or more, it becomes difficult to form a film (Comparative Example 2). It was not possible (Comparative Example 3).

【0083】以上の結果から、応力吸収粒子の添加量
は、0.5〜30重量%が効果的であると考えられる。
From the above results, it is considered that the addition amount of the stress absorbing particles is effectively 0.5 to 30% by weight.

【0084】実施例6〜8及び比較例4において応力吸
収粒子の粒径を変えて評価を行ったが、応力吸収粒子の
粒径が2μmを超えると導通抵抗値がやや大きくなり
(実施例8、実用可能なレベルである)、応力吸収粒子
の粒径が導電粒子の粒径より大きい5μmの場合には、
接続電極間の導通がとれなくなった(比較例4)。一
方、接着強度については、応力吸収粒子の粒径による差
はみられなかった。
The evaluation was carried out in Examples 6 to 8 and Comparative Example 4 by changing the particle size of the stress absorbing particles. When the particle size of the stress absorbing particles exceeds 2 μm, the conduction resistance value becomes slightly large (Example 8 When the particle size of the stress absorbing particles is 5 μm larger than the particle size of the conductive particles,
The electrical connection between the connection electrodes was lost (Comparative Example 4). On the other hand, regarding the adhesive strength, no difference was observed depending on the particle size of the stress absorbing particles.

【0085】さらに、応力吸収粒子の代わりに液状ゴム
評価を添加した比較例5〜7は、応力吸収粒子を添加し
ない比較例1に比べて接着強度の向上はみられなかっ
た。
Further, in Comparative Examples 5 to 7 in which the liquid rubber evaluation was added instead of the stress absorbing particles, the improvement of the adhesive strength was not seen as compared with Comparative Example 1 in which the stress absorbing particles were not added.

【0086】[0086]

【発明の効果】以上述べたように本発明によれば、異方
導電性接着フィルムにおいて、バインダーのガラス転移
温度を低下させることなく接着剤としての実効接着力を
向上させることができる。
As described above, according to the present invention, in the anisotropic conductive adhesive film, the effective adhesive force as an adhesive can be improved without lowering the glass transition temperature of the binder.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)〜(c)は、本発明に係る異方導電
性接着フィルムの好ましい実施の形態を示すもので、図
1(a)は、熱圧着前の状態を示す構成図、図1(b)
は、熱圧着後の状態を示す構成図、図1(c)は、図1
(b)の一点鎖線Aで示す部分の作用を示す説明図であ
る。
1 (a) to 1 (c) show a preferred embodiment of an anisotropic conductive adhesive film according to the present invention, and FIG. 1 (a) shows a state before thermocompression bonding. Figure, Figure 1 (b)
Is a configuration diagram showing a state after thermocompression bonding, and FIG.
It is explanatory drawing which shows the effect | action of the part shown by the dashed-dotted line A of (b).

【符号の説明】[Explanation of symbols]

1 異方導電性接着フィルム 2 LCDパネル 3 ITO電極 4 LSIチップ 5 バンプ 6 絶縁性接着剤樹脂(絶縁性接着剤) 7 導電粒子 8 応力吸収粒子 1 Anisotropically conductive adhesive film 2 LCD panel 3 ITO electrode 4 LSI chips 5 bumps 6 Insulating adhesive resin (insulating adhesive) 7 Conductive particles 8 Stress absorbing particles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−50032(JP,A) 特開 平11−185526(JP,A) 特開 平4−323290(JP,A) 特開 昭60−115678(JP,A) 特開 平8−127707(JP,A) 特開 平8−258055(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 5/16 H01R 11/01 H01B 1/20 C09J 7/02 C09J 9/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-11-50032 (JP, A) JP-A-11-185526 (JP, A) JP-A-4-323290 (JP, A) JP-A-60- 115678 (JP, A) JP-A-8-127707 (JP, A) JP-A-8-258055 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 5/16 H01R 11 / 01 H01B 1/20 C09J 7/02 C09J 9/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性接着剤中に導電粒子を分散してなる
異方導電性接着フィルムであって、 上記絶縁性接着剤中にゴム系の弾性材料からなる応力吸
収粒子が分散され、上記応力吸収粒子の弾性率が、1×
10 9 〜1×10 10 dyn/cm 2 であり、かつ、上記応力吸収
粒子のガラス転移温度が、80〜120℃であることを
特徴とする異方導電性接着フィルム。
1. A anisotropic conductive adhesive film obtained by dispersing conductive particles in an insulating adhesive, the made of an elastic rubber material in an insulating adhesive stress-absorbing particles are dispersed, the Elastic modulus of stress absorbing particles is 1 ×
10 9 to 1 × 10 10 dyn / cm 2 and the above stress absorption
The glass transition temperature of the particles, anisotropic conductive adhesive film, wherein 80 to 120 ° C. der Rukoto.
【請求項2】応力吸収粒子の弾性率が、硬化後の絶縁性
接着剤の弾性率より小さいことを特徴とする請求項1記
載の異方導電性接着フィルム。
2. The anisotropic conductive adhesive film according to claim 1, wherein the elastic modulus of the stress absorbing particles is smaller than the elastic modulus of the insulating adhesive after curing.
【請求項3】応力吸収粒子の平均粒径が、導電粒子の平
均粒径より小さいことを特徴とする請求項1又は2のい
ずれか1項記載の異方導電性接着フィルム。
3. The anisotropic conductive adhesive film according to claim 1, wherein the stress-absorbing particles have an average particle diameter smaller than that of the conductive particles.
【請求項4】絶縁性接着剤中への応力吸収粒子の添加量
が0.5〜30重量%であることを特徴とする請求項1
乃至3のいずれか1項記載の異方導電性接着フィルム。
4. The amount of stress absorbing particles added to the insulating adhesive is 0.5 to 30% by weight.
4. The anisotropic conductive adhesive film according to any one of 1 to 3.
【請求項5】応力吸収粒子が、架橋ポリブタジエンを主
体とする材料からなることを特徴とする請求項1乃至4
のいずれか1項記載の異方導電性接着フィルム。
5. The stress absorbing particles are made of a material mainly composed of crosslinked polybutadiene.
The anisotropic conductive adhesive film according to any one of 1.
【請求項6】応力吸収粒子が、低ガラス転移温度の核材
の表面に高ガラス転移温度の表面層を形成したものであ
ることを特徴とする請求項1乃至5のいずれか1項記載
の異方導電性接着フィルム。
6. The stress absorbing particle is formed by forming a surface layer having a high glass transition temperature on a surface of a core material having a low glass transition temperature, according to any one of claims 1 to 5. Anisotropic conductive adhesive film.
JP12839798A 1998-05-12 1998-05-12 Anisotropic conductive adhesive film Expired - Lifetime JP3477367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12839798A JP3477367B2 (en) 1998-05-12 1998-05-12 Anisotropic conductive adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12839798A JP3477367B2 (en) 1998-05-12 1998-05-12 Anisotropic conductive adhesive film

Publications (2)

Publication Number Publication Date
JPH11329069A JPH11329069A (en) 1999-11-30
JP3477367B2 true JP3477367B2 (en) 2003-12-10

Family

ID=14983801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12839798A Expired - Lifetime JP3477367B2 (en) 1998-05-12 1998-05-12 Anisotropic conductive adhesive film

Country Status (1)

Country Link
JP (1) JP3477367B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328000A (en) * 2004-04-30 2004-11-18 Sony Chem Corp Connection material
WO2007074652A1 (en) 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
WO2008023565A1 (en) 2006-08-25 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2009020005A1 (en) 2007-08-08 2009-02-12 Hitachi Chemical Company, Ltd. Adhesive composition, film-like adhesive, and connection structure for circuit member
WO2009051043A1 (en) 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
US7879956B2 (en) 1997-03-31 2011-02-01 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
JP2012023024A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2012023025A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
KR20140082696A (en) 2011-09-20 2014-07-02 히타치가세이가부시끼가이샤 Adhesive composition, adhesive film, adhesive sheet, circuitry connector, method for connecting circuitry member, use of adhesive composition, use of adhesive film, and use of adhesive sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081438A (en) * 1999-09-14 2001-03-27 Sony Chem Corp Connecting material
KR100732017B1 (en) 2003-06-25 2007-06-25 히다치 가세고교 가부시끼가이샤 Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
KR100601341B1 (en) * 2004-06-23 2006-07-14 엘에스전선 주식회사 Anisotropic conductive adhesive and the adhesive flim using thereof
JP4706209B2 (en) * 2004-08-30 2011-06-22 株式会社デンソー Multilayer piezoelectric element, manufacturing method thereof, and conductive adhesive
JP2008084545A (en) * 2006-09-25 2008-04-10 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP5186157B2 (en) * 2007-08-24 2013-04-17 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method of connection structure using the same
JP5728803B2 (en) * 2008-09-30 2015-06-03 デクセリアルズ株式会社 Anisotropic conductive adhesive and method for manufacturing connection structure using the same
KR20110056555A (en) * 2008-10-22 2011-05-30 히다치 가세고교 가부시끼가이샤 Adhesive film
US20110253943A1 (en) * 2010-04-19 2011-10-20 Trillion Science, Inc. One part epoxy resin including a low profile additive

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879956B2 (en) 1997-03-31 2011-02-01 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US8142605B2 (en) 1997-03-31 2012-03-27 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US7968196B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
JP2004328000A (en) * 2004-04-30 2004-11-18 Sony Chem Corp Connection material
EP2348087A1 (en) 2005-12-26 2011-07-27 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
EP2322585A1 (en) 2005-12-26 2011-05-18 Hitachi Chemical Co., Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
WO2007074652A1 (en) 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
EP2339695A1 (en) 2006-08-25 2011-06-29 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2008023565A1 (en) 2006-08-25 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2009020005A1 (en) 2007-08-08 2009-02-12 Hitachi Chemical Company, Ltd. Adhesive composition, film-like adhesive, and connection structure for circuit member
WO2009051043A1 (en) 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
JP2012023024A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2012023025A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
KR20140082696A (en) 2011-09-20 2014-07-02 히타치가세이가부시끼가이샤 Adhesive composition, adhesive film, adhesive sheet, circuitry connector, method for connecting circuitry member, use of adhesive composition, use of adhesive film, and use of adhesive sheet

Also Published As

Publication number Publication date
JPH11329069A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP3477367B2 (en) Anisotropic conductive adhesive film
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
JP3491595B2 (en) Anisotropic conductive adhesive film
KR101403282B1 (en) Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
KR101219139B1 (en) Anisotropic conductive paste and film, circuit connecting structure body comprising the same
JP3296306B2 (en) Anisotropic conductive adhesive and adhesive film
KR101163436B1 (en) Insulation-coated electroconductive particles
CN101681692B (en) Electrically conductive particle, anisotropic conductive connection material, and method for production of electrically conductive particle
JP2000195339A (en) Anisotropic conductive adhesive film
JP2001189171A (en) Anisotropic conductive connection material
KR20190087365A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JPH07157720A (en) Film having anisotropic electrical conductivity
JP3966686B2 (en) Connecting material
JP3711842B2 (en) Anisotropic conductive connection material and connection structure
JP3508558B2 (en) Anisotropic conductive adhesive film
EP1657725B1 (en) Insulation-coated electroconductive particles
JP2015135949A (en) Manufacturing method for mounting body, and anisotropic conductive film
JP2680412B2 (en) Anisotropic conductive film
JPH1187415A (en) Adhesive film for ic chip connection
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP5143329B2 (en) Manufacturing method of circuit connection body
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP4702566B2 (en) Connecting material
JP2004328000A (en) Connection material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term