JP3477314B2 - Endoscope lighting system - Google Patents

Endoscope lighting system

Info

Publication number
JP3477314B2
JP3477314B2 JP12369696A JP12369696A JP3477314B2 JP 3477314 B2 JP3477314 B2 JP 3477314B2 JP 12369696 A JP12369696 A JP 12369696A JP 12369696 A JP12369696 A JP 12369696A JP 3477314 B2 JP3477314 B2 JP 3477314B2
Authority
JP
Japan
Prior art keywords
illumination
light
optical system
photoconductor
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12369696A
Other languages
Japanese (ja)
Other versions
JPH09299326A (en
Inventor
芳治 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP12369696A priority Critical patent/JP3477314B2/en
Publication of JPH09299326A publication Critical patent/JPH09299326A/en
Application granted granted Critical
Publication of JP3477314B2 publication Critical patent/JP3477314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療分野及び工業
分野等で用いられる内視鏡用の照明系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination system for endoscopes used in the medical field, industrial field and the like.

【0002】[0002]

【従来の技術】従来より、医療分野、工業分野等におい
て内視鏡が広く使用されている。内視鏡は、一般に体腔
内や管腔内などの光が当たらない狭い部位を観察するた
め、観察部位へ照明光を導くための照明系が設けられて
いる。
2. Description of the Related Art Endoscopes have been widely used in the medical field, industrial field and the like. In general, an endoscope is provided with an illumination system for guiding illumination light to an observation site in order to observe a narrow site such as a body cavity or a lumen that is not exposed to light.

【0003】近年では、挿入部内にイメージガイドファ
イバを設けて被写体像を手元側の接眼部まで伝達するフ
ァイバスコープに代わって、挿入部先端部に電子撮像装
置を設けて被写体像を撮像し電気的な画像信号を得るビ
デオスコープが用いられることが多くなった。ビデオス
コープを用いた内視鏡装置では、被検部位の画像をモニ
タに表示して大勢で観察、診断を行うことができる。ま
た、ビデオスコープによる観察は、視認性が良く、観察
者が疲れにくいという利点もある。
In recent years, an electronic image pickup device has been provided at the tip of the insertion portion to pick up an image of the subject and replace it with an image guide fiber inside the insertion portion to transmit the subject image to the eyepiece on the hand side. Videoscopes have been used more frequently to obtain image signals. An endoscopic device using a videoscope can display an image of a region to be inspected on a monitor and observe and diagnose in large numbers. Further, the observation with the videoscope has advantages that the visibility is good and the observer is less tired.

【0004】ファイバスコープの視野形状は通常円形で
あるが、ビデオスコープでは、撮像装置に四角形の撮像
エリアを持つCCD等の固体撮像素子を用いることが多
いため、ファイバスコープと同様に観察画像の表示形状
を円形とすると、固体撮像素子の四角形の撮像エリアに
内接する円形領域しか使うことができないので、使用さ
れない無駄な画素数が多くなってしまう。このため、固
体撮像素子の撮像エリアを有効に利用しようとすると、
ビデオスコープにおけるモニタ上の観察画像の表示形状
は円形ではなく四角形に近いものとなる。
The field of view of a fiberscope is usually circular, but since a videoscope often uses a solid-state image pickup device such as a CCD having a square image pickup area in an image pickup device, the observation image is displayed similarly to the fiberscope. If the shape is circular, only the circular area inscribed in the rectangular imaging area of the solid-state imaging element can be used, and the number of unused pixels is increased. Therefore, when trying to effectively use the imaging area of the solid-state image sensor,
The display shape of the observed image on the monitor in the videoscope is not a circle but a rectangle.

【0005】図22は内視鏡の対物光学系の特性を模式
的に示したものである。内視鏡に設けられる対物光学系
51は、広範囲を観察するために画角が大きく(例えば
画角120゜、140゜など)なっており、このような
広角の光学系では大きな樽型のディストーション(歪曲
収差)が発生する。従って、内視鏡の対物光学系におい
て、像面である固体撮像素子の撮像面52を基準に見る
と、四角形(図では四隅を面取りした形状としている)
の撮像エリア55に対応する被写体面53上での観察領
域の形状は前記対物光学系51のディストーションによ
って破線で示すような大きな糸巻き型(X形状)の観察
範囲54となる。
FIG. 22 schematically shows the characteristics of the objective optical system of the endoscope. The objective optical system 51 provided in the endoscope has a large angle of view (for example, an angle of view of 120 °, 140 °, etc.) for observing a wide range, and in such a wide-angle optical system, a large barrel distortion is provided. (Distortion aberration) occurs. Therefore, in the objective optical system of the endoscope, when viewed with reference to the image pickup surface 52 of the solid-state image pickup element, which is an image plane, a quadrangle (in the figure, four corners are chamfered)
The shape of the observation area on the object surface 53 corresponding to the image pickup area 55 becomes a large pincushion type (X shape) observation area 54 as shown by the broken line due to the distortion of the objective optical system 51.

【0006】図23に上記のような対物光学系を備えた
内視鏡における観察領域と照明領域との関係を示す。内
視鏡挿入部61の先端に設けられた対物光学系62によ
る観察領域は、前述したように固体撮像素子の四角形の
撮像エリアに対して被写体面53上で糸巻き型の観察範
囲54となっている。一方、内視鏡の照明光学系63
は、通常は円形状の領域を照明するように構成されてお
り、照明光の形状は被写体面53上で円形の照明範囲5
7となっている。
FIG. 23 shows the relationship between the observation area and the illumination area in the endoscope provided with the above-mentioned objective optical system. The observation area by the objective optical system 62 provided at the tip of the endoscope insertion portion 61 becomes the pincushion-type observation area 54 on the object surface 53 with respect to the rectangular image pickup area of the solid-state image pickup element as described above. There is. On the other hand, the illumination optical system 63 of the endoscope
Is normally configured to illuminate a circular area, and the shape of the illumination light is a circular illumination range 5 on the object plane 53.
It is 7.

【0007】この場合、照明範囲57は、観察範囲54
の全体をカバーし、観察範囲54の外形より大きな領域
を照明するように設定されるため、図23において斜線
部分の光量が無駄になる。
In this case, the illumination range 57 is the observation range 54
Is set to illuminate a region larger than the outer shape of the observation range 54, so that the light amount in the shaded portion in FIG. 23 is wasted.

【0008】図24に従来の照明系の構成例を示す。ラ
イトガイドファイバ58の前方には、第1レンズ59
a,第2レンズ59b,第3レンズ59cの正の屈折力
を持った3枚のレンズからなる照明光学系59が配設さ
れており、ライトガイドファイバ58により伝達された
照明光は第3レンズ59cの先端面より前方の被写体へ
と出射されるようになっている。この構成では、第1レ
ンズ59aの入射面及び第3レンズ59cの出射面は平
面となっているため、周辺部の光線は図のように外側に
大きく曲げられ、大きな配光角度特性に寄与する傾向に
ある。
FIG. 24 shows a configuration example of a conventional illumination system. The first lens 59 is provided in front of the light guide fiber 58.
An illumination optical system 59 composed of three lenses a, a second lens 59b, and a third lens 59c having a positive refractive power is provided, and the illumination light transmitted by the light guide fiber 58 is the third lens. The light is emitted to a subject in front of the front end surface of 59c. In this configuration, since the entrance surface of the first lens 59a and the exit surface of the third lens 59c are flat surfaces, the light rays in the peripheral portion are largely bent outward as shown in the figure, which contributes to a large light distribution angle characteristic. There is a tendency.

【0009】最近、固体撮像素子は、装置の小型化や高
解像度化の要求に合わせて、そのサイズ及び画素ピッチ
が年々小型化されてきており、これに対応する対物光学
系は、画素の小型化によって被写界深度が不足するた
め、対物レンズのFナンバーを大きく(明るさ絞りを絞
る)して被写界深度を確保する必要がある。このため、
対物光学系が暗くなり、従来の仕様のままでは対物光学
系と照明系とを合わせた観察系トータルの明るさが不足
するという問題点がある。
Recently, the size and the pixel pitch of the solid-state image pickup device have been reduced year by year in response to the demands for downsizing of the device and high resolution, and the objective optical system corresponding to this has a small pixel size. Since the depth of field becomes insufficient due to the increase in the number of lenses, it is necessary to increase the F number of the objective lens (close the aperture stop) to secure the depth of field. For this reason,
The objective optical system becomes dark, and there is a problem that the total brightness of the observation system including the objective optical system and the illumination system is insufficient with the conventional specifications.

【0010】内視鏡は、患者の苦痛低減や術者の操作性
向上を図るため、固体撮像素子の小型化に合わせて挿入
部をできるだけ細径化したいという要求がある。前記明
るさ不足を解消するために、照明光学系を大きくしてラ
イトガイドファイバの本数を増やせば照明光量を増やす
ことができるが、内視鏡挿入部が太くなってしまう問題
点が生じる。
In order to reduce the pain of the patient and improve the operability of the operator, there is a demand for the endoscope to have the insertion portion as thin as possible in accordance with the miniaturization of the solid-state image pickup device. In order to solve the lack of brightness, the illumination light amount can be increased by increasing the number of light guide fibers by increasing the size of the illumination optical system, but there is a problem that the endoscope insertion portion becomes thick.

【0011】そこで、内視鏡挿入部を太径化させること
なく、観察系の明るさを十分確保するには、照明光学系
の配光特性を考慮し、観察範囲の形状に合わせて最適化
する必要がある。
Therefore, in order to ensure sufficient brightness of the observation system without increasing the diameter of the endoscope insertion portion, the light distribution characteristics of the illumination optical system are taken into consideration and optimized according to the shape of the observation range. There is a need to.

【0012】照明光学系の配光特性を変更する技術とし
て、特公平6−44107号公報、特公平7−1044
92号公報、特公平7−104494号公報等に開示さ
れているものがある。
Techniques for changing the light distribution characteristics of the illumination optical system include Japanese Patent Publication No. 6-44107 and Japanese Patent Publication No. 7-1044.
No. 92, Japanese Patent Publication No. 7-104494, and the like.

【0013】特公平6−44107号公報では、観察範
囲の形状に合わせて照明範囲の形状を変えるように、観
察範囲の対角方向と対辺方向とで異なる屈折作用を有す
るいわゆるアナモルフィックレンズを用いた照明光学系
が示されている。しかしこの構成では、対角方向と対辺
方向とでレンズの曲率を変えているために、配光分布に
ついては、特に示されてはいないが、軸対称な場合と比
較してかなり変わってしまう。また、この公報に示され
ている球面の光学系の構成では、所望の配光特性を得る
ように光線の屈折作用を任意に変えることは困難であ
る。
In Japanese Patent Publication No. 6-44107, a so-called anamorphic lens having different refraction effects in the diagonal direction and the opposite side direction of the observation range is provided so that the shape of the illumination range is changed according to the shape of the observation range. The illumination optics used are shown. However, in this configuration, since the curvature of the lens is changed in the diagonal direction and the opposite side direction, although the light distribution is not particularly shown, it is considerably different from that in the axially symmetrical case. Further, with the configuration of the spherical optical system disclosed in this publication, it is difficult to arbitrarily change the refracting action of light rays so as to obtain desired light distribution characteristics.

【0014】特公平7−104492号公報及び特公平
7−104494号公報では、レンズ周辺部で生じる光
量損失を低減するために、非球面レンズを用いてライト
ガイド周辺部から出射される光線を光軸方向に曲げるよ
うにした照明光学系が示されている。しかしこの構成で
は、レンズ系が軸対称形であるため、照明範囲は円形で
あり、やはり観察範囲の対辺方向では観察範囲外に照射
される光量が多く、対辺方向の光量損失が大きくなる。
また、対辺方向の光量損失を小さくしようとすると、今
度は対角方向に照射される光量が減少してしまう。
In Japanese Patent Publication No. 7-104492 and Japanese Patent Publication No. 7-104494, light rays emitted from the peripheral portion of a light guide are illuminated by an aspherical lens in order to reduce a light amount loss occurring in the peripheral portion of the lens. Illumination optics are shown which are adapted to bend axially. However, in this configuration, since the lens system is axially symmetric, the illumination range is circular, and in the opposite side direction of the observation range, the amount of light emitted outside the observation range is large, and the light amount loss in the opposite side direction is large.
Further, if an attempt is made to reduce the light amount loss in the opposite side direction, then the light amount irradiated in the diagonal direction will decrease.

【0015】また、特公平7−104492号公報の構
成では、対角方向及び対辺方向でレンズの屈折作用が異
なる非球面のアナモルフィックレンズが用いられている
が、両方向とも全く形状が異なっている。このため、配
光分布は、特に示されてはいないがやはり特公平6−4
4107号公報と同様にかなり変わってしまうし、必ず
しも照明範囲の形状を観察範囲の形状に合わせるように
はなっていない。
Further, in the structure of Japanese Patent Publication No. 7-104492, an aspherical anamorphic lens in which the refraction of the lens is different in the diagonal direction and the opposite side direction is used, but the shape is completely different in both directions. There is. For this reason, the light distribution is not particularly shown, but it is still fair to say that
Similar to Japanese Patent No. 4107, the shape of the illumination range does not necessarily match the shape of the observation range.

【0016】[0016]

【発明が解決しようとする課題】前述したように、内視
鏡の対物光学系のような糸巻き型の観察範囲を円形の照
明範囲でカバーする場合は、観察範囲の全体をカバーす
るように観察範囲の外形より大きな領域を照明するよう
に照明範囲をとらなければならないため、光量の無駄が
多くなる。最近では固体撮像素子の画素の小型化に伴っ
て対物光学系が暗くなる傾向にあるが、照明光量を増加
させるためには、従来の構成ではライトガイドファイバ
の本数を増やすなど照明光学系を大きくする必要がある
ので内視鏡挿入部が太径化してしまう。一方、内視鏡挿
入部の細径化を図るためにライトガイドファイバの本数
を増やさない状態では、対物光学系と照明系とを合わせ
た観察系トータルの明るさを十分確保するのが困難とな
る。
As described above, when the observation range of the pincushion type such as the objective optical system of the endoscope is covered by the circular illumination range, the observation is performed so as to cover the entire observation range. Since the illumination range must be set so as to illuminate a region larger than the outer shape of the range, the amount of light is wasted. Recently, the objective optical system tends to become darker as the pixels of the solid-state image sensor become smaller, but in order to increase the amount of illumination light, the conventional configuration requires a large illumination optical system such as an increase in the number of light guide fibers. Therefore, the diameter of the endoscope insertion portion is increased. On the other hand, in a state where the number of light guide fibers is not increased in order to reduce the diameter of the endoscope insertion portion, it is difficult to sufficiently secure the total brightness of the observation system including the objective optical system and the illumination system. Become.

【0017】本発明は、これらの事情に鑑みてなされた
もので、例えばビデオスコープのような被写体面上で略
円形以外の観察範囲を持った内視鏡の対物光学系に対し
て、元の配光特性を大きく変えることなく、比較的簡単
な構成で照明効率の優れた内視鏡用照明系を提供するこ
とを目的としている。
The present invention has been made in view of these circumstances. For example, an original objective optical system for an endoscope having an observation range other than a substantially circular shape on a subject surface, such as a videoscope, has been used. An object of the present invention is to provide an endoscope illumination system having a relatively simple configuration and excellent illumination efficiency without significantly changing the light distribution characteristics.

【0018】[0018]

【課題を解決するための手段】請求項1に記載の内視鏡
用照明系は、光源からの出射光を入射端部において受光
し、他端へと導く光伝導体と、前記光伝導体および該光
伝導体からの光放射端部に近接して配置されて、該光伝
導体からの光を被写体に照射する照明光学系とからなる
内視鏡用照明系において、前記照明光学系は、光軸を中
心として、軸対称な屈折作用を有する中心部と方向によ
って異なる屈折作用を有する周辺部とを有する光学素子
から構成されるものである。請求項4に記載の内視鏡用
照明系は、光源からの出射光を入射端部において受光
し、他端へと導く光伝導体と、前記光伝導体および該光
伝導体からの光放射端部に近接して配置されて、該光伝
導体からの光を被写体に照射する照明光学系とからなる
内視鏡用照明系において、前記光伝導体は、該光伝導体
の光出射端部から出射される光線の出射角度特性が、光
軸を中心として軸対称な中心部と方向によって異なる周
辺部とからなるように構成されていることを特徴とす
る。
An illumination system for an endoscope according to claim 1 , wherein a photoconductor that receives light emitted from a light source at an incident end and guides it to the other end, and the photoconductor. And an illumination optical system which is disposed close to a light emitting end from the photoconductor and irradiates a subject with light from the photoconductor, in the illumination system for an endoscope, the illumination optical system comprises: The optical element is composed of a central portion having a refraction action that is axially symmetric with respect to the optical axis and a peripheral portion having a refraction action that differs depending on the direction. The endoscope according to claim 4.
The illumination system receives the light emitted from the light source at the incident end.
And guides the light to the other end, and the photoconductor and the light.
Located near the end of the light emission from the conductor,
It consists of an illumination optical system that illuminates the subject with light from a conductor.
In the endoscope illumination system, the photoconductor is the photoconductor.
The emission angle characteristics of the light rays emitted from the light emission end of
Axisymmetric center around the axis and circumference that varies depending on direction
It is characterized in that it is composed of
It

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1ないし図3は本発明の第1の
実施形態に係り、図1は本実施形態の照明系の概要を示
す作用説明図、図2は照明系の構成及びこれを通過する
光線を示す光軸方向Y−Z平面の断面図、図3はモニタ
上の表示画面の形状と観察範囲の形状との関係を示す説
明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 relate to a first embodiment of the present invention, FIG. 1 is an operation explanatory view showing an outline of an illumination system of the present embodiment, and FIG. 2 is a diagram showing a configuration of the illumination system and a light beam passing through the illumination system. FIG. 3 is a cross-sectional view of the YZ plane in the axial direction, and FIG. 3 is an explanatory diagram showing the relationship between the shape of the display screen on the monitor and the shape of the observation range.

【0020】本実施形態では、照明光を内視鏡挿入部の
先端まで導く光伝導体として、端面が円形に成形された
ライトガイドファイバを用いる場合の構成例を示す。な
お、本実施形態においては、照明系の光軸をZ軸として
出射方向を正方向とし、このZ軸に垂直な軸として照明
系の径方向について、対物光学系の観察範囲に対応する
一方の対辺方向をX軸、このX軸と直交する他方の対辺
方向をY軸とし、これらの3軸の直交座標系によって照
明系の構成を説明する。
In the present embodiment, a configuration example in which a light guide fiber having a circular end face is used as a photoconductor that guides illumination light to the tip of the endoscope insertion portion will be described. In this embodiment, the optical axis of the illumination system is the Z axis, the emission direction is the positive direction, and the axis perpendicular to the Z axis is the radial direction of the illumination system, which corresponds to the observation range of the objective optical system. The configuration of the illumination system will be described with reference to the X-axis in the opposite side direction and the Y-axis in the other side direction orthogonal to the X-axis, and the orthogonal coordinate system of these three axes.

【0021】第1の実施形態の照明系は、図2に示すよ
うに、ライトガイドファイバ1の円形端面の前方に近接
して、第1レンズ(平凸ロッドレンズの平面の周辺部の
一部が非球面のもの)2a,第2レンズ(凸レンズ)2
b,第3レンズ(平凸レンズ)2cの正の屈折力を持っ
た3枚のレンズからなる照明光学系2が配設されて構成
されている。
As shown in FIG. 2, the illumination system of the first embodiment is arranged in the vicinity of the front of the circular end face of the light guide fiber 1 and at a part of the peripheral portion of the plane of the first lens (plano-convex rod lens). Is aspherical) 2a, second lens (convex lens) 2
b, an illumination optical system 2 composed of three lenses having a positive refractive power of the third lens (plano-convex lens) 2c.

【0022】前記ライトガイドファイバ1と照明光学系
2とは、接着もしくは密着して配置されるか、または適
度な間隔をあけて配置されている。
The light guide fiber 1 and the illumination optical system 2 are arranged so as to be adhered or in close contact with each other, or arranged at an appropriate interval.

【0023】第1レンズ2aは、入射端面において観察
範囲の対辺方向(X軸方向及びY軸方向)に対しては中
心部よりも周辺部がより大きな正の屈折力を持つように
構成されている。具体的には、第1レンズ2aの入射端
面は、光軸を中心として、中心部は軸対称な屈折作用を
有するように平面が形成され、観察範囲の対辺方向に対
して周辺部はより大きな正の屈折力を持つような非球面
部3が形成されている。
The first lens 2a is constructed so that the peripheral portion of the incident end face has a larger positive refractive power than the central portion in the opposite side direction (X-axis direction and Y-axis direction) of the observation range. There is. Specifically, the incident end surface of the first lens 2a is formed with a flat surface such that the central portion has an axially symmetric refraction action with the optical axis as the center, and the peripheral portion is larger with respect to the opposite side direction of the observation range. An aspherical surface portion 3 having a positive refractive power is formed.

【0024】この非球面部3により、図2に示すように
照明光の周辺部の光線は大きく曲げられ、第3レンズ2
cから出射される照明光は、出射角度としては小さくな
り、対辺方向に関して周辺部の光線が中心部側へ向けら
れる。
The aspherical portion 3 largely bends the peripheral rays of the illumination light as shown in FIG.
The illumination light emitted from c has a small emission angle, and the peripheral light rays are directed toward the central portion side in the opposite side direction.

【0025】内視鏡に設けられる対物光学系は、広範囲
を観察できるように画角が大きいため、樽型のディスト
ーションが発生する。よって、モニタ上の表示画面(固
体撮像素子の撮像領域)の形状に対応する被写体面上で
の観察範囲の形状は、図3に示すように、例えば方形の
表示画面に対して、観察範囲は対辺方向に関して中心側
に狭まるように歪み、糸巻き型となる。すなわち、図3
(a)〜(f)の左側に示す表示画面に対して右側に示
すような糸巻き型に歪んだ観察範囲となる。
Since the objective optical system provided in the endoscope has a large angle of view so that a wide range can be observed, barrel distortion occurs. Therefore, the shape of the observation range on the subject surface corresponding to the shape of the display screen (imaging region of the solid-state image sensor) on the monitor is, for example, as shown in FIG. It becomes a pincushion type as it is distorted so as to narrow toward the center side in the opposite direction. That is, FIG.
The observation area is distorted into a pincushion type as shown on the right side of the display screens shown on the left side of (a) to (f).

【0026】観察系トータルの明るさを向上させるため
には、被写体面上での実際の観察範囲に合わせて効率よ
く照明することが必要となる。すなわち、観察範囲以外
に照明される光量を観察範囲内に分布させるような作用
を持った照明光学系が必要である。そこで、本実施形態
の照明光学系は、前記のような糸巻き型の観察範囲に対
応して、観察範囲の対辺方向に対して周辺部に正の屈折
力を持つような非球面部をレンズの少なくとも一面に設
けることにより、前記観察範囲をカバーする略糸巻き型
の照明範囲を形成する。この構成は、観察範囲の形状が
円形でなく正方形、長方形、方形の四隅を面取りした八
角形などの略方形状となっている固体撮像装置を用いた
ビデオスコープにおいて特に有効である。
In order to improve the total brightness of the observation system, it is necessary to efficiently illuminate in accordance with the actual observation range on the subject surface. That is, an illumination optical system having a function of distributing the amount of light illuminated outside the observation range within the observation range is required. Therefore, in the illumination optical system of the present embodiment, an aspherical surface portion having a positive refractive power in the peripheral portion with respect to the opposite side direction of the observation range is provided in the lens corresponding to the above-mentioned wound type observation range. By providing it on at least one surface, a substantially pincushion type illumination range that covers the observation range is formed. This configuration is particularly effective in a videoscope using a solid-state imaging device in which the shape of the observation area is not a circle but a substantially square shape such as a square, a rectangle, or an octagon having four corners of a square chamfered.

【0027】前記観察範囲と照明範囲との関係を図1に
示す。内視鏡挿入部4の先端の照明窓5から出射される
照明光の被写体面6上での照明範囲7は、対辺方向に関
して周辺部が中心部側へ移動して狭くなった略糸巻き型
となる。この照明範囲7は、観察窓8内に配設された対
物光学系の被写体面6上での糸巻き型の観察範囲9に対
応した形状であり、観察範囲9をカバーし、かつ不要な
領域を照射しないので光量に無駄がなく、観察範囲の形
状に合わせて最適化されている。従って、従来の照明光
学系と同じ照明光量であっても、観察範囲9内の照明効
率が向上するため、観察系トータルの明るさが向上す
る。逆に、観察系トータルの明るさを同等とするような
場合は、同じ照明光量でもライトガイドファイバの本数
を少なくできるため、その分内視鏡挿入部の細径化が可
能となる。
FIG. 1 shows the relationship between the observation range and the illumination range. The illumination range 7 of the illumination light emitted from the illumination window 5 at the tip of the endoscope insertion portion 4 on the subject surface 6 is a substantially pincushion type in which the peripheral portion moves toward the center side in the opposite side direction and becomes narrower. Become. The illumination range 7 has a shape corresponding to the pincushion type observation range 9 on the object plane 6 of the objective optical system arranged in the observation window 8, covers the observation range 9 and eliminates unnecessary areas. Since it does not irradiate, there is no waste in the amount of light, and it is optimized according to the shape of the observation range. Therefore, even if the illumination light amount is the same as that of the conventional illumination optical system, the illumination efficiency in the observation range 9 is improved, and the total brightness of the observation system is improved. On the other hand, when the total brightness of the observation system is made equal, the number of light guide fibers can be reduced even with the same amount of illumination light, and thus the diameter of the endoscope insertion portion can be reduced accordingly.

【0028】本実施形態の照明光学系の構成では、中心
部は軸対称な特性であり、対辺方向の周辺部においての
み屈折力を変化させているため、中心部は非球面部によ
る配光特性の変化がなく、全体の配光分布にあまり影響
を与えることはない。
In the configuration of the illumination optical system of the present embodiment, the central portion has an axisymmetric characteristic, and since the refractive power is changed only in the peripheral portion in the opposite side direction, the central portion has a light distribution characteristic by the aspherical surface portion. Does not change and does not significantly affect the overall light distribution.

【0029】以上のように、本実施形態では、照明光学
系のレンズの少なくとも一面に観察範囲の対辺方向に対
して周辺部に正の屈折力を持つような非球面部を設ける
ことにより、特に対辺方向の周辺部の光を観察範囲内に
分布させることができるので、全体の配光特性を大きく
変えることなく、実際の観察範囲(表示画面の範囲)に
合わせて効率よく照明することができ、内視鏡挿入部を
細径化しつつ観察系トータルの明るさを向上させること
ができる。
As described above, in the present embodiment, at least one surface of the lens of the illumination optical system is provided with the aspherical surface portion having a positive refractive power in the peripheral portion with respect to the opposite side direction of the observation range. Since the light in the peripheral area in the opposite direction can be distributed within the observation range, it is possible to efficiently illuminate according to the actual observation range (display screen range) without significantly changing the overall light distribution characteristics. The overall brightness of the observation system can be improved while reducing the diameter of the endoscope insertion portion.

【0030】図4及び図5は本発明の第2の実施形態に
係り、図4は照明系の構成を示す光軸方向Y−Z平面の
断面図、図5は照明光学系における第1レンズの形状を
示す斜視図である。
FIGS. 4 and 5 relate to a second embodiment of the present invention, FIG. 4 is a sectional view of a YZ plane in the optical axis direction showing the configuration of the illumination system, and FIG. 5 is the first lens in the illumination optical system. It is a perspective view which shows the shape of.

【0031】第2の実施形態は、照明光学系の入射端面
において、第1の実施形態の非球面部の代わりに平面的
に面取りして形成された傾斜した平面部を設けた構成例
である。ここでは第1の実施形態と異なる部分について
のみ説明する。
The second embodiment is a structural example in which an inclined plane portion formed by planar chamfering is provided in the entrance end surface of the illumination optical system instead of the aspherical surface portion of the first embodiment. . Here, only the parts different from the first embodiment will be described.

【0032】第2の実施形態の照明系は、図4に示すよ
うに、ライトガイドファイバ1の円形端面の前方に近接
して、第1レンズ12a,第2レンズ12b,第3レン
ズ12cの正の屈折力を持った3枚のレンズからなる照
明光学系12が配設されて構成されている。第1レンズ
12aの入射端面は、図4及び図5に示すように、観察
範囲の対辺方向(X軸方向及びY軸方向)に対して中心
部は平面であり、対辺方向の周辺部は中心部よりも大き
な正の屈折力を持つように平面的に斜めにカットされた
平面部13が形成されている。
In the illumination system of the second embodiment, as shown in FIG. 4, the first lens 12a, the second lens 12b, and the third lens 12c are positively arranged close to the front of the circular end surface of the light guide fiber 1. An illumination optical system 12 including three lenses having a refracting power is disposed. As shown in FIGS. 4 and 5, the incident end surface of the first lens 12a has a flat central portion in the opposite side direction (X-axis direction and Y-axis direction) of the observation range and a central portion in the opposite side direction. A plane portion 13 is formed that is cut obliquely in a plane so as to have a positive refractive power larger than that of the portion.

【0033】このように照明光学系の入射端面において
対辺方向の周辺部に傾斜した平面部13を設けることに
より、第1の実施形態と同様の作用効果が得られる。
By providing the inclined flat surface portion 13 in the peripheral portion in the opposite side direction on the incident end surface of the illumination optical system as described above, the same effect as that of the first embodiment can be obtained.

【0034】図6ないし図8は本発明の第3の実施形態
に係り、図6は照明系の構成を示す光軸方向Y−Z平面
の断面図、図7は照明光学系における第3レンズの形状
を示す斜視図、図8は照明系を通過する光線を示す光軸
方向Y−Z平面の断面図である。
FIGS. 6 to 8 relate to a third embodiment of the present invention, FIG. 6 is a cross-sectional view of the YZ plane in the optical axis direction showing the configuration of the illumination system, and FIG. 7 is the third lens in the illumination optical system. 8 is a perspective view showing the shape of FIG. 8 and FIG. 8 is a cross-sectional view of a YZ plane showing an optical ray passing through the illumination system.

【0035】第3の実施形態は、照明光学系の入射端面
側でなく出射端面側に第1の実施形態と同様の非球面部
を設けた例である。ここでは第1の実施形態と異なる部
分についてのみ説明する。
The third embodiment is an example in which an aspherical surface similar to that of the first embodiment is provided on the exit end face side of the illumination optical system instead of the entrance end face side. Here, only the parts different from the first embodiment will be described.

【0036】第3の実施形態の照明系は、図6に示すよ
うに、ライトガイドファイバ1の円形端面の前方に近接
して、第1レンズ14a,第2レンズ14b,第3レン
ズ14cの正の屈折力を持った3枚のレンズからなる照
明光学系14が配設されて構成されている。第3レンズ
14cは、出射端面において、図6及び図7に示すよう
に、観察範囲の対辺方向(X軸方向及びY軸方向)に対
して中心部は平面であり、対辺方向の周辺部は中心部よ
りも大きな正の屈折力を持つように非球面部15が形成
されている。
In the illumination system of the third embodiment, as shown in FIG. 6, the first lens 14a, the second lens 14b, and the third lens 14c are positively arranged close to the front of the circular end surface of the light guide fiber 1. An illumination optical system 14 composed of three lenses having a refracting power of is arranged and configured. As shown in FIGS. 6 and 7, the third lens 14c has a flat center in the opposite side direction (X-axis direction and Y-axis direction) of the observation range and a peripheral side portion in the opposite side direction on the emission end face. The aspherical surface portion 15 is formed so as to have a positive refractive power larger than that of the central portion.

【0037】この非球面部15により、図8に示すよう
に対辺方向の周辺部から出射する照明光の光線は大きく
曲げられなくなるため、周辺部の照明光は全反射しなく
なり、光量損失が減少する。
As shown in FIG. 8, the aspherical portion 15 prevents the light rays of the illumination light emitted from the peripheral portion in the opposite side direction from being largely bent, so that the illumination light in the peripheral portion is not totally reflected and the light amount loss is reduced. To do.

【0038】このように照明光学系の出射端面において
対辺方向の周辺部に非球面部15を設けることにより、
第1の実施形態と同様の作用効果が得られる。さらに、
本実施形態の構成では、照明光の出射角度も小さくな
り、より観察範囲内に照明光が集まってくるため、照明
効率及び明るさをより向上させることができる。
As described above, by providing the aspherical surface portion 15 in the peripheral portion in the opposite side direction on the emission end surface of the illumination optical system,
The same effect as that of the first embodiment can be obtained. further,
In the configuration of the present embodiment, the emission angle of the illumination light is also small, and the illumination light is more concentrated in the observation range, so that the illumination efficiency and brightness can be further improved.

【0039】図9及び図10は本発明の第4の実施形態
に係り、図9は照明系の構成を示す光軸方向Y−Z平面
の断面図、図10は照明光学系における第3レンズの形
状を示す斜視図である。
9 and 10 relate to the fourth embodiment of the present invention. FIG. 9 is a cross-sectional view of the YZ plane in the optical axis direction showing the configuration of the illumination system, and FIG. 10 is the third lens in the illumination optical system. It is a perspective view which shows the shape of.

【0040】第4の実施形態は、第3の実施形態と同様
出射端面側に、第2の実施形態と同様の平面部を設けた
例である。ここでは第3の実施形態と異なる部分につい
てのみ説明する。
The fourth embodiment is an example in which a flat portion similar to that of the second embodiment is provided on the exit end face side as in the third embodiment. Here, only parts different from those of the third embodiment will be described.

【0041】第4の実施形態の照明系は、図9に示すよ
うに、ライトガイドファイバ1の円形端面の前方に近接
して、第1レンズ16a,第2レンズ16b,第3レン
ズ16cの正の屈折力を持った3枚のレンズからなる照
明光学系16が配設されて構成されている。第3レンズ
16cの出射端面は、図9及び図10に示すように、観
察範囲の対辺方向(X軸方向及びY軸方向)に対して中
心部は平面であり、対辺方向の周辺部は中心部よりも大
きな正の屈折力を持つように平面的に斜めにカットされ
た平面部17が形成されている。
In the illumination system of the fourth embodiment, as shown in FIG. 9, the first lens 16a, the second lens 16b, and the third lens 16c are positively arranged near the front of the circular end surface of the light guide fiber 1. An illumination optical system 16 composed of three lenses having a refracting power of is arranged and configured. As shown in FIGS. 9 and 10, the emission end face of the third lens 16c has a flat center in the opposite side direction (X-axis direction and Y-axis direction) of the observation range and a center in the peripheral side in the opposite side direction. A plane portion 17 is formed that is cut obliquely in a plane so as to have a positive refractive power larger than that of the portion.

【0042】このように照明光学系の出射端面において
対辺方向の周辺部に傾斜した平面部17を設けることに
より、第3の実施形態と同様の作用効果が得られる。
By providing the inclined flat surface portion 17 in the peripheral portion in the opposite side direction on the emission end surface of the illumination optical system as described above, the same effect as that of the third embodiment can be obtained.

【0043】図11ないし図13は本発明の第5の実施
形態に係り、図11はモニタ上の表示画面の形状を示す
説明図、図12は照明系の構成を示す光軸方向X−Z平
面及びY−Z平面の断面図、図13は照明光学系におけ
る第3レンズの形状を示す斜視図である。
11 to 13 relate to the fifth embodiment of the present invention, FIG. 11 is an explanatory view showing the shape of the display screen on the monitor, and FIG. 12 is a view showing the structure of the illumination system in the optical axis direction XZ. FIG. 13 is a perspective view showing the shape of the third lens in the illumination optical system, and FIG. 13 is a sectional view of the plane and the YZ plane.

【0044】前述した第1ないし第4の実施形態では、
被写体面上での観察範囲及びモニタ上の表示画面の形状
を対辺がほぼ等しい正方形とした場合を例示したが、第
5の実施形態は、観察範囲の形状を対辺が等しくない横
長の長方形状とした場合の構成例を示したものである。
In the above-described first to fourth embodiments,
The case where the observation range on the subject surface and the shape of the display screen on the monitor are squares having opposite sides substantially equal to each other has been exemplified, but in the fifth embodiment, the shape of the observation range is a horizontally long rectangular shape having opposite sides. This is an example of the configuration in the case of doing.

【0045】図11に示すように、モニタ上の表示画面
範囲18が横長の長方形状の場合は、対辺方向の縦方向
(Y軸方向)及び横方向(X軸方向)のそれぞれで周辺
部の屈折力を変える必要がある。
As shown in FIG. 11, when the display screen range 18 on the monitor is a horizontally long rectangular shape, the peripheral portion is formed in the vertical direction (Y-axis direction) and the horizontal direction (X-axis direction) in the opposite direction. It is necessary to change the refractive power.

【0046】第5の実施形態の照明系は、図12に示す
ように、ライトガイドファイバ1の円形端面の前方に近
接して、第1レンズ19a,第2レンズ19b,第3レ
ンズ19cの正の屈折力を持った3枚のレンズからなる
照明光学系19が配設されて構成されている。第1レン
ズ19aは、入射端面において、図12及び図13に示
すように、観察範囲の対辺方向(X軸方向及びY軸方
向)に対して中心部は平面であり、対辺方向の周辺部は
中心部よりも大きな正の屈折力を持つようにそれぞれ異
なる屈折力を有する非球面部20a,20bが形成され
ている。
In the illumination system of the fifth embodiment, as shown in FIG. 12, the first lens 19a, the second lens 19b, and the third lens 19c are arranged positively in front of the circular end face of the light guide fiber 1. An illumination optical system 19 composed of three lenses having a refracting power of is arranged and configured. On the incident end face of the first lens 19a, as shown in FIGS. 12 and 13, the central portion is flat with respect to the opposite side direction (X-axis direction and Y-axis direction) of the observation range, and the peripheral portion in the opposite side direction is Aspherical portions 20a and 20b having different refractive powers are formed so as to have a positive refractive power larger than that of the central portion.

【0047】本実施形態のように観察範囲が横長の場合
には、横方向の非球面部20aは縦方向の非球面部20
bに比べて屈折力を弱くすることにより、観察範囲の形
状に合わせて効率よく照明することができる。なお、観
察範囲が縦長の場合には、これとは逆に縦方向の非球面
部20bの屈折力を弱くすればよい。このように、観察
範囲の形状の縦と横の比率に応じて、周辺部の屈折力を
変えることにより、観察範囲に合った照明範囲の形状を
得ることができる。
When the observation range is horizontally long as in the present embodiment, the aspherical surface portion 20a in the horizontal direction is the aspherical surface portion 20 in the vertical direction.
By making the refractive power weaker than that of b, it is possible to efficiently illuminate according to the shape of the observation range. When the observation range is vertically long, on the contrary, the refractive power of the aspherical surface portion 20b in the vertical direction may be weakened. In this way, by changing the refractive power of the peripheral portion according to the ratio of the length and width of the shape of the observation range, it is possible to obtain the shape of the illumination range that matches the observation range.

【0048】なお、照明光学系の入射端面に限らず、出
射端面など他の面に非球面部を設ける場合でも、同様に
構成すれば良い。また、非球面部の代わりに前述した実
施形態と同様に傾斜した平面部を設けても良い。
The same configuration may be applied not only to the entrance end surface of the illumination optical system but also to other surfaces such as the exit end surface provided with an aspherical surface. Further, instead of the aspherical surface portion, the inclined flat surface portion may be provided as in the above-described embodiment.

【0049】図14及び図15は本発明の第6の実施形
態に係り、図14は照明系の構成を示す光軸方向Y−Z
平面の断面図、図15は従来の負の屈折力を持つ照明光
学系の構成を示す説明図である。
14 and 15 relate to the sixth embodiment of the present invention, and FIG. 14 shows the configuration of the illumination system in the optical axis direction YZ.
FIG. 15 is a cross-sectional view of a plane, and FIG. 15 is an explanatory diagram showing a configuration of a conventional illumination optical system having a negative refractive power.

【0050】前述した第1ないし第5の実施形態では、
照明光学系を正の屈折力を持つレンズ系で構成した例を
示したが、以下の第6および第7の実施形態では、照明
光学系を負の屈折力を持つレンズ系で構成した例を示
す。
In the first to fifth embodiments described above,
Although the example in which the illumination optical system is configured by the lens system having a positive refractive power has been shown, in the following sixth and seventh embodiments, an example in which the illumination optical system is configured by a lens system having a negative refractive power is shown. Show.

【0051】第6の実施形態の照明系は、図14に示す
ように、ライトガイドファイバ1の円形端面の前方に近
接して、負の屈折力を持ったレンズ(平凹型のレンズの
凹面の周辺部の一部が非球面のもの)21aを有してな
る照明光学系21が配設されて構成されている。このレ
ンズ21aの入射端面は、観察範囲の対辺方向(X軸方
向及びY軸方向)に対して周辺部は中心部よりも小さな
負の屈折力を持つように非球面部22が形成されてい
る。
In the illumination system of the sixth embodiment, as shown in FIG. 14, a lens having a negative refractive power (a concave surface of a plano-concave type lens) is provided close to the front of the circular end surface of the light guide fiber 1. An illumination optical system 21 having a peripheral portion (aspherical surface) 21a is arranged. An aspherical surface portion 22 is formed on the incident end surface of the lens 21a so that the peripheral portion has a negative refractive power smaller than that of the central portion in the opposite side direction (X-axis direction and Y-axis direction) of the observation range. .

【0052】従来の負の屈折力を持つ照明光学系60で
は、図15に示すように、周辺部の光線ほど外側に大き
く曲げられ、大きな配光角度特性に寄与する傾向にあ
る。そこで本実施形態では、観察範囲の対辺方向に対し
ては周辺部で光線をあまり曲げないように、すなわち対
辺方向の周辺部でレンズの屈折力を小さくするように、
凹面の周辺部に非球面部22を設けている。なお、非球
面部の代わりに前述した実施形態と同様に傾斜した平面
部を設けても良い。
In the conventional illumination optical system 60 having a negative refracting power, as shown in FIG. 15, the light rays in the peripheral portion are largely bent outward and tend to contribute to a large light distribution angle characteristic. Therefore, in the present embodiment, the light rays are not bent so much in the peripheral portion in the opposite side direction of the observation range, that is, the refractive power of the lens is reduced in the peripheral portion in the opposite side direction.
An aspherical surface portion 22 is provided around the concave surface. Instead of the aspherical surface portion, an inclined flat surface portion may be provided as in the above-described embodiment.

【0053】このように負の屈折力を持つ照明光学系に
おいても、入射端面における対辺方向の凹面の周辺部に
非球面部22を設けることにより、第1の実施形態と同
様の作用効果が得られる。
Even in the illumination optical system having a negative refracting power as described above, by providing the aspherical surface portion 22 in the peripheral portion of the concave surface of the incident end surface in the opposite side direction, the same effect as that of the first embodiment can be obtained. To be

【0054】図16は本発明の第7の実施形態に係る照
明系の構成を示す光軸方向Y−Z平面の断面図である。
FIG. 16 is a sectional view of the YZ plane in the optical axis direction showing the configuration of the illumination system according to the seventh embodiment of the present invention.

【0055】第7の実施形態は、照明光学系の入射端面
側でなく出射端面側に第6の実施形態と同様の非球面部
を設けた例である。ここでは第6の実施形態と異なる部
分についてのみ説明する。
The seventh embodiment is an example in which an aspherical surface portion similar to that of the sixth embodiment is provided on the exit end face side of the illumination optical system instead of the entrance end face side. Here, only the parts different from the sixth embodiment will be described.

【0056】第7の実施形態の照明系は、図16に示す
ように、ライトガイドファイバ1の円形端面の前方に近
接して、負の屈折力を持ったレンズ23aを有してなる
照明光学系23が配設されて構成されている。このレン
ズ23aの出射端面は、観察範囲の対辺方向(X軸方向
及びY軸方向)に対して中心部は平面であり、対辺方向
の周辺部は中心部よりも小さな負の屈折力を持つように
非球面部24が形成されている。
As shown in FIG. 16, the illumination system of the seventh embodiment is an illumination optical system which has a lens 23a having a negative refracting power in front of the circular end face of the light guide fiber 1. The system 23 is arranged and configured. The exit end surface of the lens 23a has a flat central portion in the opposite side direction (X-axis direction and Y-axis direction) of the observation range, and the peripheral portion in the opposite side direction has a negative refractive power smaller than that of the central portion. An aspherical surface portion 24 is formed on.

【0057】この非球面部24により、対辺方向の周辺
部から出射する照明光の光線は大きく曲げられなくなる
ため、周辺部の照明光の全反射が少なくなり、光量損失
が減少する。なお、非球面部の代わりに前述した実施形
態と同様に傾斜した平面部を設けても良い。
The aspherical surface portion 24 prevents the light rays of the illumination light emitted from the peripheral portion in the opposite side direction from being largely bent, so that the total reflection of the illumination light in the peripheral portion is reduced and the light amount loss is reduced. Instead of the aspherical surface portion, an inclined flat surface portion may be provided as in the above-described embodiment.

【0058】このように負の屈折力を持つ照明光学系に
おいても、出射端面における対辺方向の周辺部に非球面
部24を設けることにより、第1の実施形態と同様の作
用効果が得られる。さらに、本実施形態の構成では、照
明光の出射角度も小さくなり、より観察範囲内に照明光
が集まってくるため、照明効率及び明るさをより向上さ
せることができる。
In this way, also in the illumination optical system having a negative refracting power, by providing the aspherical surface portion 24 in the peripheral portion of the emitting end face in the opposite side direction, the same effect as that of the first embodiment can be obtained. Further, in the configuration of the present embodiment, the emission angle of the illumination light is also small, and the illumination light is more concentrated in the observation range, so the illumination efficiency and brightness can be further improved.

【0059】なお、前述した各実施形態では、端面が円
形に成形されたライトガイドを用いる場合の構成例を示
したが、楕円などのいびつな形の場合であっても第5の
実施形態のように観察範囲の対辺方向の縦方向及び横方
向の周辺部でそれぞれ屈折力を変えるようにすれば同様
の作用効果が得られる。具体的には、端面が横長のライ
トガイドであれば、正の屈折力を持つ照明光学系の場
合、対辺方向の縦方向よりも横方向の屈折力を周辺部で
大きくすれば良い。
In each of the above-described embodiments, a configuration example in which a light guide whose end surface is formed in a circular shape is used is shown. However, even in the case of a distorted shape such as an ellipse, the light guide of the fifth embodiment is used. As described above, if the refractive powers are changed in the longitudinal and lateral peripheral portions of the opposite side of the observation range, the same effect can be obtained. Specifically, if the end face is a horizontally long light guide, in the case of an illumination optical system having a positive refracting power, the lateral refracting power may be made larger in the peripheral portion than in the vertical direction in the opposite side direction.

【0060】また、正の屈折力を持つ照明光学系の場合
に、中心部よりも大きな正の屈折力を持たせる周辺部の
領域は、例えば図17(a)〜(h)の斜線部のよう
に、被写体面上での観察範囲及びモニタ上の表示画面の
形状に類似させた形状(照明光学系の光軸方向から観察
した場合のもの)に対して作用させれば良く、中心側の
平面部は必ずしも正方形や長方形である必要はない。図
17において、円などの外形はライトガイド及び照明光
学系の外形状を、斜線部は周辺部に設ける非球面部また
は平面部の領域をそれぞれ示している。ただし、照明光
学系の外形状は、ライトガイドよりも大きければよいの
で、必ずしもライトガイドの外形状と一致しなくてもよ
い。
In the case of an illumination optical system having a positive refracting power, the peripheral region which gives a positive refracting power larger than that of the central part is, for example, the shaded area in FIGS. 17 (a) to 17 (h). As described above, it may be applied to the observation range on the subject surface and the shape similar to the shape of the display screen on the monitor (when observed from the optical axis direction of the illumination optical system). The plane portion does not necessarily have to be a square or a rectangle. In FIG. 17, the outer shape such as a circle shows the outer shape of the light guide and the illumination optical system, and the shaded area shows the area of the aspherical surface portion or the flat surface portion provided in the peripheral portion. However, the outer shape of the illumination optical system may be larger than that of the light guide, and therefore does not necessarily match the outer shape of the light guide.

【0061】図17の(a)は、第1ないし第4の実施
形態に対応した構成であり、中心側の平面部の形状が正
方形となっている。(b)は周辺部の非球面部または平
面部を小さめに形成した例であり、中心側の平面部の形
状が正方形の四隅を面取りした八角形となっている。
(c)は周辺部の非球面部または平面部を対辺方向に大
きめに形成した例であり、中心側の平面部の形状が糸巻
き型となっている。(d)は対辺方向の一つだけに非球
面部または平面部を設け、中心側の平面部の形状をD字
形状としたDカット型の例である。(e)は縦方向と横
方向の内、一方の対辺方向(縦方向)の周辺部のみをカ
ットして中心側の平面部の形状を略糸巻き型とした例で
ある。(f)は縦方向と横方向の内、一方の対辺方向
(縦方向)の周辺部のみを直線的にカットして中心側の
平面部の形状を小判型とした例である。
FIG. 17A shows a structure corresponding to the first to fourth embodiments, in which the shape of the central plane portion is square. (B) is an example in which an aspherical surface portion or a flat surface portion in the peripheral portion is formed small, and the shape of the flat surface portion on the center side is an octagon in which four corners of a square are chamfered.
(C) is an example in which an aspherical surface portion or a flat surface portion in the peripheral portion is formed slightly larger in the opposite side direction, and the shape of the flat surface portion on the center side is a pincushion type. (D) is an example of a D-cut type in which an aspherical surface portion or a flat surface portion is provided only in one of the opposite sides, and the shape of the central flat surface portion is a D shape. (E) is an example in which only the peripheral portion in the opposite side direction (vertical direction) of one of the vertical direction and the horizontal direction is cut, and the shape of the plane portion on the center side is substantially a pincushion type. (F) is an example in which only the peripheral portion in the opposite side direction (vertical direction) of one of the vertical direction and the horizontal direction is linearly cut to make the shape of the flat portion on the center side oval.

【0062】照明光学系及びライトガイドの端面形状
は、前述したように必ずしも円形である必要はなく、略
円形、長円形や楕円形、六角形や八角形等の多角形など
に形成されたものを用いても良い。図17の(g)は、
照明光学系及びライトガイドの外形状が楕円形の場合の
例であり、対辺方向の周辺部に非球面部または平面部が
設けられ、第5の実施形態と同様に中心側の平面部の形
状が横長の長方形となっている。(h)は照明光学系及
びライトガイドの外形状が正方形の四隅を面取りした八
角形の場合の例であり、対辺方向の周辺部に非球面部ま
たは平面部が設けられ、中心側の平面部の形状が正方形
となっている。このように照明光学系及びライトガイド
の端面形状と被写体面上での観察範囲及びモニタ上の表
示画面の形状との双方を考慮して、対辺方向の周辺部の
屈折力を決定し、非球面部または平面部を形成すれば良
い。
The end face shapes of the illumination optical system and the light guide do not necessarily have to be circular as described above, and are formed into a substantially circular shape, an oval shape, an elliptical shape, a polygonal shape such as a hexagonal shape or an octagonal shape. May be used. FIG. 17 (g) shows
This is an example of the case where the outer shapes of the illumination optical system and the light guide are elliptical, and the aspherical surface portion or the flat surface portion is provided in the peripheral portion in the opposite direction, and the shape of the flat surface portion on the center side is the same as in the fifth embodiment. Is a horizontally long rectangle. (H) is an example of the case where the outer shape of the illumination optical system and the light guide is an octagon in which the four corners of a square are chamfered, and an aspherical surface portion or a flat surface portion is provided in the peripheral portion in the opposite side direction, and a flat surface portion on the center side. Has a square shape. In this way, the refractive power of the peripheral portion in the opposite side direction is determined in consideration of both the end surface shapes of the illumination optical system and the light guide, the observation range on the subject surface, and the shape of the display screen on the monitor, and the aspherical surface is determined. It suffices to form a flat portion or a flat portion.

【0063】さらに、前述の各実施形態では、照明光学
系の入射端面及び出射端面を平面としているが、曲率を
持っていても良い。また、中心部と周辺部での面形状変
化は、非球面部を設ける場合のように連続的であっても
良いし、平面部を設ける場合のように不連続となるよう
構成しても構わない。
Further, in each of the above-mentioned embodiments, the entrance end face and the exit end face of the illumination optical system are flat, but they may have a curvature. Further, the surface shape change between the central portion and the peripheral portion may be continuous as in the case of providing the aspherical surface portion, or may be discontinuous as in the case of providing the flat surface portion. Absent.

【0064】また、周辺部での屈折力を変化させる非球
面部または平面部は、照明光学系の入射端面及び出射端
面以外の箇所に設けても良いし、上記実施形態で示した
面形状を一つの照明光学系に対して複数組み合わせて構
成しても良い。また、同一面の異なる対辺方向で非球面
部と平面部とを混在させても構わない。
The aspherical surface portion or the flat surface portion for changing the refracting power in the peripheral portion may be provided at a position other than the incident end face and the output end face of the illumination optical system, or the surface shape shown in the above embodiment may be used. A plurality of illumination optical systems may be combined and configured. Further, the aspherical surface portion and the flat surface portion may be mixed in different opposite side directions on the same surface.

【0065】以上の各実施形態では、ライトガイドファ
イバ等の光伝導体の先端部に設けられた照明光学系の構
成について述べたが、光伝導体において同様の構成を適
用しても同様の作用、効果が実現できる。
In each of the above-mentioned embodiments, the configuration of the illumination optical system provided at the tip of the photoconductor such as the light guide fiber has been described. However, even if the same configuration is applied to the photoconductor, the same operation is performed. , The effect can be realized.

【0066】そこで、以下に光伝導体としてライトガイ
ドファイバに前記実施形態の構成を適用した構成例を示
す。
Therefore, a configuration example in which the configuration of the above embodiment is applied to a light guide fiber as a photoconductor will be shown below.

【0067】図18及び図19は本発明の第8の実施形
態に係り、図18は照明系の構成を示す光軸方向Y−Z
平面の断面図、図19は光伝導体における出射端面の形
状を示す斜視図である。
18 and 19 relate to the eighth embodiment of the present invention, and FIG. 18 shows the configuration of the illumination system in the optical axis direction YZ.
FIG. 19 is a cross-sectional view of the plane, and FIG. 19 is a perspective view showing the shape of the emitting end face of the photoconductor.

【0068】第8の実施形態の照明系は、図18に示す
ように、内視鏡挿入部内に光伝導体としてライトガイド
ファイバ25が設けられ、このライトガイドファイバ2
5の出射端面の前方に近接して、第1レンズ(平凸ロッ
ドレンズ)27a,第2レンズ(凸レンズ)27b,第
3レンズ(平凸レンズ)27cの正の屈折力を持った3
枚のレンズからなる照明光学系27が配設されている。
In the illumination system according to the eighth embodiment, as shown in FIG. 18, a light guide fiber 25 is provided as a photoconductor in the endoscope insertion portion.
The first lens (plano-convex rod lens) 27a, the second lens (convex lens) 27b, and the third lens (plano-convex lens) 27c having positive refracting power in close proximity to the front of the exit end surface
An illumination optical system 27 including a single lens is provided.

【0069】ライトガイドファイバ25の出射端面は、
図18及び図19に示すように、第2の実施形態と同
様、観察範囲の対辺方向(X軸方向及びY軸方向)に対
して中心部は平面であり、対辺方向の周辺部は中心部よ
りも大きな正の屈折力を持つように平面的に斜めにカッ
トされた平面部26が形成されている。従って、周辺部
に配置されるファイバ1本1本の端面が斜めにカットさ
れることになる。
The exit end face of the light guide fiber 25 is
As shown in FIGS. 18 and 19, as in the second embodiment, the central portion is a plane in the opposite side direction (X axis direction and Y axis direction) of the observation range, and the peripheral portion in the opposite side direction is the central portion. A plane portion 26 is formed that is cut obliquely in a plane so as to have a larger positive refractive power. Therefore, the end faces of the fibers arranged in the peripheral portion are cut obliquely.

【0070】この場合、平面部26も含めて、単に切断
しただけでは切断表面に傷が残り出射光量の損失が生じ
るため、端面に鏡面仕上げを施すようにすれば、出射光
量の損失が少なくなるので、より望ましい。なお、前述
の各実施形態における照明光学系のレンズの場合でも、
光量の余裕があれば部分的もしくは全体的に粗面仕上げ
(砂目)状態であってもよいが、同様に鏡面仕上げを施
すと良いのは言うまでもない。
In this case, the cut surface, including the flat surface portion 26, is left with scratches on the cut surface to cause a loss of the emitted light amount. Therefore, if the end face is mirror-finished, the emitted light amount is reduced. So more desirable. Even in the case of the lens of the illumination optical system in each of the above-mentioned embodiments,
It may be partially or wholly roughened (grained) if there is a margin of light quantity, but it goes without saying that mirror finishing is also preferable.

【0071】このようにライトガイドファイバ25を構
成すると、特に斜めカットを施した周辺部の平面部26
からの出射光線が光軸方向に曲げられて、ライトガイド
ファイバ25と接着もしくは密着、または適度な間隔を
あけて配置された照明光学系27に入射し、第2の実施
形態の平面部13による作用と同様の作用が得られ、図
2と同様な照明光学系内の経路を光線が進むため、観察
範囲の対辺方向における照明系出射端部からの光線の出
射角度を小さくできる。
When the light guide fiber 25 is constructed as described above, the peripheral flat surface portion 26, which is particularly obliquely cut, is formed.
The light beam emitted from is bent in the direction of the optical axis and is incident on the illumination optical system 27 that is adhered or closely contacted with the light guide fiber 25 or that is arranged with an appropriate space, and the flat surface portion 13 of the second embodiment is used. Since an effect similar to the effect is obtained and the light ray travels along the same path in the illumination optical system as in FIG. 2, the emission angle of the light ray from the illumination system emission end in the opposite side direction of the observation range can be reduced.

【0072】従って、観察範囲の対辺方向の照明範囲は
狭くなり、観察範囲内の照明効率が上がるため、観察範
囲の照明を明るくできる。なお、観察範囲の対角方向に
ついては、光線の出射角度が変わらないため、対角方向
周辺部の配光特性は現状並の性能を確保することができ
る。
Therefore, the illumination range in the opposite direction of the observation range is narrowed and the illumination efficiency in the observation range is improved, so that the illumination in the observation range can be made bright. In the diagonal direction of the observation range, since the emission angle of the light beam does not change, the light distribution characteristic of the peripheral portion in the diagonal direction can maintain the same performance as that of the current state.

【0073】なお、ライトガイドファイバの出射端面の
周辺部の形状は、平面部の斜めカットに限らず、前述の
照明光学系の場合と同様に各種変形例が考えられる。例
えば、図20に示すライトガイドファイバ28のよう
に、出射端面に第1の実施形態と同様な非球面部29を
設けて平面以外の形状としても良い。また、このような
非球面部などは、形状的にも連続であっても不連続であ
っても構わないし、平面部と非球面部とを併用した構成
としても良い。
The shape of the peripheral portion of the emission end face of the light guide fiber is not limited to the oblique cut of the flat portion, and various modifications can be considered as in the case of the above-mentioned illumination optical system. For example, like the light guide fiber 28 shown in FIG. 20, an aspherical surface portion 29 similar to that of the first embodiment may be provided on the emission end surface to have a shape other than a flat surface. Further, such an aspherical surface portion may be continuous or discontinuous in shape, and may have a configuration in which a flat surface portion and an aspherical surface portion are used together.

【0074】また、図21に示すライトガイドファイバ
30のように、第5の実施形態と同様、観察範囲の対辺
方向の周辺部においてX軸方向とY軸方向とで異なる屈
折力を有する非球面部31a,31bを形成し、対辺方
向ごとに異なる周辺形状としても良い。
As in the fifth embodiment, like the light guide fiber 30 shown in FIG. 21, an aspherical surface having different refractive powers in the X-axis direction and the Y-axis direction in the peripheral portion of the observation range in the opposite side direction. The portions 31a and 31b may be formed to have different peripheral shapes in the opposite side directions.

【0075】第8の実施形態では、ライトガイドの断面
形状を円形としているが、多角形や楕円形、さらに卵形
や三日月形、半円形等のいびつな形状であっても良い。
なお、ライトガイドファイバの端面を形成する場合に、
ライトガイドファイバの先端を平面構造としてから周辺
部をカット及び研磨しても良いし、概略の形状に成形し
てから端面の周辺部を研磨しても良い。
In the eighth embodiment, the light guide has a circular cross section, but it may have a polygonal shape, an elliptical shape, an oval shape, a crescent shape, a semicircular shape or the like.
When forming the end surface of the light guide fiber,
The tip of the light guide fiber may have a planar structure and then the peripheral portion may be cut and polished, or the peripheral portion of the end face may be polished after being formed into a rough shape.

【0076】また、第8の実施形態では、光伝導体の先
端部に設けられた照明光学系の構成として3枚の正レン
ズ構成を用いたが、負レンズ等のレンズ系で構成しても
良いし、レンズ系以外の光学素子を含んだものでも構わ
ない。また、光伝導体はライトガイドファイバに限定さ
れるものではなく、他の光学素子を含んだものを用いて
も良い。
Further, in the eighth embodiment, the configuration of the illumination optical system provided at the tip of the photoconductor has a three-lens configuration, but a lens system such as a negative lens may be used. It may be good, or may include an optical element other than the lens system. Further, the photoconductor is not limited to the light guide fiber, and a photoconductor including other optical elements may be used.

【0077】さらに、以上述べた各実施形態の構成例を
複数組み合わせて照明系を構成しても良い。
Furthermore, the illumination system may be configured by combining a plurality of the configuration examples of the above-described embodiments.

【0078】以上説明したように、上記各実施形態の構
成によれば、内視鏡の照明系による照明範囲をその対物
光学系による観察範囲に合わせた略相似形としたため、
特にビデオスコープのような円形以外の観察範囲を持っ
た内視鏡において、従来と同等なライトガイドまたは照
明光学系の構成を用いた場合であっても、組み合わせる
照明光学系またはライトガイドにおいて本実施形態の構
成を設けることにより、照明効率を高め、観察系トータ
ルの明るさを向上させることができ、明るい内視鏡観察
画像を提供することが可能となる。さらに、従来と同等
の明るさを得るようにした場合は、その内視鏡の使用状
況に応じて必要な明るさや周辺配光を確保しつつ、ライ
トガイドの構成本数の少ないより細径の照明系を構成で
きるため、内視鏡の細径化にも大きな効果をもたらすこ
とができる。
As described above, according to the configuration of each of the above-described embodiments, the illumination range of the endoscope illumination system is substantially similar to the observation range of the objective optical system.
Especially for an endoscope with a non-circular observation range such as a videoscope, even if the same configuration as the conventional light guide or illumination optical system is used, this is performed with the combined illumination optical system or light guide. By providing the configuration of the form, it is possible to improve the illumination efficiency and improve the total brightness of the observation system, and it is possible to provide a bright endoscopic observation image. Furthermore, if the same brightness as the conventional one is obtained, a smaller-diameter illumination with a smaller number of light guides is configured while ensuring the required brightness and peripheral light distribution according to the usage status of the endoscope. Since the system can be configured, it is possible to bring about a great effect in reducing the diameter of the endoscope.

【0079】[0079]

【0080】[0080]

【0081】[0081]

【0082】[0082]

【0083】[0083]

【0084】[0084]

【0085】[0085]

【0086】[0086]

【0087】[0087]

【0088】[0088]

【発明の効果】以上説明したように本発明によれば、例
えばビデオスコープのような被写体面上で略円形以外の
観察範囲を持った内視鏡の対物光学系に対して、元の配
光特性を大きく変えることなく、比較的簡単な構成で照
明効率の優れた内視鏡用照明系を提供できる効果があ
る。
As described above, according to the present invention, the original light distribution is applied to an objective optical system of an endoscope having an observation range other than a substantially circular shape on a subject surface such as a videoscope. There is an effect that it is possible to provide an endoscope illumination system with excellent illumination efficiency with a relatively simple configuration without significantly changing the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態の照明系の概要を示す作用説明図FIG. 1 is an operation explanatory view showing an outline of an illumination system of the present embodiment.

【図2】本発明の第1の実施形態に係る照明系の構成及
びこれを通過する光線を示す光軸方向Y−Z平面の断面
FIG. 2 is a cross-sectional view of the YZ plane in the optical axis direction, showing the configuration of the illumination system according to the first embodiment of the present invention and the rays of light passing through the illumination system.

【図3】モニタ上の表示画面の形状と観察範囲の形状と
の関係を示す説明図
FIG. 3 is an explanatory diagram showing the relationship between the shape of the display screen on the monitor and the shape of the observation range.

【図4】本発明の第2の実施形態に係る照明系の構成を
示す光軸方向Y−Z平面の断面図
FIG. 4 is a sectional view of a YZ plane in an optical axis direction, showing a configuration of an illumination system according to a second embodiment of the present invention.

【図5】図4の照明光学系における第1レンズの形状を
示す斜視図
5 is a perspective view showing the shape of a first lens in the illumination optical system of FIG.

【図6】本発明の第3の実施形態に係る照明系の構成を
示す光軸方向Y−Z平面の断面図
FIG. 6 is a cross-sectional view taken along the YZ plane in the optical axis direction, showing the configuration of an illumination system according to a third embodiment of the present invention.

【図7】図6の照明光学系における第3レンズの形状を
示す斜視図
7 is a perspective view showing the shape of a third lens in the illumination optical system shown in FIG.

【図8】図6の照明光学系を通過する光線を示す光軸方
向Y−Z平面の断面図
8 is a cross-sectional view of a YZ plane in the optical axis direction, showing a ray of light passing through the illumination optical system of FIG.

【図9】本発明の第4の実施形態に係る照明系の構成を
示す光軸方向Y−Z平面の断面図
FIG. 9 is a cross-sectional view taken along the YZ plane in the optical axis direction, showing the configuration of an illumination system according to a fourth embodiment of the present invention.

【図10】図9の照明光学系における第3レンズの形状
を示す斜視図
10 is a perspective view showing the shape of a third lens in the illumination optical system in FIG.

【図11】第5の実施形態におけるモニタ上の表示画面
の形状を示す説明図
FIG. 11 is an explanatory diagram showing the shape of a display screen on a monitor according to the fifth embodiment.

【図12】本発明の第5の実施形態に係る照明系の構成
を示す光軸方向X−Z平面及びY−Z平面の断面図
FIG. 12 is a cross-sectional view of an XZ plane and a YZ plane in the optical axis direction, showing the configuration of an illumination system according to a fifth embodiment of the present invention.

【図13】図11の照明光学系における第3レンズの形
状を示す斜視図
13 is a perspective view showing the shape of a third lens in the illumination optical system in FIG.

【図14】本発明の第6の実施形態に係る照明系の構成
を示す光軸方向Y−Z平面の断面図
FIG. 14 is a sectional view of a YZ plane in the optical axis direction, showing the configuration of an illumination system according to a sixth embodiment of the present invention.

【図15】従来の負の屈折力を持つ照明光学系の構成を
示す説明図
FIG. 15 is an explanatory diagram showing a configuration of a conventional illumination optical system having negative refractive power.

【図16】本発明の第7の実施形態に係る照明系の構成
を示す光軸方向Y−Z平面の断面図
FIG. 16 is a cross-sectional view taken along the YZ plane in the optical axis direction, showing the configuration of an illumination system according to a seventh embodiment of the present invention.

【図17】照明光学系において中心部よりも大きな正の
屈折力を持たせる周辺部の領域の変形例、及び照明系の
外形状の変形例を示す説明図
FIG. 17 is an explanatory diagram showing a modified example of a peripheral region that gives a positive refractive power larger than that of the central part in the illumination optical system, and a modified example of the outer shape of the illumination system.

【図18】本発明の第8の実施形態に係る照明系の構成
を示す光軸方向Y−Z平面の断面図
FIG. 18 is a cross-sectional view of the YZ plane in the optical axis direction showing the configuration of the illumination system according to the eighth embodiment of the present invention.

【図19】図18の光伝導体における出射端面の形状を
示す斜視図
FIG. 19 is a perspective view showing the shape of the emission end face of the photoconductor of FIG.

【図20】光伝導体における端面形状の第1変形例を示
す斜視図
FIG. 20 is a perspective view showing a first modification of the end face shape of the photoconductor.

【図21】光伝導体における端面形状の第2変形例を示
す斜視図
FIG. 21 is a perspective view showing a second modification of the end face shape of the photoconductor.

【図22】内視鏡の対物光学系の特性を模式的に示す作
用説明図
FIG. 22 is an operation explanatory view schematically showing the characteristics of the objective optical system of the endoscope.

【図23】図22のような特性の対物光学系を備えた内
視鏡における観察領域と照明領域との関係を示す説明図
23 is an explanatory diagram showing a relationship between an observation region and an illumination region in an endoscope including an objective optical system having the characteristics shown in FIG.

【図24】従来の照明系の構成例を示す光軸方向断面図FIG. 24 is a sectional view in the optical axis direction showing a configuration example of a conventional illumination system.

【符号の説明】[Explanation of symbols]

1…ライトガイド 2…照明光学系 3…非球面部 4…内視鏡挿入部 6…被写体面 7…照明範囲 9…観察範囲 1 ... Light guide 2. Illumination optical system 3 ... Aspherical surface 4 ... Endoscope insertion part 6 ... Subject surface 7 ... Illumination range 9 ... Observation range

フロントページの続き (56)参考文献 特開 平5−53063(JP,A) 特開 平6−273678(JP,A) 特開 平7−311349(JP,A) 特開 昭57−97509(JP,A) 特公 平6−44107(JP,B2) 特公 平7−104492(JP,B2) 特公 平7−104494(JP,B2) (58)調査した分野(Int.Cl.7,DB名) A61B 1/00 - 1/32 G02B 23/24 - 23/26 Continuation of the front page (56) Reference JP-A-5-53063 (JP, A) JP-A-6-273678 (JP, A) JP-A-7-311349 (JP, A) JP-A-57-97509 (JP , A) Japanese Patent Publication 6-44107 (JP, B2) Japanese Patent Publication 7-104492 (JP, B2) Japanese Publication 7-104494 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB) Name) A61B 1/00-1/32 G02B 23/24-23/26

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源からの出射光を入射端部において受
光し、他端へと導く光伝導体と、前記光伝導体および該
光伝導体からの光放射端部に近接して配置されて、該光
伝導体からの光を被写体に照射する照明光学系とからな
る内視鏡用照明系において、前記照明光学系は、光軸を
中心として、軸対称な屈折作用を有する中心部と方向に
よって異なる屈折作用を有する周辺部とを有する光学素
子から構成されることを特徴とする内視鏡用照明系。
1. A photoconductor that receives light emitted from a light source at an incident end and guides the light to the other end, and the photoconductor and the photoconductor and a light emitting end from the photoconductor are arranged in proximity to each other. And an illumination optical system for irradiating a subject with light from the photoconductor, wherein the illumination optical system has a center portion and a direction having an axisymmetric refraction action about an optical axis. An illumination system for an endoscope, comprising an optical element having a peripheral portion having different refraction depending on the type.
【請求項2】 内視鏡観察形状の対辺方向に対応して、
前記照明光学系が少なくとも一つの対辺方向の周辺部で
異なる屈折力を有することを特徴とする請求項1に記載
の内視鏡用照明系。
2. Corresponding to the opposite side direction of the endoscopic observation shape,
The endoscope illumination system according to claim 1, wherein the illumination optical system has different refracting powers in at least one peripheral portion in the opposite side direction.
【請求項3】 前記光学素子としてレンズを用いたこと
を特徴とする請求項1もしくは請求項2に記載の内視鏡
用照明系。
3. The endoscope illumination system according to claim 1 or 2, wherein a lens is used as the optical element.
【請求項4】 光源からの出射光を入射端部において受
光し、他端へと導く光伝導体と、前記光伝導体および該
光伝導体からの光放射端部に近接して配置されて、該光
伝導体からの光を被写体に照射する照明光学系とからな
る内視鏡用照明系において、前記光伝導体は、該光伝導
体の光出射端部から出射される光線の出射角度特性が、
光軸を中心として軸対称な中心部と方向によって異なる
周辺部とからなるように構成されていることを特徴とす
る内視鏡用照明系。
4. The light emitted from the light source is received at the incident end.
A photoconductor that emits light and guides it to the other end;
The light emitted from the photoconductor is placed close to the end,
It consists of an illumination optical system that illuminates the subject with light from the conductor.
In the illumination system for an endoscope, the photoconductor is
The emission angle characteristic of the light beam emitted from the light emission end of the body is
Axisymmetric about the optical axis and varies depending on the direction
It is characterized in that it is composed of a peripheral portion
Illumination system for endoscopes.
【請求項5】 内視鏡観察形状の対辺方向に対応して、
前記光伝導体が少なくとも一つの対辺方向の周辺部で異
なる光線の出射角度特性を有することを特徴とする請求
項4に記載の内視鏡用照明系。
5. Corresponding to the opposite side direction of the endoscopic observation shape,
The photoconductor is different in at least one opposite side peripheral portion.
Claims characterized in that
Item 4. The endoscope illumination system according to Item 4.
【請求項6】 前記光伝導体としてファイバを用いたこ
とを特徴とする請求項4もしくは請求項5に記載の内視
鏡用照明系。
6. A fiber is used as the photoconductor.
The endoscopic view according to claim 4 or 5, wherein
Lighting system for mirrors.
【請求項7】 前記照明系の照明光学系または光伝導体
に少なくとも1面以上の非球面を設けたことを特徴とす
る請求項3もしくは請求項6に記載の内視鏡用照明系。
7. An illumination optical system or a photoconductor of the illumination system.
Characterized in that at least one aspherical surface is provided
The illumination system for an endoscope according to claim 3 or claim 6.
【請求項8】 前記照明系の照明光学系または光伝導体
の周辺部に少なくとも1面以上、光軸に対して傾斜した
平面部を設けたことを特徴とする請求項3もしくは請求
項6に記載の内視鏡用照明系。
8. An illumination optical system or a photoconductor of the illumination system.
At least one surface is inclined with respect to the optical axis on the periphery of
4. A flat surface portion is provided, or claim 3 or claim
Item 9. The endoscope illumination system according to Item 6.
【請求項9】 前記照明光学系が複数の正レンズを含
み、該照明光学系の光入射端または光出射端近傍のレン
ズ面に前記非球面または平面部を少なくとも1面以上設
けたことを特徴とする請求項7又は請求項8に記載の内
視鏡用照明系。
9. The illumination optical system includes a plurality of positive lenses.
Only the lens near the light entrance end or the light exit end of the illumination optical system.
At least one aspherical surface or flat surface is provided on the inner surface.
The inside of claim 7 or claim 8 characterized in that
Illumination system for endoscopes.
JP12369696A 1996-05-17 1996-05-17 Endoscope lighting system Expired - Fee Related JP3477314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12369696A JP3477314B2 (en) 1996-05-17 1996-05-17 Endoscope lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12369696A JP3477314B2 (en) 1996-05-17 1996-05-17 Endoscope lighting system

Publications (2)

Publication Number Publication Date
JPH09299326A JPH09299326A (en) 1997-11-25
JP3477314B2 true JP3477314B2 (en) 2003-12-10

Family

ID=14867077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12369696A Expired - Fee Related JP3477314B2 (en) 1996-05-17 1996-05-17 Endoscope lighting system

Country Status (1)

Country Link
JP (1) JP3477314B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2542145T (en) * 2010-03-05 2020-11-04 Massachusetts Gen Hospital Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
WO2015156337A1 (en) 2014-04-10 2015-10-15 オリンパス株式会社 Endoscope

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797509A (en) * 1980-12-10 1982-06-17 Olympus Optical Co Ltd Lighting system for endoscope
JPH0644107B2 (en) * 1984-05-18 1994-06-08 オリンパス光学工業株式会社 Illumination optics for endoscopes
JPH07104492B2 (en) * 1985-12-28 1995-11-13 オリンパス光学工業株式会社 Illumination optical system for endoscope
JPH07104494B2 (en) * 1987-06-26 1995-11-13 オリンパス光学工業株式会社 Illumination optical system for endoscope
JPH0553063A (en) * 1990-04-27 1993-03-05 Olympus Optical Co Ltd Illumination optical system for endoscope for tube observation
JPH06273678A (en) * 1993-03-18 1994-09-30 Toshiba Corp Diffusing and illuminating optical system for endoscope
JPH07311349A (en) * 1994-05-16 1995-11-28 Olympus Optical Co Ltd Illumination optical system for illuminating the tip of endscope

Also Published As

Publication number Publication date
JPH09299326A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US6569088B2 (en) Endoscope apparatus
JP4727959B2 (en) Endoscope optical system
JP4054094B2 (en) Electronic endoscope
US9106848B2 (en) Optical unit and endoscope including the optical unit
JP5021849B2 (en) Illumination optics
JPH1123972A (en) Image-forming optical device
US10613314B2 (en) Oblique viewing endoscope and imaging system
JP4559149B2 (en) Illumination optical system, illumination device using illumination optical system, and observation system using illumination optical system or illumination device using illumination optical system
JPH10288742A (en) Endoscope device
JPH0363724B2 (en)
JP2000193894A (en) Illuminating optical system for endoscope
JP2001083400A (en) Image pickup optical system
JP3477314B2 (en) Endoscope lighting system
JP2001292956A (en) Lighting optical system for endoscope
JPH10123411A (en) Optical system for fiberscope
JP2010051606A (en) Illumination optical system and endoscope using the same
JP2004513386A (en) Apparatus for providing an image of a remote object accessible only through a finite diameter opening
US10111579B2 (en) Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope
JP3860265B2 (en) Endoscope objective optical system
JP3187064B2 (en) Side-view type endoscope for in-tube observation
JPH0510647B2 (en)
JP6501995B1 (en) Imaging optical system and endoscope
JPH1054945A (en) Endoscopic illuminating optical system
JP2899974B2 (en) Illumination optical system
JP2012125411A (en) Lightguide member and endoscope apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees