JP3462652B2 - Gas separation membrane and method for producing the same - Google Patents

Gas separation membrane and method for producing the same

Info

Publication number
JP3462652B2
JP3462652B2 JP34269995A JP34269995A JP3462652B2 JP 3462652 B2 JP3462652 B2 JP 3462652B2 JP 34269995 A JP34269995 A JP 34269995A JP 34269995 A JP34269995 A JP 34269995A JP 3462652 B2 JP3462652 B2 JP 3462652B2
Authority
JP
Japan
Prior art keywords
polyimide
amine
gas
general formula
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34269995A
Other languages
Japanese (ja)
Other versions
JPH09173801A (en
Inventor
健一 岡本
元昭 田鹿
曠世 松本
茂和 畑野
喜昌 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP34269995A priority Critical patent/JP3462652B2/en
Publication of JPH09173801A publication Critical patent/JPH09173801A/en
Application granted granted Critical
Publication of JP3462652B2 publication Critical patent/JP3462652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性、化学的安定
性、機械的特性に優れ、燃焼排ガスからの炭酸ガスや亜
硫酸ガスなどの酸性ガスを分離するのに好適なガス透過
性、分離性能を有するガス分離膜及びその製造方法に関
する。
TECHNICAL FIELD The present invention has excellent heat resistance, chemical stability, and mechanical properties, and is suitable for separating acidic gas such as carbon dioxide gas and sulfurous acid gas from combustion exhaust gas, and gas separation performance and separation performance. And a method for producing the same.

【0002】[0002]

【従来の技術】膜によるガス分離の原理は膜へのガス溶
解係数と、膜中のガスの拡散係数の積で透過速度が決ま
り、ガスの種類によるこの透過速度の差で分離すること
ができる。従来、ガス分離膜として、非常に多くの高分
子膜が検討されている。それらの中で、水素とメタンの
ようにガス分子のサイズが異なる場合には、高分子膜の
充填が密で自由容積が小さいポリイミド膜が最も高い分
離性能を有し、既に実用化されている。しかしCO2
2 、CO2 /CH4 のように分子サイズの似たガスの
分離は透過速度が低すぎるため、様々な検討が行われて
きた。一つの方向は嵩高い基を導入したり、共重合体に
する方法が検討されており、特開昭63−111921
号公報に2,2−ビス(3,4−ジカルボキシフェニ
ル)ヘキサフルオロプロパンの酸無水物(6FDA)と
3,4,3′,4′−ベンゾフェノンテトラカルボン酸
二無水物(BTDA)をトリメチルフェニレンジアミン
(TrMPD)と共重合したポリイミド膜があり、ま
た、極端にバルキーなフルオレン基を持つカルド型ポリ
イミド膜も検討され、透過性の改善は得られたものの、
分離係数30〜50、透過速度10〜100Barre
rで実用性はなお低かった。
2. Description of the Related Art The principle of gas separation by a membrane is that the permeation rate is determined by the product of the gas solubility coefficient in the membrane and the diffusion coefficient of the gas in the membrane, and the gas can be separated by the difference in the permeation rate depending on the type of gas. . Conventionally, a great number of polymer membranes have been studied as gas separation membranes. Among them, when the size of gas molecules such as hydrogen and methane are different, the polyimide membrane with dense packing and small free volume has the highest separation performance and is already in practical use. . But CO 2 /
Separation of gases having similar molecular sizes such as N 2 and CO 2 / CH 4 has a too low permeation rate, and therefore various studies have been conducted. In one direction, a method of introducing a bulky group or forming a copolymer has been investigated, and it is disclosed in JP-A-63-111921.
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane acid anhydride (6FDA) and 3,4,3 ', 4'-benzophenonetetracarboxylic dianhydride (BTDA) as trimethyl. There is a polyimide film copolymerized with phenylenediamine (TrMPD), and a cardo type polyimide film having an extremely bulky fluorene group has also been investigated, and although improved permeability was obtained,
Separation factor 30-50, Transmission rate 10-100 Barre
At r, the practicability was still low.

【0003】もう一つの方向は、炭酸ガスに親和性の高
い液体を含浸させたいわゆるキャリヤー膜があり、分離
係数1000以上が初期値として得られているが、耐久
性がなく実用性に乏しい。更に高分子膜自体に炭酸ガス
に対する親和性を有する官能基を導入し、炭酸ガスの選
択透過性を高める試みも行われている。特開平6−71
148号公報には、ポリエ−テルセグメントを持つジア
ミンの共重合ポリイミド膜が比較的高いCO2 /N2
離性を示すことが記載されているし、アミノ基含有の天
然高分子のキトサンやアミノ基含有モノマーを重合して
得たガラス質高分子膜も検討されているが、いずれも透
過性が低く実用的ではなかった。
In the other direction, there is a so-called carrier film impregnated with a liquid having a high affinity for carbon dioxide, and a separation coefficient of 1000 or more is obtained as an initial value, but it is not durable and is not practical. Further, attempts have been made to introduce a functional group having an affinity for carbon dioxide into the polymer membrane itself to enhance the selective permeability of carbon dioxide. JP-A-6-71
Japanese Patent Publication No. 148 describes that a copolymerized polyimide membrane of a diamine having a polyether segment exhibits a relatively high CO 2 / N 2 separability, and chitosan and amino, which are natural polymers containing amino groups. Glassy polymer membranes obtained by polymerizing a group-containing monomer have also been studied, but all of them have low permeability and are not practical.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記従来技術
の実情に鑑み、CO2 /N2 、CO2 /CH4 、SO2
/空気、H2 S/空気のように分子サイズの似たガスに
ついても透過速度、分離係数が大きく、従来にない酸性
ガスの高い透過性と分離性を有するガス分離膜及びその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional state of the art, the present invention is CO 2 / N 2 , CO 2 / CH 4 , SO 2
Gas separation membrane having high permeation rate and separation coefficient even for gases with similar molecular size such as / air, H 2 S / air, and having unprecedented high permeability and separability of acid gas, and method for producing the same The purpose is to do.

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
する手段として、機械的特性及び熱的特性の優れた芳香
族ポリイミド骨格を有する高分子をベースとし、その中
のベンゼン環に分子配列の高密度パッキングを抑制し、
自由容積を大きく保ってガスの透過性を付与するアルキ
ル基を1個以上持たせた構造とし、更にこのアルキル基
に酸性ガスへの親和性のあるアミノ基を導入して、酸性
ガスの選択分離性能を改良した高分子を分離膜材に用い
ることにより、従来にない炭酸ガス等の酸性ガスの高い
透過性と分離性を有する分離膜を得るものである。
[Means for Solving the Problems] As a means for solving the above problems, the present invention is based on a polymer having an aromatic polyimide skeleton having excellent mechanical properties and thermal properties, in which the benzene ring has a molecular arrangement. Suppresses high-density packing of
Selective separation of acidic gas by adopting a structure that has one or more alkyl groups that give a large free volume and gas permeability, and further introduces an amino group having an affinity for acidic gas into this alkyl group. By using a polymer having improved performance for a separation membrane material, a separation membrane having a high permeability and separation property of an acid gas such as carbon dioxide gas, which has never been obtained, is obtained.

【0006】通常の芳香族ポリイミドは高分子鎖の充填
が密なため、有機溶剤には不溶であり、ハロゲン原子や
アミノ基などの官能基を制御して導入することは困難で
あるが、ベンゼン環にアルキル基を1個以上有するポリ
イミドは高分子鎖の充填が疎となるために溶剤に可溶と
なり、種々の官能基の導入により化学修飾することが可
能となる。分離膜の場合、透過性と分離性をバランスさ
せて改良し、目標を達成することが可能となる。そこで
炭酸ガスを代表とする酸性ガスへの選択分離性を付与す
るためにアミノ基を官能基として導入する方法を種々検
討した結果、本発明に到達した。
Since ordinary aromatic polyimides are densely packed with polymer chains, they are insoluble in organic solvents and it is difficult to introduce functional groups such as halogen atoms and amino groups in a controlled manner. Polyimides having one or more alkyl groups in the ring become sparsely filled with polymer chains, so that they become soluble in a solvent and can be chemically modified by introducing various functional groups. In the case of a separation membrane, it is possible to improve the balance between permeability and separability and achieve the target. Therefore, as a result of various studies on a method of introducing an amino group as a functional group in order to impart selective separability to acidic gas represented by carbon dioxide, the present invention has been accomplished.

【0007】すなわち、本発明は次の(1)〜(4)の
構成を含むものである。 (1)一般式(A)で示される繰り返し単位を基本骨格
とする芳香族ポリイミドであって、一般式(A)中のア
ルキル基の水素原子の一部又は全部がアミン化合物残基
で置換されたアミン修飾ポリイミドからなることを特徴
とするガス分離膜。
That is, the present invention includes the following configurations (1) to (4). (1) An aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton, wherein a part or all of hydrogen atoms of an alkyl group in the general formula (A) are substituted with an amine compound residue. A gas separation membrane comprising an amine-modified polyimide.

【化2】 式(A)中X及びYは次の意味を表す。 X:芳香族テトラカルボン酸化合物残基 Y:少なくとも1個のアルキル基を置換基として有する
芳香族ジアミン化合物残基
[Chemical 2] In the formula (A), X and Y have the following meanings. X: aromatic tetracarboxylic acid compound residue Y: aromatic diamine compound residue having at least one alkyl group as a substituent

【0008】(2)一般式(A)で示される繰り返し単
位を基本骨格とする芳香族ポリイミドであって、一般式
(A)中のアルキル基の水素原子の一部又は全部がアミ
ン化合物残基で置換され、前記アミン化合物残基の一部
又は全部が他の基本骨格との間で架橋構造を形成してい
るアミン修飾ポリイミドからなることを特徴とするガス
分離膜。
(2) An aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton, wherein some or all of the hydrogen atoms of the alkyl group in the general formula (A) are amine compound residues. The gas separation membrane is characterized in that it is substituted with, and a part or all of the amine compound residue is composed of an amine-modified polyimide forming a crosslinked structure with another basic skeleton.

【0009】(3)一般式(A)で示される繰り返し単
位を基本骨格とする芳香族ポリイミドの前駆体であるポ
リアミド酸に臭素化剤を作用させてアルキル基の一部に
臭素を導入し、得られる臭素化ポリアミド酸をイミド化
するか、あるいは一般式(A)で示される繰り返し単位
を基本骨格とする芳香族ポリイミドに臭素化剤を作用さ
せてアルキル基の一部に臭素を導入して得られる臭素化
ポリイミドに、アミン化合物を反応させて一般式(A)
中のアルキル基の水素原子の一部がアミン化合物残基で
置換されたアミン修飾ポリイミドとし、前記臭素化ポリ
アミド酸、臭素化前のポリイミド、臭素化ポリイミド又
はアミン修飾ポリイミドの段階で製膜することを特徴と
するガス分離膜の製造方法。
(3) A brominating agent is caused to act on a polyamic acid which is a precursor of an aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton to introduce bromine into a part of an alkyl group, The obtained brominated polyamic acid is imidized, or a brominating agent is caused to act on an aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton to introduce bromine into a part of an alkyl group. The obtained brominated polyimide is reacted with an amine compound to give a compound of the general formula (A)
An amine-modified polyimide in which some of the hydrogen atoms of the alkyl groups in the are substituted with an amine compound residue, and a film is formed at the stage of the brominated polyamic acid, the polyimide before bromination, the brominated polyimide, or the amine-modified polyimide. A method for producing a gas separation membrane, comprising:

【0010】(4)前記(3)のガス分離膜の製造方法
において、一部臭素が残留したアミン修飾ポリイミドの
形で製膜し、さらにアミン化合物を反応させて架橋させ
ることを特徴とするガス分離膜の製造方法。
(4) In the method for producing a gas separation membrane according to the above (3), a film is produced in the form of an amine-modified polyimide in which a part of bromine remains, and the amine compound is further reacted to crosslink the gas. Method for manufacturing separation membrane.

【0011】[0011]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0012】本発明において、前記一般式(A)の繰り
返し単位を有する芳香族ポリイミドは、一般式(B)で
表される芳香族テトラカルボン酸無水物と、一般式
(C)で表される少なくとも1個のアルキル基を有する
芳香族ジアミン化合物から合成される。なお、芳香族テ
トラカルボン酸無水物の代わりに芳香族テトラカルボン
酸エステル化合物を使用することもできる。
In the present invention, the aromatic polyimide having the repeating unit represented by the general formula (A) is represented by the aromatic tetracarboxylic acid anhydride represented by the general formula (B) and the general formula (C). It is synthesized from an aromatic diamine compound having at least one alkyl group. Note that an aromatic tetracarboxylic acid ester compound can be used instead of the aromatic tetracarboxylic acid anhydride.

【化3】 式(B)及び(C)中、X及びYは前記と同じ意味を表
す。また、本発明における芳香族ポリイミドの重合度
(繰り返し単位の数)は40以上、好ましくは60以上
である。
[Chemical 3] In formulas (B) and (C), X and Y have the same meanings as described above. The degree of polymerization (the number of repeating units) of the aromatic polyimide in the present invention is 40 or more, preferably 60 or more.

【0013】本発明に係る芳香族ポリイミドの構成要素
である一般式(B)の芳香族テトラカルボン酸無水物の
例としては、3,4,3’,4’−ビフェニルテトラカ
ルボン酸無水物(BPDA)、1,2,4,5−ベンゼ
ンテトラカルボン酸二無水物(PM)のような全芳香族
化合物;2,2−ビス(3,4−ジカルボキシフェニ
ル)ヘキサフルオロプロパンの酸無水物(6FDA)の
ようなジフェニルアルカン化合物;ビス(3、4−ジカ
ルボキシフェニル)スルホンの酸無水物などのジフェニ
ルスルホン類;3,4,3’,4’−ベンゾフェノンテ
トラカルボン酸二無水物(BTDA)のようなジフェニ
ルケトン類;ビス(ジカルボキシフェニル)エ−テルの
酸無水物などのジフェニルエ−テル類などを挙げること
ができる。これらの中でもBPDA、6FDAが好適で
ある。これらの芳香族テトラカルボン酸無水物は一種類
でも、また複種類併用されていてもよく、また置換基を
有するものでもよい。
As an example of the aromatic tetracarboxylic acid anhydride of the general formula (B) which is a constituent element of the aromatic polyimide according to the present invention, 3,4,3 ', 4'-biphenyltetracarboxylic acid anhydride ( BPDA), wholly aromatic compounds such as 1,2,4,5-benzenetetracarboxylic dianhydride (PM); 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane acid anhydride A diphenylalkane compound such as (6FDA); a diphenylsulfone such as an acid anhydride of bis (3,4-dicarboxyphenyl) sulfone; 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride (BTDA) A) diphenyl ketones; bis (dicarboxyphenyl) ether acid anhydrides and the like diphenyl ethers. Among these, BPDA and 6FDA are preferable. These aromatic tetracarboxylic acid anhydrides may be used alone or in combination of two or more, and may have a substituent.

【0014】本発明に係る芳香族ポリイミドのもう一つ
の構成要素である一般式(C)の少なくとも1個のアル
キル基を有する芳香族ジアミン化合物としてはベンゼン
環を1個又は2個以上有し、それらのベンゼン環にメチ
ル基、エチル基、イソプロピル基などのアルキル基又は
これらのアルキルエーテル基、アルキルケトン基を1個
以上、好ましくは2〜4個有する芳香族ジアミン化合物
が使用される。また、これらのアルキル基にハロゲン原
子、OH基若しくはCN基等の官能基が置換されていて
もよい。また、一般式(C)のアルキル基を有する芳香
族ジアミン化合物としては、上記ベンゼン環の代わりに
ナフタレン環、アントラセン環、などの多芳香族環、ピ
リジン環、ピラジン環、キノリン環、ベンゾチアゾール
環などの異節芳香環を有するものであってもよく、さら
に、2個のベンゼン環を直接もしくはアルキレン基、エ
ーテル基あるいはスルホン基で結合したものであっても
よい。
The aromatic diamine compound having at least one alkyl group of the general formula (C), which is another constituent element of the aromatic polyimide according to the present invention, has one or more benzene rings, An aromatic diamine compound having an alkyl group such as a methyl group, an ethyl group or an isopropyl group or an alkyl ether group or alkylketone group thereof, preferably 2 to 4 on the benzene ring thereof is used. Further, a functional group such as a halogen atom, an OH group or a CN group may be substituted on these alkyl groups. As the aromatic diamine compound having an alkyl group of the general formula (C), a polyaromatic ring such as a naphthalene ring or anthracene ring, a pyridine ring, a pyrazine ring, a quinoline ring or a benzothiazole ring is used instead of the benzene ring. And the like, and may have two benzene rings bonded directly or with an alkylene group, an ether group or a sulfone group.

【0015】具体的には、例えば2,4,6−トリメチ
ル−1,3−フェニレンジアミン(TrMPD)、2,
3,5,6−テトラメチル−1,4−フェニレンジアミ
ン(TeMPD)、2,5−ジメチル−1,4−フェニ
レンジアミン(DMPD)、3,5,3′,5′−テト
ラメチルベンジジン、2,6,2′,6′−テトラメチ
ルベンジジン、2,2′−ジメチルベンジジン、3,
3′−ジメチルベンジジン、4,4′−ジアミノ−3,
3′−ジエチルジフェニルエタン、4,4′−ジアミノ
−3,5,3′,5′−テトラエチルジフェニルエタン
等を挙げることができる。これらのアルキル置換芳香族
ジアミン化合物は一種類でも、また複数種併用されても
よく、またアルキル置換基を有さないその他の芳香族ジ
アミン化合物と併用されてもよい。
Specifically, for example, 2,4,6-trimethyl-1,3-phenylenediamine (TrMPD), 2,
3,5,6-Tetramethyl-1,4-phenylenediamine (TeMPD), 2,5-dimethyl-1,4-phenylenediamine (DMPD), 3,5,3 ', 5'-tetramethylbenzidine, 2 , 6,2 ', 6'-Tetramethylbenzidine, 2,2'-Dimethylbenzidine, 3,
3'-dimethylbenzidine, 4,4'-diamino-3,
Examples thereof include 3'-diethyldiphenylethane, 4,4'-diamino-3,5,3 ', 5'-tetraethyldiphenylethane and the like. These alkyl-substituted aromatic diamine compounds may be used alone or in combination of two or more kinds, or may be used in combination with other aromatic diamine compounds having no alkyl substituent.

【0016】前記の芳香族テトラカルボン酸化合物と少
なくとも1個のアルキル基を有する芳香族ジアミン化合
物から得られる芳香族ポリイミド中のベンゼン環に側鎖
として結合したアルキル基へのアミン化合物残基の導入
方法はいくつか考えられるが、安全確実に制御できる方
法は、先ず該ポリイミド又はその前駆体のアミド酸の段
階でアルキル基の水素原子の一部を臭素で置換してお
き、これにアミン化合物を反応させて脱臭化水素を行わ
せる方法である。
Introduction of an amine compound residue into an alkyl group bonded as a side chain to a benzene ring in an aromatic polyimide obtained from the aromatic tetracarboxylic acid compound and an aromatic diamine compound having at least one alkyl group. There are several possible methods, but the method that can be safely and reliably controlled is to first substitute some of the hydrogen atoms of the alkyl group with bromine at the stage of the amidic acid of the polyimide or its precursor, and then add an amine compound thereto. This is a method of reacting to perform dehydrobromination.

【0017】すなわち、先ず該ポリイミド又はその前駆
体のアミド酸を溶剤に溶解させ、これにN−ブロモコハ
ク酸無水物(NBS)、1,3−ジブロモ−5,5′−
ジメチルヒダントイン(DBMH)などのような臭素化
剤を反応させてアルキル基に臭素を適当な量導入し、製
膜、必要によりイミド化を行って臭素含有ポリイミド膜
とする。次いで、この膜にアンモニア、第1級アミン化
合物又は第2級アミン化合物の1種又は2種以上の混合
物の蒸気又は水溶液中で反応させ、目標とする炭酸ガス
透過性能及び分離性能を満足させる置換アミノ基側鎖構
造及び置換アミノ基量を有する膜に変えることができ
る。
That is, first, the amic acid of the polyimide or its precursor is dissolved in a solvent, and then N-bromosuccinic anhydride (NBS), 1,3-dibromo-5,5'- is added thereto.
A bromine-containing polyimide film is formed by reacting with a brominating agent such as dimethylhydantoin (DBMH) to introduce an appropriate amount of bromine into an alkyl group to form a film and, if necessary, imidization. Then, this membrane is reacted in a vapor or an aqueous solution of one or a mixture of one or more kinds of ammonia, a primary amine compound or a secondary amine compound, and a substitution for satisfying the target carbon dioxide gas permeation performance and separation performance. It can be changed to a film having an amino group side chain structure and a substituted amino group amount.

【0018】上記第1級アミン化合物又は第2級アミン
化合物には水酸基や第3級アミノ基等の官能基を持たせ
て炭酸ガス透過性能を更に向上させることができる。し
かし、一方これらの官能基や第1級アミンや第2級アミ
ンの炭化水素基の大きさが大きくなり過ぎると炭酸ガス
と窒素ガス、メタンガス等の他のガスとの分離性能が低
下するので、適当な鎖長のアルキレンジアミン、ジアル
キレントリアミン等の多官能アミノ化合物により架橋結
合を作り自由容積の拡張を抑制することにより、分離性
能をバランスさせて保持させることができる。
The primary amine compound or the secondary amine compound may be provided with a functional group such as a hydroxyl group or a tertiary amino group to further improve the carbon dioxide gas permeation performance. However, on the other hand, if the size of these functional groups or the hydrocarbon groups of primary amine and secondary amine becomes too large, the separation performance between carbon dioxide gas and other gases such as nitrogen gas and methane gas will decrease, Separation performance can be balanced and maintained by forming crosslinks with a polyfunctional amino compound such as alkylenediamine or dialkylenetriamine having an appropriate chain length to suppress expansion of free volume.

【0019】本発明において、ポリイミド骨格のアルキ
ル基に臭素を導入した側鎖ブロムアルキル基と反応させ
て脱臭化水素によりアミノ残基側鎖を有するポリイミド
に誘導するために用いられるアミン化合物は、アミノ基
を1個以上有する脂肪族1級又は2級アミン化合物であ
る。脂肪族アミン化合物(ここではアルキレン基に結合
したアミノ基を有する化合物をいう)として具体的には
メチルアミン、エチルアミン、ベンジルアミン、ジメチ
ルアミン、エタノールアミン、ジエタノールアミン(D
EA)等のアルキル基又は官能基置換アルキルアミン
類;モルホリン(M)、ピペラジン(PD)などの脂環
式アミン;エチレンジアミン(EDA)、プロピレンジ
アミン(PDA)等のアルキレンジアミン類;メタキシ
レンジアミン(MXD)、パラキシレンジアミン(PX
D)等のアラルキレンジアミン類;ビス(3−アミノプ
ロピル)−ポリエチレノキシド(BAPPEO)などの
ポリエーテルジアミン類;ジエチレントリアミン(DE
TA)、トリエチレンテトラミン(TETA)、ポリエ
チレンイミン(PEI)などのポリアミン類が挙げられ
る。これらの脂肪族アミン化合物は1種類でもまた複数
併用されてもよい。
In the present invention, an amine compound used for reacting with a side chain bromine alkyl group having bromine introduced into an alkyl group of a polyimide skeleton to induce a polyimide having an amino residue side chain by dehydrobromination is an amino compound. It is an aliphatic primary or secondary amine compound having one or more groups. Specific examples of the aliphatic amine compound (here, a compound having an amino group bonded to an alkylene group) include methylamine, ethylamine, benzylamine, dimethylamine, ethanolamine, diethanolamine (D
Alkyl group or functional group-substituted alkylamines such as EA); alicyclic amines such as morpholine (M) and piperazine (PD); alkylenediamines such as ethylenediamine (EDA) and propylenediamine (PDA); metaxylenediamine ( MXD), para-xylene diamine (PX
D) and the like aralkylene diamines; bis (3-aminopropyl) -polyethylene oxide (BAPPEO) and other polyether diamines; diethylenetriamine (DE)
TA), triethylenetetramine (TETA), polyethyleneimine (PEI), and other polyamines. These aliphatic amine compounds may be used alone or in combination of two or more.

【0020】本発明のアミン修飾ポリイミド分離膜の製
造方法においては、前述のようにブロム誘導体ポリイミ
ド溶液から流延して製膜したのち、アミノ化合物と反応
させてもよく、またブロム誘導体溶液にアミノ化合物を
反応させてアミン誘導ポリイミドまで修飾した後、流延
して製膜させてもよい。製膜法はこれらのポリイミド溶
液をドープ液として使用し、乾式製膜法あるいは湿式製
膜法により成膜できる。ブロム誘導体から製膜した場合
にはアミン修飾条件の制御により、膜厚方向にアミノ残
基濃度に分布を有する傾斜機能膜とすることができる。
またブロムを残した状態で製膜後、さらにアンモニアや
ジアミン等で処理することにより、膜をアミン架橋する
こともできる。製膜できる膜形態としてはドープ溶液の
濃度と温度を調節して粘度を制御することにより、平膜
状にも中空糸膜状にも製膜することが可能である。
In the method for producing an amine-modified polyimide separation membrane of the present invention, as described above, the bromine derivative polyimide solution may be cast to form a membrane and then reacted with an amino compound. The compound may be reacted to modify the amine-derived polyimide and then cast to form a film. In the film forming method, these polyimide solutions are used as a dope solution to form a film by a dry film forming method or a wet film forming method. When a film is formed from a bromine derivative, a functionally gradient film having a distribution in the amino residue concentration in the film thickness direction can be obtained by controlling the amine modification conditions.
Further, the film can be amine-crosslinked by further treating with ammonia, diamine or the like after forming the film with the bromine left behind. As a film form capable of forming a film, it is possible to form a flat film form or a hollow fiber film form by adjusting the concentration and temperature of the dope solution to control the viscosity.

【0021】本発明のアミン修飾ポリイミド分離膜の好
適な製造法の一例を、臭素化ポリイミド溶液から製膜し
て製造する場合と、アミン修飾ポリイミド溶液から製膜
して製造する場合とについて、具体的に示す。
An example of a suitable method for producing the amine-modified polyimide separation membrane of the present invention will be described with respect to the case of producing a film from a brominated polyimide solution and the case of producing a film from an amine-modified polyimide solution. To indicate.

【0022】〔臭素化ポリイミド溶液からの製造法〕芳
香族テトラカルボン酸二無水物と等モル量の芳香族ジア
ミンとをN,N−ジメチルアセトアミド(DMAc)な
どの有機極性溶媒中で室温で重合してポリアミド酸と
し、次いで、無水酢酸とトリエチルアミンを用いてイミ
ド化反応を行ってポリイミドを製造する。得られるポリ
イミドを有機溶媒、好ましくはハロゲン化アルキル系溶
媒中で、N−ブロモコハク酸イミド(NBS)、1,3
−ジブロモ−5,5′−ジメチルヒダントイン(DBM
H)などの臭素化剤と可視光照射下で反応させて、側鎖
アルキル基が臭素化されたポリイミドを製造する。臭素
化率は、ポリマー繰り返し単位当たり0.1〜3個、好
ましくは0.5〜2個のBr原子を含むように調整す
る。この臭素化ポリイミドを塩化メチレンやN−メチル
ピロリドン(NMP)等の有機極性溶媒に溶解し、ポリ
マー濃度3〜30重量%の製膜用ドープ液とする。これ
を10〜100℃の温度の基材上に塗布又は流延し、溶
媒を蒸発除去して薄膜を得る。次いで、これをジエタノ
ールアミン(DEA)などの0.1〜10%のアミン水
溶液又はアコール溶液に5〜80℃で10秒〜10時間
浸漬してアミン修飾し、次にこれを80〜200℃で乾
燥して、目的のアミン修飾ポリイミド分離膜を得る。
[Production Method from Brominated Polyimide Solution] Aromatic tetracarboxylic dianhydride and an equimolar amount of aromatic diamine are polymerized in an organic polar solvent such as N, N-dimethylacetamide (DMAc) at room temperature. To obtain a polyamic acid, and then an imidization reaction is performed using acetic anhydride and triethylamine to produce a polyimide. The obtained polyimide was treated with N-bromosuccinimide (NBS), 1,3 in an organic solvent, preferably an alkyl halide solvent.
-Dibromo-5,5'-dimethylhydantoin (DBM
H) and other brominating agents are reacted under visible light irradiation to produce a polyimide in which side chain alkyl groups are brominated. The bromination rate is adjusted to contain 0.1 to 3, preferably 0.5 to 2 Br atoms per polymer repeat unit. This brominated polyimide is dissolved in an organic polar solvent such as methylene chloride or N-methylpyrrolidone (NMP) to obtain a dope solution for film formation having a polymer concentration of 3 to 30% by weight. This is applied or cast on a base material at a temperature of 10 to 100 ° C., and the solvent is removed by evaporation to obtain a thin film. Then, this is immersed in a 0.1 to 10% amine aqueous solution such as diethanolamine (DEA) or an acol solution at 5 to 80 ° C for 10 seconds to 10 hours for amine modification, and then dried at 80 to 200 ° C. Thus, the intended amine-modified polyimide separation membrane is obtained.

【0023】〔アミン修飾ポリイミド溶液からの製造
法〕前記の方法で製造された臭素化ポリイミドをジエタ
ノールアミン、モルホリン等の第二級アミンとNMP等
の有機溶媒中で5〜80℃で反応させてアミン修飾ポリ
イミドを得る。アミン修飾ポリイミドを塩化メチレンや
NMP等の有機極性溶媒に溶解し、ポリマー濃度3〜3
0重量%の製膜用ドープ液とする。この液を10〜10
0℃の温度の基材上に塗布又は流延し、溶媒を蒸発除去
して薄膜を得る。次にこれを80〜200℃で乾燥し
て、目的のアミン修飾ポリイミド分離膜を得る。また、
臭素化ポリイミドとアミンとの反応を制御して、ブロム
を一部未反応のままで残して置けば、製膜後、膜をアン
モニア又はエチレンジアミン、ジエチレンテトラミン等
のアミノ基を2個以上有するアミン化合物の0.1〜1
0%の水溶液又はアルコール溶液に5〜80℃で10秒
〜10時間浸漬して、膜をアミン架橋することができ
る。なお、はじめからアンモニアあるいはアミノ基を2
個以上有するアミン化合物を使用することにより1段で
架橋構造を形成させることもできる。
[Production Method from Amine-Modified Polyimide Solution] The brominated polyimide produced by the above method is reacted with a secondary amine such as diethanolamine or morpholine in an organic solvent such as NMP at 5 to 80 ° C. Obtain a modified polyimide. Amine-modified polyimide is dissolved in an organic polar solvent such as methylene chloride or NMP to give a polymer concentration of 3 to 3
The dope solution for film formation is 0% by weight. 10 to 10
A thin film is obtained by coating or casting on a base material at a temperature of 0 ° C. and removing the solvent by evaporation. Next, this is dried at 80 to 200 ° C. to obtain the target amine-modified polyimide separation membrane. Also,
Amine compound having two or more amino groups such as ammonia or ethylenediamine, diethylenetetramine, etc. after forming a film by controlling the reaction between brominated polyimide and amine and leaving some of the bromine unreacted. 0.1 to 1
The membrane can be amine cross-linked by immersion in 0% aqueous solution or alcohol solution at 5-80 ° C. for 10 seconds to 10 hours. In addition, 2 or more ammonia or amino groups from the beginning
It is also possible to form a crosslinked structure in one step by using an amine compound having one or more.

【0024】[0024]

【実施例】次に本発明の実施例及び比較例を示し、本発
明の効果を実証する。各例において、純ガスでの気体透
過係数は、有効面積20cm2 の透過セルを用い、高真
空タイムラグ法により測定した。水素、酸素、窒素、メ
タン、炭酸ガスについて、供給ガス圧2atm、温度2
5℃又は35℃で測定し、透過係数はBarrer=1
- 10cm3 (STP)cm/(cm2 s cmHg)
単位で示した。また、分離係数は各ガスの透過係数の比
で示した。
EXAMPLES Next, examples and comparative examples of the present invention will be shown to demonstrate the effects of the present invention. In each example, the gas permeation coefficient of pure gas was measured by a high vacuum time lag method using a permeation cell having an effective area of 20 cm 2 . Supply gas pressure 2 atm and temperature 2 for hydrogen, oxygen, nitrogen, methane and carbon dioxide
Measured at 5 ° C or 35 ° C, transmission coefficient Barrer = 1
0 - 10 cm 3 (STP) cm / (cm 2 s cmHg)
Shown in units. The separation coefficient is shown by the ratio of the permeation coefficient of each gas.

【0025】炭酸ガス/窒素系分離での透過係数は、炭
酸ガス18%、窒素82%の混合ガスを供給ガスとし、
図1に示した透過測定装置を用いて、ガスクロマトグラ
フ法により測定した。有効膜面積20cm2 のセルに膜
を設置し、膜の上流側に1.1〜5atmの混合ガスを
供給し、膜の下流側にヘリウムをスイープガスとして1
atmで流し、透過ガスをガスクロマトグラフのガスサ
ンプラーに導き、ガスクロマトグラフ分析した。測定は
25℃又は35℃で、乾燥状態及び供給ガス及びスイー
プガスを加湿して、水蒸気共存状態で行った。各ガスの
透過係数はBarrer単位で、分離係数は透過係数比
で示した。図1においてAは供給ガス、Bは流量調節バ
ルブ、Cは加湿器、Dは恒温槽、Eはスイープガス、F
は除湿器、Gは透過セル、Hは圧力計、Iは湿度計、J
は六方コックである。
The permeability coefficient in the carbon dioxide / nitrogen system separation is as follows: a mixed gas of carbon dioxide gas 18% and nitrogen 82% is used as a supply gas,
The measurement was performed by gas chromatography using the permeation measuring device shown in FIG. The membrane is installed in a cell with an effective membrane area of 20 cm 2 , a mixed gas of 1.1 to 5 atm is supplied on the upstream side of the membrane, and helium is used as a sweep gas on the downstream side of the membrane.
Flowing at atm, the permeated gas was introduced into a gas sampler of a gas chromatograph, and gas chromatograph analysis was performed. The measurement was performed at 25 ° C. or 35 ° C. in a dry state, humidifying the supply gas and the sweep gas, and coexisting with water vapor. The permeation coefficient of each gas is shown by Barrer unit, and the separation coefficient is shown by the permeation coefficient ratio. In FIG. 1, A is a supply gas, B is a flow control valve, C is a humidifier, D is a constant temperature bath, E is a sweep gas, and F is a gas.
Is a dehumidifier, G is a permeation cell, H is a pressure gauge, I is a hygrometer, J
Is a six-way cook.

【0026】(実施例1)BPDA−TrMPDポリイ
ミド又は6FDA−TrMPDポリイミドの0.5重量
%のポリイミド溶液にN−ブロモコハク酸イミド(NB
S)を添加し、光照射することにより臭素化した。臭素
化ポリイミドはプロトンNMRで分析しブロモメチレン
基のピーク強度とメチル基のそれから臭素化率を求め
た。なお、ここでの臭素化率はポリマー繰り返し単位当
たり、臭素1原子が置換したものを100%として示
す。
(Example 1) N-bromosuccinimide (NB) was added to a 0.5 wt% polyimide solution of BPDA-TrMPD polyimide or 6FDA-TrMPD polyimide.
S) was added and the mixture was brominated by irradiation with light. The brominated polyimide was analyzed by proton NMR to obtain the bromination rate from the peak intensity of the bromomethylene group and that of the methyl group. In addition, the bromination rate here is 100% when one bromine atom is substituted per polymer repeating unit.

【0027】得られた臭素化ポリイミドをキャスト製膜
し、厚さ20〜40μmの膜を得た。この膜を各種アミ
ンの1重量%水溶液に1〜3時間浸漬することによって
アミン修飾ポリイミド膜を得た。臭素化したBPDA−
TrMPDポリイミドにジエタノールアミン(DEA)
を反応させたものをBPDA−TrMPD(Br0.5
0/DEA)、ジエチレントリアミン(DETA)を反
応させて架橋したものをBPDA−TrMPD(Br
0.50/DETA)、臭素化した6FDA−TrMP
Dポリイミドにポリエチレンイミン(PEI)を反応さ
せて架橋したものを6FDA−TrMPD(Br0.2
0/PEI)で表示する。ここで(Br0.50)は臭
素化率50%であることを示す。作成したポリイミド膜
の密度、純ガス透過係数、透過係数比を表1に示す。ま
た、CO2 /N2 の混合ガスにおける透過測定結果を表
2及び図2に示す。
The obtained brominated polyimide was cast to form a film having a thickness of 20 to 40 μm. An amine-modified polyimide film was obtained by immersing this film in a 1 wt% aqueous solution of various amines for 1 to 3 hours. Brominated BPDA-
Diethanolamine (DEA) on TrMPD polyimide
Was reacted with BPDA-TrMPD (Br0.5
0 / DEA) and diethylenetriamine (DETA) were reacted and crosslinked to obtain BPDA-TrMPD (Br
0.50 / DETA), brominated 6FDA-TrMP
D polyimide was reacted with polyethyleneimine (PEI) and crosslinked to obtain 6FDA-TrMPD (Br0.2
It is displayed as 0 / PEI). Here, (Br 0.50) indicates that the bromination rate is 50%. Table 1 shows the density, pure gas permeation coefficient, and permeation coefficient ratio of the prepared polyimide film. Table 2 and FIG. 2 show the results of permeation measurement in a mixed gas of CO 2 / N 2 .

【0028】[0028]

【表1】 測定条件 測定温度:35℃, 供給圧力:2 atm *1) 10-10cm3(STP)cm/(cm2 s cmHg)[Table 1] Measurement conditions Measurement temperature: 35 ℃, Supply pressure: 2 atm * 1) 10 -10 cm 3 (STP) cm / (cm 2 s cmHg)

【0029】表1、表2及び図2の結果から次のことが
わかる。すなわち、乾燥ガスの測定においてアミン修飾
膜はカルド型ポリイミドと同程度の性能を示した。乾燥
ガスと水蒸気共存下での性能を比較した場合、アミン修
飾を行っていない膜1及び膜5に関しては透過係数は膜
1が約40%、膜5は約50%減少し、分離係数(透過
係数比)膜1が30%、膜5が15%増加した。透過係
数の減少は膜中の水とCO2 の競争吸着のためであり、
分離係数の増加は膜に収着した水の親和性がN 2 よりも
CO2 の方が高いためと考えられる。ポリイミドの成分
である酸無水物がBPDA系の膜1の方が6FDA系の
膜5よりも大きな透過の減少と分離の増加を示すのは、
トリフルオロメチル基を有する膜5の方が膜の疎水性が
大きいためである。アミン修飾膜3、4は水蒸気存在下
で透過係数は約50%に減少したが、分離係数が1.6
倍に増加しCO2 /N2 分離で高い性能を示すPEO含
有ポリイミドと同程度の性能を示した。この分離係数の
大きな増加は水が共存したことにより膜中のアミン基が
CO2 をキャリアー輸送しているためと考えられる。ま
た、アミン基を一つ持ったアミンで処理した膜3の方
が、三つ持った膜4よりも高い分離性能を示したのは、
アミン基だけでなく極性基OHも分離に寄与しているこ
とも考えられる。
From the results shown in Tables 1 and 2 and FIG.
Recognize. That is, amine modification in the measurement of dry gas
The film performed as well as the cardo type polyimide. Dry
When comparing the performance in the presence of gas and water vapor, amine modification
The permeation coefficient of the non-decorated membranes 1 and 5 is
1 decreased about 40%, and membrane 5 decreased about 50%.
Coefficient ratio) Membrane 1 increased by 30% and Membrane 5 increased by 15%. Transparency
The decrease in the number is due to the water and CO in the membrane.2Because of the competitive adsorption of
The increase in the separation factor is due to the affinity of water sorbed on the membrane for N 2than
CO2Is considered to be higher. Component of polyimide
The acid anhydride is BPDA-based membrane 1 is 6FDA-based
A greater decrease in permeation and an increase in separation than membrane 5 is
The membrane 5 having a trifluoromethyl group is more hydrophobic.
Because it is big. Amine modified films 3 and 4 are in the presence of water vapor
The transmission coefficient decreased to about 50%, but the separation coefficient was 1.6.
Doubled CO2/ N2Including PEO that shows high performance in separation
The performance was similar to that of polyimide. Of this separation factor
The large increase is due to the coexistence of water
CO2It is thought that this is because the carrier is transported. Well
Also, the membrane 3 treated with an amine having one amine group
However, the one that showed higher separation performance than the membrane 4 with three
Not only the amine group but also the polar group OH contributes to the separation.
You might also say that.

【0030】[0030]

【表2】 [Table 2]

【0031】(参考例1)BPDA−TrMPDポリイ
ミド1.17gを塩化メチレン150gに溶解し、これ
に1.68g(ポリマー繰り返し単位当たり2.2当
量)のN−ブロモコハク酸イミド(NBS)を加えて溶
かし、50Wタングステンランプで照射しながら還流下
で4時間反応させた。反応液をメタノール中に流下し、
ポリマーを沈殿させた。ポリマーをろ別後、塩化メチレ
ン−メタノールで2回再沈精製した。プロトンNMR分
析から、臭素化率は60%であった。この臭素化ポリイ
ミドの5%塩化メチレン溶液をガラス板上にキャスト
し、室温乾燥、次いで50℃で5時間真空乾燥して、約
30μmの膜厚の臭素化ポリイミド膜を得た。この膜の
純気体の透過性能の測定結果を表3に示す。
Reference Example 1 1.17 g of BPDA-TrMPD polyimide was dissolved in 150 g of methylene chloride, to which 1.68 g (2.2 equivalents per polymer repeating unit) of N-bromosuccinimide (NBS) was added. It was melted and reacted for 4 hours under reflux while irradiating with a 50 W tungsten lamp. Flow the reaction solution into methanol,
The polymer was precipitated. After the polymer was filtered off, it was reprecipitated and purified twice with methylene chloride-methanol. From the proton NMR analysis, the bromination rate was 60%. A 5% methylene chloride solution of this brominated polyimide was cast on a glass plate, dried at room temperature and then vacuum dried at 50 ° C. for 5 hours to obtain a brominated polyimide film having a thickness of about 30 μm. Table 3 shows the measurement results of the pure gas permeation performance of this membrane.

【0032】(実施例2)参考例1で得られた臭素化ポ
リイミド膜を、0.5重量%のジエタノールアミン(D
EA)水溶液に10時間浸漬した後、70℃で10時間
真空乾燥して、DEA修飾ポリイミド膜(BPDA−T
rMPD(Br0.60/DEA))を得た。この膜の
純気体の透過性能の測定結果を表3に、CO2 /N2
合ガスでの気体分離性能の測定結果を表4に示す。ま
た、この膜についてCO2 /N2 分離性能に対する共存
水蒸気の影響を調べた結果を図4に示す。
Example 2 The brominated polyimide film obtained in Reference Example 1 was mixed with 0.5% by weight of diethanolamine (D
EA) After being immersed in an aqueous solution for 10 hours, vacuum dried at 70 ° C. for 10 hours to obtain a DEA-modified polyimide film (BPDA-T).
rMPD (Br0.60 / DEA)) was obtained. Table 3 shows the measurement results of the pure gas permeation performance of this membrane, and Table 4 shows the measurement results of the gas separation performance of the CO 2 / N 2 mixed gas. Further, the results of examining the effect of coexisting steam on the CO 2 / N 2 separation performance of this membrane are shown in FIG.

【0033】(実施例3)参考例1で得られた臭素化ポ
リイミド膜を、0.5重量%のジエチレントリアミン
(DETA)水溶液に10時間浸漬した後、70℃で1
0時間真空乾燥して、DETA修飾ポリイミド膜(BP
DA−TrMPD(Br0.60/DETA))を得
た。この膜の純気体の透過性能の測定結果を表3に、C
2 /N2 混合ガスでの気体分離性能の測定結果を表4
に示す。
Example 3 The brominated polyimide film obtained in Reference Example 1 was dipped in a 0.5% by weight aqueous solution of diethylenetriamine (DETA) for 10 hours and then at 70 ° C. for 1 hour.
After vacuum drying for 0 hours, DETA-modified polyimide film (BP
DA-TrMPD (Br0.60 / DETA)) was obtained. The measurement results of the pure gas permeation performance of this membrane are shown in Table 3 and C
Table 4 shows the measurement results of the gas separation performance with the O 2 / N 2 mixed gas.
Shown in.

【0034】(実施例4)参考例1で得られた臭素化ポ
リイミド膜を、0.5重量%のモルホリン(M)水溶液
に10時間浸漬した後、50℃で10時間真空乾燥し
て、モルホリン修飾ポリイミド膜(BPDA−TrMP
D(Br0.60/M))を得た。この膜のCO2 /N
2 混合ガスでの気体分離性能の測定結果を表4に示す。
Example 4 The brominated polyimide film obtained in Reference Example 1 was immersed in a 0.5 wt% morpholine (M) aqueous solution for 10 hours, and then vacuum dried at 50 ° C. for 10 hours to obtain morpholine. Modified polyimide film (BPDA-TrMP
D (Br 0.60 / M)) was obtained. CO 2 / N of this film
Table 4 shows the measurement results of the gas separation performance with the two mixed gases.

【0035】(参考例2)BPDA−TrMPDポリイ
ミド1.00gを塩化メチレン150gに溶解し、これ
に1.23g(ポリマー繰り返し単位当たり3.5当
量)の1,3−ジブロモ−3,5−ジメチルヒダントイ
ン(DBMH)を加えて溶かし、50Wタングステンラ
ンプ照射しながら還流下で7時間反応させた。反応液を
メタノール中に流下し、ポリマーを沈殿させた。ポリマ
ーをろ別後、塩化メチレン−メタノールで2回再沈精製
した。プロトンNMR分析から、臭素化率は150%で
あった。この臭素化ポリイミドの5%塩化メチレン溶液
をガラス板上にキャストし、室温乾燥後70℃で10時
間真空乾燥して、約30μmの膜厚の臭素化ポリイミド
膜を得た。この膜の純気体の透過性能の測定結果を表3
に示す。
Reference Example 2 1.00 g of BPDA-TrMPD polyimide was dissolved in 150 g of methylene chloride, and 1.23 g (3.5 equivalents per polymer repeating unit) of 1,3-dibromo-3,5-dimethyl was dissolved in the solution. Hydantoin (DBMH) was added and dissolved, and the mixture was reacted for 7 hours under reflux while irradiating with a 50 W tungsten lamp. The reaction solution was poured into methanol to precipitate the polymer. After the polymer was filtered off, it was reprecipitated and purified twice with methylene chloride-methanol. From the proton NMR analysis, the bromination rate was 150%. A 5% methylene chloride solution of this brominated polyimide was cast on a glass plate, dried at room temperature and then vacuum dried at 70 ° C. for 10 hours to obtain a brominated polyimide film having a thickness of about 30 μm. Table 3 shows the measurement results of the pure gas permeation performance of this membrane.
Shown in.

【0036】(実施例5)参考例2で得られた臭素化ポ
リイミド膜を、0.5重量%のジエタノールアミン(D
EA)水溶液に10時間浸漬した後、70℃で10時間
真空乾燥して、DEA修飾ポリイミド膜(BPDA−T
rMPD(Br1.50/DEA))を得た。この膜の
純気体の透過性能の測定結果を表3に、CO2 /N2
合ガスでの気体分離性能の測定結果を表4に示す。
Example 5 The brominated polyimide film obtained in Reference Example 2 was mixed with 0.5% by weight of diethanolamine (D
EA) After being immersed in an aqueous solution for 10 hours, vacuum dried at 70 ° C. for 10 hours to obtain a DEA-modified polyimide film (BPDA-T).
rMPD (Br1.50 / DEA)) was obtained. Table 3 shows the measurement results of the pure gas permeation performance of this membrane, and Table 4 shows the measurement results of the gas separation performance of the CO 2 / N 2 mixed gas.

【0037】(実施例6)6FDA−TrMPDポリイ
ミド3.00gを塩化メチレン150gに溶解し、これ
に2.12g(ポリマー繰り返し単位当たり2.2当
量)のN−ブロモコハク酸イミド(NBS)を加えて溶
かし、50Wタングステンランプ照射しながら還流下で
5時間反応させた。反応液をメタノール中に流下し、ポ
リマーを沈殿させた。ポリマーをろ別回収後、塩化メチ
レン−メタノールで2回再沈精製した。プロトンNMR
分析から、臭素化率は130%であった。この臭素化ポ
リイミドの5%塩化メチレン溶液をガラス板上にキャス
トし、室温乾燥、次いで70℃で10時間真空乾燥し
て、約30μmの膜厚の臭素化ポリイミド膜(6FDA
−TrMPD(Br1.30))を得た。
Example 6 3.00 g of 6FDA-TrMPD polyimide was dissolved in 150 g of methylene chloride, to which 2.12 g (2.2 equivalents per polymer repeating unit) of N-bromosuccinimide (NBS) was added. It was melted and reacted for 5 hours under reflux while irradiating with a 50 W tungsten lamp. The reaction solution was poured into methanol to precipitate the polymer. After the polymer was collected by filtration, it was reprecipitated and purified twice with methylene chloride-methanol. Proton NMR
From the analysis, the bromination rate was 130%. A 5% methylene chloride solution of this brominated polyimide was cast on a glass plate, dried at room temperature, and then vacuum dried at 70 ° C. for 10 hours to obtain a brominated polyimide film (6FDA) having a thickness of about 30 μm.
-TrMPD (Br1.30)) was obtained.

【0038】この臭素化ポリイミド膜を、0.5重量%
のジエタノールアミン(DEA)水溶液に10時間浸漬
した後、70℃で10時間真空乾燥して、DEA修飾ポ
リイミド膜(6FDA−TrMPD(Br1.30/D
EA))を得た。この膜の純気体の透過性能の測定結果
を表3に、CO2 /N2 混合ガスでの気体分離性能の測
定結果を表4に示す。
0.5% by weight of this brominated polyimide film
Of the DEA-modified polyimide film (6FDA-TrMPD (Br1.30 / D) after being immersed in a diethanolamine (DEA) aqueous solution for 10 hours and then vacuum dried at 70 ° C. for 10 hours.
EA)) was obtained. Table 3 shows the measurement results of the pure gas permeation performance of this membrane, and Table 4 shows the measurement results of the gas separation performance of the CO 2 / N 2 mixed gas.

【0039】(比較例1〜4)ベースポリイミド樹脂B
PDA−TrMPD及び6FDA−TrMPD、また、
6FDAと2,7−ジアミノフルオレン(DAF)から
のポリイミド(6FDA−DAF)とポリエーテルスル
ホン(PSF)膜について純ガス及びCO2 /N2 混合
ガスでの気体透過性能を測定した。その結果をそれぞれ
表3及び表4に示す。
Comparative Examples 1 to 4 Base Polyimide Resin B
PDA-TrMPD and 6FDA-TrMPD,
The gas permeation performances of the polyimide (6FDA-DAF) from 6FDA and 2,7-diaminofluorene (DAF) and the polyethersulfone (PSF) membrane in pure gas and CO 2 / N 2 mixed gas were measured. The results are shown in Table 3 and Table 4, respectively.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】前記実施例2〜7、比較例1〜4の結果か
ら、本発明の分離膜は水素/メタン、酸素/窒素、炭酸
ガス/窒素、炭酸ガス/メタンなどのガス分離膜として
広く優れた分離性能を有し、特に炭酸ガス/窒素混合ガ
スの分離性能は図3に示すとおり、従来のポリイミド膜
に対し40〜50%高い分離性能が得られ、さらに湿度
が高い条件では80〜90%高い分離性能が得られてい
ることがわかる。
From the results of Examples 2 to 7 and Comparative Examples 1 to 4, the separation membrane of the present invention is widely excellent as a gas separation membrane for hydrogen / methane, oxygen / nitrogen, carbon dioxide / nitrogen, carbon dioxide / methane and the like. As shown in FIG. 3, the separation performance of carbon dioxide gas / nitrogen mixed gas is 40 to 50% higher than that of the conventional polyimide membrane, and the separation performance is 80 to 90 under high humidity conditions. It can be seen that a high separation performance is obtained.

【0043】[0043]

【発明の効果】本発明のガス分離膜は耐熱性、化学的安
定性、機械的特性に優れ、しかも水素/メタン、酸素/
窒素、炭酸ガス/窒素、炭酸ガス/メタンなどのガス分
離性能が高く、燃焼排ガスからの炭酸ガスや亜硫酸ガス
などの酸性ガスを分離するのに好適なガス透過性、分離
性能を有している。さらに、燃焼ガスの(CO2 、SO
2 )/(N2 、O2 )の分離特性に加えてCO2 /CH
4 分離性能にも優れているが、同様に極性ガスであるH
2 Sの分離にも適していると予想され、天然ガス及び嫌
気性醗酵ガスの燃料としての品質改善ににも適用が見込
まれる。
The gas separation membrane of the present invention is excellent in heat resistance, chemical stability and mechanical properties, and also hydrogen / methane, oxygen /
It has high gas separation performance for nitrogen, carbon dioxide / nitrogen, carbon dioxide / methane, etc., and has suitable gas permeability and separation performance for separating acidic gases such as carbon dioxide and sulfur dioxide from combustion exhaust gas. . In addition, the combustion gas (CO 2 , SO
2 ) / (N 2 , O 2 ) separation characteristics and CO 2 / CH
4 Although it has excellent separation performance, H, which is also a polar gas,
It is expected to be suitable for the separation of 2 S, and is expected to be applied to improve the quality of natural gas and anaerobic fermentation gas as fuel.

【0044】火力発電所等の大型ボイラの燃焼ガスを対
象に考えると相対湿度30〜40%の水蒸気の共存が予
想されるが、図4に実施例2のデータを示すとおり炭酸
ガスの透過速度が50Barrer以上、炭酸ガス/窒
素の分離係数が60以上の性能は排ガス中の炭酸ガスの
分離回収を目的とした分離膜として実用的に重要な意義
があると考えられる。また、SO2 ガスは炭酸ガス以上
に酸性の高いガスであるから、炭酸ガス同様あるいはさ
らに高い透過性能及び分離性能が期待される。また、本
発明のガス分離膜の製造方法によれば、前記性能を有す
るガス分離膜を容易に製造することができる。
Considering the combustion gas of a large-scale boiler such as a thermal power plant, it is expected that water vapor having a relative humidity of 30 to 40% will coexist, but as shown in the data of Example 2 in FIG. It is considered that the performance of 50 Barrer or more and the carbon dioxide / nitrogen separation coefficient of 60 or more has practically important significance as a separation membrane for the purpose of separating and recovering carbon dioxide in exhaust gas. Further, since SO 2 gas is a gas having a higher acidity than carbon dioxide gas, it is expected to have the same or even higher permeation performance and separation performance as carbon dioxide gas. Further, according to the method for producing a gas separation membrane of the present invention, the gas separation membrane having the above-mentioned performance can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用した混合ガス及び水蒸気共存下で
のガス透過測定装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a gas permeation measuring device used in Examples in the presence of mixed gas and water vapor.

【図2】実施例1で作製した分離膜の炭酸ガス透過係数
と炭酸ガス/窒素ガス分離係数の比較図。
FIG. 2 is a comparison diagram of carbon dioxide permeation coefficient and carbon dioxide / nitrogen gas separation coefficient of the separation membrane manufactured in Example 1.

【図3】実施例2〜7、比較例1〜4の分離膜の炭酸ガ
ス透過係数と炭酸ガス/窒素ガス分離係数の比較図。
FIG. 3 is a comparison diagram of carbon dioxide permeation coefficient and carbon dioxide / nitrogen gas separation coefficient of the separation membranes of Examples 2 to 7 and Comparative Examples 1 to 4.

【図4】実施例2の分離膜の炭酸ガス透過係数と炭酸ガ
ス/窒素ガス分離係数の湿度依存性を示す図。
FIG. 4 is a diagram showing the humidity dependence of the carbon dioxide permeability coefficient and the carbon dioxide / nitrogen gas separation coefficient of the separation membrane of Example 2.

【符号の説明】[Explanation of symbols]

A 供給ガス B 流量調節バルブ C
加湿器 D 恒温槽 E スイープガス F
除湿器 G 透過セル H 圧力計 I
湿度計 J 六方コック
A Supply gas B Flow rate control valve C
Humidifier D Constant temperature bath E Sweep gas F
Dehumidifier G Permeation cell H Pressure gauge I
Hygrometer J Rokuhoko

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 曠世 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (72)発明者 畑野 茂和 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (72)発明者 安藤 喜昌 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社 神戸造船所 内 (56)参考文献 特開 平3−106426(JP,A) 特開 昭63−111921(JP,A) 特開 平6−71148(JP,A) 特開 平3−21336(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 71/82 B01D 53/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Matsumoto Hikiyo 1-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Shigekazu Hatano 2-chome, Niihama, Arai-cho, Takasago-shi, Hyogo No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Yoshimasa Ando 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) Reference Japanese Patent Laid-Open No. 3- 106426 (JP, A) JP 63-111921 (JP, A) JP 6-71148 (JP, A) JP 3-21336 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 61/00-71/82 B01D 53/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式(A)で示される繰り返し単位を
基本骨格とする芳香族ポリイミドであって、一般式
(A)中のアルキル基の水素原子の一部又は全部がアミ
ン化合物残基で置換されたアミン修飾ポリイミドからな
ることを特徴とするガス分離膜。 【化1】 式(A)中X及びYは次の意味を表す。 X:芳香族テトラカルボン酸化合物残基 Y:少なくとも1個のアルキル基を置換基として有する
芳香族ジアミン化合物残基
1. An aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton, wherein a part or all of hydrogen atoms of an alkyl group in the general formula (A) are amine compound residues. A gas separation membrane comprising a substituted amine-modified polyimide. [Chemical 1] In the formula (A), X and Y have the following meanings. X: aromatic tetracarboxylic acid compound residue Y: aromatic diamine compound residue having at least one alkyl group as a substituent
【請求項2】 一般式(A)で示される繰り返し単位を
基本骨格とする芳香族ポリイミドであって、一般式
(A)中のアルキル基の水素原子の一部又は全部がアミ
ン化合物残基で置換され、前記アミン化合物残基の一部
又は全部が他の基本骨格との間で架橋構造を形成してい
るアミン修飾ポリイミドからなることを特徴とするガス
分離膜。
2. An aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton, wherein a part or all of hydrogen atoms of an alkyl group in the general formula (A) are amine compound residues. A gas separation membrane, which is substituted and is composed of an amine-modified polyimide in which some or all of the amine compound residues form a crosslinked structure with another basic skeleton.
【請求項3】 一般式(A)で示される繰り返し単位を
基本骨格とする芳香族ポリイミドの前駆体であるポリア
ミド酸に臭素化剤を作用させてアルキル基の一部に臭素
を導入し、得られる臭素化ポリアミド酸をイミド化する
か、あるいは一般式(A)で示される繰り返し単位を基
本骨格とする芳香族ポリイミドに臭素化剤を作用させて
アルキル基の一部に臭素を導入して得られる臭素化ポリ
イミドに、アミン化合物を反応させて一般式(A)中の
アルキル基の水素原子の一部がアミン化合物残基で置換
されたアミン修飾ポリイミドとし、前記臭素化ポリアミ
ド酸、臭素化前のポリイミド、臭素化ポリイミド又はア
ミン修飾ポリイミドの段階で製膜することを特徴とする
ガス分離膜の製造方法。
3. A brominating agent is allowed to act on a polyamic acid, which is a precursor of an aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton, to introduce bromine into a part of an alkyl group. Obtained by imidizing the obtained brominated polyamic acid or by causing a brominating agent to act on an aromatic polyimide having a repeating unit represented by the general formula (A) as a basic skeleton to introduce bromine into a part of an alkyl group. The brominated polyimide obtained is reacted with an amine compound to obtain an amine-modified polyimide in which a part of hydrogen atoms of the alkyl group in the general formula (A) is substituted with an amine compound residue, and the brominated polyamic acid, before bromination A method for producing a gas separation membrane, which comprises forming the membrane at the stage of the polyimide, brominated polyimide or amine-modified polyimide.
【請求項4】 請求項3のガス分離膜の製造方法におい
て、一部臭素が残留したアミン修飾ポリイミドの形で製
膜し、さらにアミン化合物を反応させて架橋させること
を特徴とするガス分離膜の製造方法。
4. The gas separation membrane according to claim 3, wherein a film is formed in the form of an amine-modified polyimide in which a part of bromine remains, and the amine compound is further reacted to crosslink. Manufacturing method.
JP34269995A 1995-12-28 1995-12-28 Gas separation membrane and method for producing the same Expired - Fee Related JP3462652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34269995A JP3462652B2 (en) 1995-12-28 1995-12-28 Gas separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34269995A JP3462652B2 (en) 1995-12-28 1995-12-28 Gas separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09173801A JPH09173801A (en) 1997-07-08
JP3462652B2 true JP3462652B2 (en) 2003-11-05

Family

ID=18355818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34269995A Expired - Fee Related JP3462652B2 (en) 1995-12-28 1995-12-28 Gas separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3462652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321017B2 (en) 2012-01-24 2016-04-26 Nagoya Industrial Science Research Institute Gas-separation membrane

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056430A1 (en) * 1999-03-23 2000-09-28 National Institute Of Advanced Industrial Science And Technology Resin material for gas separation base and process for producing the same
SG108269A1 (en) 2001-08-15 2005-01-28 Inst Materials Research & Eng Chemical modification of polyimides
WO2006009520A1 (en) * 2004-07-20 2006-01-26 National University Of Singapore Polyimide membranes
CN102470329B (en) 2009-07-23 2015-06-24 赢创纤维有限公司 Polyimide membranes made of polymerization solutions
WO2011057384A1 (en) 2009-11-12 2011-05-19 National Research Council Of Canada Polymers of intrinsic microporosity containing tetrazole groups
JP5777944B2 (en) * 2011-06-13 2015-09-09 新日鉄住金化学株式会社 Crosslinked polyimide resin, adhesive resin composition and cured product thereof, coverlay film, and circuit board
JP2013188742A (en) * 2012-02-17 2013-09-26 Fujifilm Corp Composite membrane for gas separation, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
JP5848154B2 (en) 2012-02-17 2016-01-27 富士フイルム株式会社 Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
WO2019165597A1 (en) * 2018-02-28 2019-09-06 Evonik (Shanghai) Investment Management Co., Ltd. Functionalized polyimides and membranes for gas separations
JPWO2021256237A1 (en) * 2020-06-16 2021-12-23
CN114395127B (en) * 2021-12-29 2023-08-22 山东华夏神舟新材料有限公司 Polyimide resin for separating fluorine-containing gas and preparation method thereof
CN115382357A (en) * 2022-08-04 2022-11-25 北京石大油源科技开发有限公司 Adapt to medium and high concentration CO 2 Membrane separation technology with high-efficiency capture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321017B2 (en) 2012-01-24 2016-04-26 Nagoya Industrial Science Research Institute Gas-separation membrane

Also Published As

Publication number Publication date
JPH09173801A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
AU2010229241B2 (en) High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8127936B2 (en) High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8127937B2 (en) High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8575414B2 (en) Membrane system for natural gas upgrading
AU2010229168B2 (en) Polymer membranes prepared from aromatic polyimide membranes by thermal treating and UV crosslinking
KR101526096B1 (en) Polyimide gas separation membranes
US8613362B2 (en) Polymer membranes derived from aromatic polyimide membranes
JP2888606B2 (en) Amine-modified polyimide film
JP3462652B2 (en) Gas separation membrane and method for producing the same
US8710173B2 (en) Blend polymer gas separation membrane
WO2015047702A1 (en) Self cross-linkable and self cross-linked aromatic polyimide membranes for separations
JPS63111921A (en) Polyimide gas separating film
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
WO2010151451A2 (en) Polybenzoxazole membranes prepared from aromatic polyamide membranes
WO2012171143A1 (en) Thin film gas separation membranes
JP4857593B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
US5032279A (en) Separation of fluids using polyimidesiloxane membrane
JPH10156157A (en) Aromatic polyimide gas separation film
JPH0286820A (en) Separating membrane and production thereof
JP4857592B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
WO2017087180A1 (en) High selectivity copolyimide membranes for separations

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

LAPS Cancellation because of no payment of annual fees