JP3443793B2 - Manufacturing method of thermoelectric device - Google Patents

Manufacturing method of thermoelectric device

Info

Publication number
JP3443793B2
JP3443793B2 JP10991994A JP10991994A JP3443793B2 JP 3443793 B2 JP3443793 B2 JP 3443793B2 JP 10991994 A JP10991994 A JP 10991994A JP 10991994 A JP10991994 A JP 10991994A JP 3443793 B2 JP3443793 B2 JP 3443793B2
Authority
JP
Japan
Prior art keywords
solder
thermoelectric element
layer
solder layer
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10991994A
Other languages
Japanese (ja)
Other versions
JPH07321379A (en
Inventor
正孝 山梨
靖忠 木林
Original Assignee
小松エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松エレクトロニクス株式会社 filed Critical 小松エレクトロニクス株式会社
Priority to JP10991994A priority Critical patent/JP3443793B2/en
Publication of JPH07321379A publication Critical patent/JPH07321379A/en
Application granted granted Critical
Publication of JP3443793B2 publication Critical patent/JP3443793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電装置の製造方法に
係り、特に熱電素子本体と電極との接合構造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric device, and more particularly to a joint structure between a thermoelectric element body and an electrode.

【0002】[0002]

【従来の技術】p型半導体とn型半導体とを、金属電極
を介して接合してpn素子対を形成し、この接合部を流
れる電流の方向によって一方の端部が発熱せしめられる
と共に他方の端部が冷却せしめられるいわゆるペルチェ
効果を利用した熱電素子は、小型で構造が簡単なことか
ら、携帯用ク―ラ等いろいろなデバイスにおいて幅広い
利用が期待されている。
2. Description of the Related Art A p-type semiconductor and an n-type semiconductor are joined to each other through a metal electrode to form a pn element pair, and one end is made to generate heat and the other is made to go by the direction of the current flowing through this joint. Thermoelectric elements that utilize the so-called Peltier effect, whose ends can be cooled, are expected to be widely used in various devices such as portable coolers because of their small size and simple structure.

【0003】従来このような熱電素子は、図9に示すよ
うに、例えばBi−Te系熱電半導体103の両端に形
成されたニッケルめっき層106aと半田めっき層10
6bとの2層構造の接触電極106を、アルミナセラミ
ックなどの絶縁性基板からなる熱交換基板101上に形
成された銅電極105に、固着することによって形成さ
れていた。この場合、通常、接触電極106は極めて薄
く形成されるが、薄く形成されると、熱電半導体103
と熱交換基板101との間の熱膨張率の差に起因して発
生する応力が、薄い半田層106bのクリープ変形によ
っては緩和されにくく、大きな温度サイクルに対する耐
久性に劣るという問題があった。
Conventionally, such a thermoelectric element has a nickel plating layer 106a and a solder plating layer 10 formed on both ends of a Bi-Te system thermoelectric semiconductor 103, as shown in FIG.
The contact electrode 106 having a two-layer structure with 6b was fixed to the copper electrode 105 formed on the heat exchange substrate 101 made of an insulating substrate such as alumina ceramic. In this case, normally, the contact electrode 106 is formed extremely thin, but if it is formed thin, the thermoelectric semiconductor 103 is formed.
The stress generated due to the difference in the coefficient of thermal expansion between the heat exchange substrate 101 and the heat exchange substrate 101 is difficult to be relaxed by the creep deformation of the thin solder layer 106b, and the durability against a large temperature cycle is poor.

【0004】一般に、半田層は室温付近でもクリープ変
形するため、熱電素子に加わる熱応力を緩和する重要な
要素となっている。
In general, the solder layer undergoes creep deformation even near room temperature, which is an important factor for relaxing the thermal stress applied to the thermoelectric element.

【0005】しかしながら、厚過ぎると、高温時にはク
リープ変形が大きく、レーザ光学部品等に使用する場合
光軸のズレが問題となるため、耐クリープ性を良好にす
るためには半田層は薄い方がよい。このような技術背景
から、用途に応じて半田層の厚さを変えることのできる
技術が望まれていた。
However, if it is too thick, the creep deformation at the time of high temperature is large, and the deviation of the optical axis becomes a problem when it is used for laser optical parts or the like. Therefore, in order to improve the creep resistance, the thinner solder layer is preferred. Good. From such a technical background, a technique capable of changing the thickness of the solder layer depending on the application has been desired.

【0006】ところで、前述した熱電素子を多数個集め
て形成したサ―モモジュ―ルは、例えば、図10に示す
ように、アルミナセラミックス基板等の熱伝導性の良好
な絶縁性基板からなる第1および第2の熱交換基板11
1,112間にこれに対して良好な熱接触性をもつよう
に多数個のpn素子対113が挟持せしめられると共
に、各素子対113間を夫々第1および第2の電極11
4,115によって直列接続せしめられて構成されてい
る。
By the way, a thermo-module formed by collecting a large number of the thermoelectric elements described above is, for example, as shown in FIG. 10, a first module made of an insulating substrate having a good thermal conductivity such as an alumina ceramic substrate. And the second heat exchange substrate 11
A large number of pn element pairs 113 are sandwiched between 1 and 112 so as to have good thermal contact therewith, and the first and second electrodes 11 are provided between the element pairs 113, respectively.
4, 115 are connected in series.

【0007】そして、この第1および第2の電極11
4,115は大電流にも耐え得るように通常銅板からな
り、熱交換基板111,112表面に形成された導電体
層パタ―ン上に半田層116bを介して固着されてい
る。
Then, the first and second electrodes 11
4, 115 are usually made of a copper plate so as to be able to withstand a large current, and are fixed on a conductor layer pattern formed on the surfaces of the heat exchange substrates 111, 112 via a solder layer 116b.

【0008】更にこの第1および第2の電極上には、半
田層116bおよびニッケル層116aを介してp型熱
電素子113a又はn型熱電素子113bが交互に夫々
1対ずつ固着せしめられ、pn素子対113を構成する
と共に各素子対間は直列接続されている。
Further, on the first and second electrodes, a pair of p-type thermoelectric elements 113a or n-type thermoelectric elements 113b are alternately fixed via a solder layer 116b and a nickel layer 116a, respectively. The pair 113 is formed and each element pair is connected in series.

【0009】ここでp型熱電素子113aとn型熱電素
子113bは、熱起電力、電気抵抗等の特性が異なるた
め、大きさを変化させる必要がある場合があるが、実装
の困難性から通常は、p型,n型ともに同一形状の熱電
素子を用いていた。
Since the p-type thermoelectric element 113a and the n-type thermoelectric element 113b have different characteristics such as thermoelectromotive force and electric resistance, it may be necessary to change their sizes, but it is usually difficult to mount them. Used the same thermoelectric element for both p-type and n-type.

【0010】しかしながら特性の異なるp型およびn型
の熱電素子を同一形状にした場合、p型熱電素子113
aとn型熱電素子113bとで電気的なマッチング(相
性)の最適化をとることができず、熱電モジュールとし
ての性能が低下するという問題があった。
However, when the p-type and n-type thermoelectric elements having different characteristics have the same shape, the p-type thermoelectric element 113 is formed.
There is a problem that the electrical matching (compatibility) cannot be optimized between a and the n-type thermoelectric element 113b, and the performance as a thermoelectric module is deteriorated.

【0011】[0011]

【発明が解決しようとする課題】ところで従来の方法に
よれば、熱電素子の半田層の厚さは、溶融半田の表面張
力と、組み立て時の荷重の2つによって決まり、従来は
2〜15μm であった。 しかしながら従来の方法では
熱電装置においても熱電モジュールにおいても、熱交換
基板材料あるいは電極と、熱電半導体本体との熱膨張係
数の差に起因する応力集中により、低温側と高温側の温
度差が大きくなったり、温度変化が大きくなるに従い、
熱電半導体が破損したり、脱落したりするという問題が
あった。
By the way, according to the conventional method, the thickness of the solder layer of the thermoelectric element is determined by the surface tension of the molten solder and the load at the time of assembly. there were. However, in the conventional method, in both the thermoelectric device and the thermoelectric module, the stress concentration due to the difference in the thermal expansion coefficient between the heat exchange substrate material or the electrode and the thermoelectric semiconductor body causes a large temperature difference between the low temperature side and the high temperature side. Or, as the temperature change increases,
There is a problem that the thermoelectric semiconductor is damaged or falls off.

【0012】また熱電装置では、p型熱電素子113a
とn型熱電素子113bは、熱起電力、電気抵抗等の特
性が異なるため、大きさを変化させる必要がある場合が
あるが、実装の困難性から通常は同一形状の熱電素子を
用いており、形状が同一であると、p型熱電素子113
aとn型熱電素子113bとで電気的なマッチングの最
適化ができず、熱電モジュールの性能が低下するという
問題があった。
In the thermoelectric device, the p-type thermoelectric element 113a is used.
The n-type thermoelectric element 113b and the n-type thermoelectric element 113b have different characteristics such as thermoelectromotive force and electric resistance, and thus it may be necessary to change the size, but due to the difficulty of mounting, thermoelectric elements of the same shape are usually used. , The p-type thermoelectric element 113 has the same shape.
There is a problem in that the electrical matching cannot be optimized between a and the n-type thermoelectric element 113b, and the performance of the thermoelectric module deteriorates.

【0013】本発明は、前記実情に鑑みてなされたもの
で、半田層を従来に比べ大幅に厚く形成することが容易
に可能であり、熱応力に対する耐久性の向上をはかり、
信頼性の高い熱電装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to easily form a solder layer to be significantly thicker than the conventional one, and it is possible to improve durability against thermal stress.
An object is to provide a highly reliable thermoelectric device.

【0014】[0014]

【課題を解決するための手段】そこで本発明の第1の特
徴は、熱電半導体と電極との両方に接触電極としてそれ
ぞれ溶融温度の異なる第1および第2の半田層を形成し
ておき、熱電半導体と電極との接続に際し、第1および
第2の半田層の一方が溶融し、他方は溶融しない温度で
加圧し接合するようにしたことにある。
Therefore, a first feature of the present invention is that the thermoelectric semiconductor and the electrodes are formed with first and second solder layers having different melting temperatures as contact electrodes, respectively. This is because when the semiconductor and the electrode are connected, one of the first and second solder layers is melted and the other is pressed and bonded at a temperature at which they are not melted.

【0015】また本発明の第2の特徴は、熱交換基板上
に電極を介してn型熱電素子とp型熱電素子からなり、
n型およびp型のうち一方の熱電素子本体が他方の熱電
素子本体よりも厚く形成された少なくとも1対の熱電素
子を配設した熱電装置の製造方法において、前記n型熱
電素子とp型熱電素子の両端に互いに異なる厚さとなる
ように第1の半田層を形成すると共に、電極に第2の半
田層をあらかじめ形成しておき、接合に際しては、第2
の半田層が溶融し、第1の半田層は溶融しない温度で加
圧し接合するようにし、前記n型熱電素子とp型熱電素
子とで半田層の厚さが異なるようにし、かつ素子全体と
しての厚さがn型熱電素子とp型熱電素子とで互いに等
しくなるように調整している。
The second feature of the present invention is that it comprises an n-type thermoelectric element and a p-type thermoelectric element on the heat exchange substrate via electrodes.
In a method of manufacturing a thermoelectric device in which at least one pair of thermoelectric elements in which one thermoelectric element body of n-type or p-type is formed thicker than the other thermoelectric element body is provided, the n-type thermoelectric element and the p-type thermoelectric element are provided. The first solder layer is formed on both ends of the element so as to have different thicknesses, and the second solder layer is formed on the electrodes in advance.
The solder layer is melted and the first solder layer is pressed and bonded at a temperature at which the first solder layer is not melted, the thickness of the solder layer is different between the n-type thermoelectric element and the p-type thermoelectric element, and the entire element is Are adjusted so that the n-type thermoelectric element and the p-type thermoelectric element have the same thickness.

【0016】なお、半田層の材料としては、二種類の半
田が溶け合うことによって、低い方の融点の半田層より
も融点が低下しないような半田組成の組み合わせである
ことが必要であり、例えばPbSn/SnSb(但しS
nのみだと低温脆性のおそれがあり、Sb≧0.2%が
望ましい)、PbSn/PbSn,InPb/InPb
などが望ましい。
The material of the solder layer needs to be a combination of solder compositions such that the melting points of the two types of solder do not lower than the lower melting point of the solder layer due to the melting of the two types of solder. For example, PbSn. / SnSb (however, S
If only n, brittleness at low temperature may occur, and Sb ≧ 0.2% is desirable), PbSn / PbSn, InPb / InPb
Is desirable.

【0017】[0017]

【作用】上記第1の構成によれば、熱電素子本体および
電極の両方にそれぞれ融点の異なる第1および第2の半
田層を形成しておき、加圧成型するようにしているた
め、半田層を従来に比べ厚く形成することができ、熱応
力に対して耐久性に優れた熱電装置を得ることができ
る。
According to the first structure, since the first and second solder layers having different melting points are formed on both the thermoelectric element body and the electrodes, and pressure molding is performed, the solder layer is formed. Can be formed thicker than the conventional one, and a thermoelectric device excellent in durability against thermal stress can be obtained.

【0018】また第2の構成によれば、半田層の厚さを
容易に調整することができるため、p型熱電素子とn型
熱電素子とで厚さの異なる場合にも半田層を調整するこ
とにより、極めて容易に、信頼性の高い熱電装置を提供
することが可能となる。すなわち、p型熱電素子本体と
n型熱電素子本体とを同一断面で異なる長さとなるよう
に設計することができ、電気的特性がそれぞれ異なる場
合でも最適設計を行うことができ、しかも機械的組み立
てが容易である。
Further, according to the second structure, since the thickness of the solder layer can be easily adjusted, the solder layer is adjusted even when the p-type thermoelectric element and the n-type thermoelectric element have different thicknesses. This makes it possible to provide a highly reliable thermoelectric device very easily. That is, the p-type thermoelectric element body and the n-type thermoelectric element body can be designed to have the same cross section and different lengths, and even when the electrical characteristics are different, optimal design can be performed, and mechanical assembly can be performed. Is easy.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0020】実施例1 この熱電素子は、図1に部分拡大断面図を示すように、
熱電半導体13と銅電極15との両方にそれぞれ融点1
83℃,膜厚30μm のPbSn共晶系半田からなる第
1の半田めっき層16aと、融点230℃、膜厚20μ
m のSnSb系半田からなる第2の半田めっき層16b
とを形成しておき、これらを225℃に加熱し、接合し
たもので、結果として膜厚約20μm のSnSb層と、
膜厚約5μm のPbSn層とからなり、2種の半田の境
界面に若干の拡散層を有する接合部を形成したものであ
る。
Example 1 This thermoelectric element has a partially enlarged sectional view as shown in FIG.
Both the thermoelectric semiconductor 13 and the copper electrode 15 have a melting point of 1
A first solder plating layer 16a made of PbSn eutectic solder having a temperature of 83 ° C. and a film thickness of 30 μm, a melting point of 230 ° C. and a film thickness of 20 μ
Second solder plating layer 16b made of SnSb-based solder of m
Are formed, and these are heated to 225 ° C. and joined, and as a result, an SnSb layer having a film thickness of about 20 μm,
A PbSn layer having a film thickness of about 5 μm is formed, and a joint portion having a slight diffusion layer is formed on the interface between two kinds of solder.

【0021】すなわち、製造に際してはまず、図2(a)
に示すように、Bi−Te系熱電半導体13の両端にめ
っき法によって、融点183℃,膜厚30μm のPbS
n共晶系半田からなる第1の半田めっき層16aを形成
する。
That is, in manufacturing, first, as shown in FIG.
As shown in FIG. 2, PbS having a melting point of 183 ° C. and a film thickness of 30 μm was formed on both ends of the Bi—Te based thermoelectric semiconductor 13 by plating.
A first solder plating layer 16a made of n-eutectic solder is formed.

【0022】次いで、図2(b) に示すように、アルミナ
セラミックなどの絶縁性基板からなる熱交換基板11上
に形成された銅電極15上に、めっき法で、融点230
℃、膜厚20μm のSnSb系半田からなる第2の半田
めっき層16bを形成する。そして、図2(c) に示すよ
うに、フラックスを用いて熱板上で225℃に加熱し、
接合する。このようにして形成された熱電素子は、膜厚
約20μm のSnSb層と、膜厚約5μm のPbSn層
とからなり、2種の半田の境界面に若干の拡散層を有す
る接合部を形成している。
Then, as shown in FIG. 2B, a melting point of 230 is formed on the copper electrode 15 formed on the heat exchange substrate 11 made of an insulating substrate such as alumina ceramic by a plating method.
A second solder plating layer 16b made of SnSb-based solder having a temperature of 20 μm and a thickness of 20 ° C. is formed. Then, as shown in FIG. 2 (c), it is heated to 225 ° C. on a hot plate using a flux,
To join. The thermoelectric element thus formed is composed of a SnSb layer having a film thickness of about 20 μm and a PbSn layer having a film thickness of about 5 μm and forming a joint portion having a slight diffusion layer at the interface between two kinds of solder. ing.

【0023】かかる構成によれば、計25μm の厚い半
田層によって、応力集中が緩和され、かつSnSb系半
田からなる第2の半田めっき層16bは溶融されること
なくその膜厚を維持し接合されるため、半田層の厚さの
均一性が高く、接続の信頼性が高い。したがって温度サ
イクルに対する耐久性も増大し、そのばらつきも小さく
なる。
According to this structure, the thick solder layer having a total thickness of 25 μm relaxes the stress concentration, and the second solder plating layer 16b made of SnSb-based solder is not melted but is bonded while maintaining its film thickness. Therefore, the thickness of the solder layer is highly uniform, and the reliability of connection is high. Therefore, the durability to the temperature cycle is also increased, and its variation is reduced.

【0024】次に、半田層の厚さと寿命サイクルとの関
係を測定した結果を図3に示す。ここでは図1に示した
熱電素子を44対接続して形成した第1段熱電モジュー
ルと23対接続して形成した第2段熱電モジュールとを
積層して2段モジュールを作製し、ホット面のサイズ1
0×13mm, コールド面のサイズ7×10mmとして最大
電流値1.2A、パワーサイクルを1.5分オン 4.
5分オフとして最大温度差70℃〜5℃としホット面温
度を27℃として、乾燥空気中で、半田層の厚さと、Δ
R=10%となるまでの寿命サイクルとの関係を測定し
た。ここで半田層はめっき法にて形成し、素子側を37
Pb63Sn半田、基板側を95Sn5Sb(20μm
以上のもの)で構成した。この図から明らかなように、
半田層が20μm を越えると大幅に寿命が長くなること
がわかる。このように本発明の方法によれば、半田層を
容易に厚く形成することができるため、接合部の劣化が
進みにくく、信頼性の高いものとなる。
Next, the result of measuring the relationship between the thickness of the solder layer and the life cycle is shown in FIG. Here, a first-stage thermoelectric module formed by connecting 44 pairs of thermoelectric elements shown in FIG. 1 and a second-stage thermoelectric module formed by connecting 23 pairs of thermoelectric elements are stacked to form a two-stage module, and Size 1
3. 0x13mm, cold surface size 7x10mm, maximum current 1.2A, power cycle on for 1.5 minutes 4.
The maximum temperature difference is 70 ° C to 5 ° C for 5 minutes off, the hot surface temperature is 27 ° C, and the solder layer thickness and Δ
The relationship with the life cycle until R = 10% was measured. Here, the solder layer is formed by plating, and the element side is 37
Pb63Sn solder, board side 95Sn5Sb (20μm
The above). As you can see from this figure,
It can be seen that if the solder layer exceeds 20 μm, the life will be significantly extended. As described above, according to the method of the present invention, since the solder layer can be easily formed to be thick, deterioration of the joint portion is unlikely to proceed and reliability is high.

【0025】次に、半田層の厚さと、抵抗変化率との関
係を測定した結果を図4に示す。測定時点は、A:組立
て時真空中で110℃48時間の熱処理を行ったとき,
B:この後−55/+105℃で30サイクルをかけた
後、B:最大電流1.2A、1.5分オン 4.5分オ
フ1のパワーサイクルを12時間、最大温度差70℃〜
5℃とした。ここで曲線aは素子側のみ37Pb63S
n(融点183℃)を2μm めっきして接合したとき、
曲線bは素子側に37Pb63Snを20μm、基板側
に95Sn5Sbを20μm めっきして接合したとき、
曲線cは素子側に37Pb63Snを30μm 、基板側
に95Sn5Sbを35μm めっきして接合したときの
変化率を測定した結果である。この結果から20μm 以
上の半田層のものは従来の1種の薄い半田層で接合した
ときに比べ、著しく変化率が向上していることがわか
る。
Next, the result of measurement of the relationship between the thickness of the solder layer and the resistance change rate is shown in FIG. At the time of measurement, A: When heat treatment was performed at 110 ° C. for 48 hours in vacuum at the time of assembly,
B: After this, after 30 cycles at −55 / + 105 ° C., B: maximum current 1.2 A, 1.5 minutes on, 4.5 minutes off 1 power cycle for 12 hours, maximum temperature difference 70 ° C.
The temperature was 5 ° C. Here, the curve a is 37Pb63S only on the element side.
When n (melting point 183 ° C) is plated by 2 μm and joined,
Curve b shows the case where 37Pb63Sn is 20 μm plated on the element side and 95Sn5Sb is 20 μm plated on the substrate side.
Curve c is the result of measuring the change rate when 37Pb63Sn was plated on the element side by 30 μm and 95Sn5Sb was plated on the substrate side by 35 μm. From this result, it can be seen that the change rate of the solder layer having a thickness of 20 μm or more is remarkably improved as compared with the case where the conventional one kind of thin solder layer is used for the joining.

【0026】実施例2 この熱電素子は、図5に示すように、熱電半導体13に
融点183℃,膜厚30μm のPbSn共晶系半田から
なる第1の半田めっき層16aを形成するとともに、銅
電極15に融点230〜290℃、膜厚20μm の85
Pb15Sn半田からなる第2の半田めっき層26bを
形成しておき、これらを225℃に加熱し、接合したも
ので、結果として膜厚約20μm の85Pb15Sn層
と、膜厚約5μm のPbSn層とからなり、2種の半田
の境界面に若干の拡散層を有する接合部を形成したもの
である。
Example 2 In this thermoelectric element, as shown in FIG. 5, a first solder plating layer 16a made of PbSn eutectic solder having a melting point of 183 ° C. and a film thickness of 30 μm was formed on the thermoelectric semiconductor 13, and copper was formed. The electrode 15 has a melting point of 230 to 290 ° C. and a film thickness of 20 μm of 85.
A second solder plating layer 26b made of Pb15Sn solder is formed in advance, and these are heated to 225 ° C. and joined. As a result, the 85Pb15Sn layer having a film thickness of about 20 μm and the PbSn layer having a film thickness of about 5 μm are formed. In other words, a joint portion having a slight diffusion layer is formed on the boundary surface between the two kinds of solder.

【0027】すなわち、製造に際してはまず、前記実施
例1と同様に、Bi−Te系熱電半導体13の両端にめ
っき法によって、融点183℃,膜厚30μm のPbS
n共晶系半田からなる第1の半田めっき層16aを形成
する。
That is, in manufacturing, first, as in the case of the first embodiment, PbS having a melting point of 183 ° C. and a film thickness of 30 μm is formed on both ends of the Bi—Te system thermoelectric semiconductor 13 by a plating method.
A first solder plating layer 16a made of n-eutectic solder is formed.

【0028】次いで、アルミナセラミックなどの絶縁性
基板からなる熱交換基板11上に形成された銅電極15
上に、めっき法で、融点230〜290℃、膜厚20μ
m の85Pb15Sn系半田からなる第2の半田めっき
層26bを形成する。
Next, a copper electrode 15 is formed on the heat exchange substrate 11 made of an insulating substrate such as alumina ceramic.
By the plating method, the melting point is 230 to 290 ° C. and the film thickness is 20 μm.
A second solder plating layer 26b made of m2 of 85Pb15Sn solder is formed.

【0029】そして、フラックスを用いて熱板上で22
5℃に加熱し、接合する。このようにして形成された熱
電素子は、膜厚約20μm の85Pb15Sn層と、膜
厚約5μm のPbSn層とからなり、2種の半田の境界
面に若干の拡散層を有する接合部を形成している。
Then, on the hot plate using flux, 22
Heat to 5 ° C. and bond. The thermoelectric element thus formed is composed of an 85Pb15Sn layer with a film thickness of about 20 μm and a PbSn layer with a film thickness of about 5 μm, and forms a joint part having a slight diffusion layer at the interface between two kinds of solder. ing.

【0030】かかる構成によれば、計25μm の厚い半
田層によって、応力集中が緩和され、かつ85Pb15
Snからなる第2の半田めっき層は溶融されることなく
その膜厚を維持し接合されるため、半田層の厚さの均一
性が高く、接続の信頼性が高い。したがって温度サイク
ルに対する耐久性も増大する。
According to this structure, stress concentration is alleviated by the thick solder layer having a total thickness of 25 μm, and 85 Pb 15
Since the second solder plating layer made of Sn is bonded while maintaining its film thickness without being melted, the thickness of the solder layer is highly uniform and the connection reliability is high. Therefore, the durability against temperature cycling is also increased.

【0031】実施例3 この熱電素子は、図6に示すように、実施例1と半田層
を逆に形成したもので、熱電半導体13に融点230
℃、膜厚20μm のSnSb系半田からなる第2の半田
めっき層16bを形成するとともに、銅電極15に融点
183℃,膜厚30μm のPbSn共晶系半田からなる
第1の半田めっき層16aを形成しておき、これらを2
25℃に加熱し、接合したもので、結果として膜厚約2
0μm のSnSb層と、膜厚約5μm のPbSn層とか
らなり、2種の半田の境界面に若干の拡散層を有する接
合部を形成したものである。
Example 3 This thermoelectric element is formed by reversing the solder layer as in Example 1, as shown in FIG.
The second solder plating layer 16b made of SnSb-based solder having a temperature of 20 μm and a film thickness of 20 μm and the first solder plating layer 16a made of PbSn eutectic solder having a melting point of 183 ° C. and a film thickness of 30 μm are formed on the copper electrode 15. Form them and set these 2
Heated to 25 ° C and bonded, resulting in a film thickness of about 2
A joint portion is formed which is composed of a 0 μm SnSb layer and a PbSn layer having a film thickness of about 5 μm and which has a slight diffusion layer at the interface between two kinds of solder.

【0032】すなわち、製造に際しては実施例1および
2と同様に、Bi−Te系熱電半導体13の両端にめっ
き法によって、融点230℃,膜厚20μm のSnPb
半田からなる第2の半田めっき層16bを形成する。
That is, in manufacturing, as in Examples 1 and 2, SnPb having a melting point of 230 ° C. and a film thickness of 20 μm was formed on both ends of the Bi—Te system thermoelectric semiconductor 13 by a plating method.
A second solder plating layer 16b made of solder is formed.

【0033】次いで、アルミナセラミックなどの絶縁性
基板からなる熱交換基板11上に形成された銅電極15
上に、めっき法で、融点185℃、膜厚30μm のPb
Sn共晶系半田からなる第1の半田めっき層16aを形
成する。
Next, a copper electrode 15 is formed on the heat exchange substrate 11 made of an insulating substrate such as alumina ceramic.
Pb with a melting point of 185 ° C and a film thickness of 30 μm
A first solder plating layer 16a made of Sn eutectic solder is formed.

【0034】そして、フラックスを用いて熱板上で22
5℃に加熱し、接合する。このようにして形成された熱
電素子は、膜厚約20μm のSnSb層と、膜厚約5μ
m のPbSn層とからなり、2種の半田の境界面に若干
の拡散層を有する接合部を形成している。
Then, using a flux, 22 on the hot plate
Heat to 5 ° C. and bond. The thermoelectric element thus formed has a SnSb layer with a thickness of about 20 μm and a thickness of about 5 μm.
It is composed of a PbSn layer of m 3 and forms a joint portion having a slight diffusion layer on the boundary surface between the two kinds of solder.

【0035】かかる構成によれば、計25μm の厚い半
田層によって、応力集中が緩和され、かつSnSb系半
田からなる第2の半田めっき層16bは溶融されること
なくその膜厚を維持し接合されるため、半田層の厚さの
均一性が高く、接続の信頼性が高い。したがって温度サ
イクルに対する耐久性も増大する。
According to this structure, the thick solder layer having a total thickness of 25 μm relieves the stress concentration, and the second solder plating layer 16b made of SnSb-based solder is bonded while maintaining its film thickness without being melted. Therefore, the thickness of the solder layer is highly uniform, and the reliability of connection is high. Therefore, the durability against temperature cycling is also increased.

【0036】実施例4 この熱電装置は、図7に示すように、このp型熱電素子
とn型熱電素子とで断面積は同一にしてp型熱電半導体
33aをn型熱電半導体33bよりも薄くし、この差を
接触電極を構成するSnSb半田めっき層37a,37
bの厚さを調整することにより補償し、全長の等しい熱
電素子対を形成し、電極上に形成する半田層38を融点
の低い材料で形成し、電極側の半田層のみを溶融せしめ
て接合したことを特徴とする。
Example 4 In this thermoelectric device, as shown in FIG. 7, the p-type thermoelectric element and the n-type thermoelectric element have the same cross-sectional area, and the p-type thermoelectric semiconductor 33a is thinner than the n-type thermoelectric semiconductor 33b. The difference between the SnSb solder plating layers 37a, 37 forming the contact electrodes
By compensating by adjusting the thickness of b, thermoelectric element pairs having the same total length are formed, the solder layer 38 formed on the electrodes is formed of a material having a low melting point, and only the solder layer on the electrode side is melted and joined. It is characterized by having done.

【0037】すなわち、図8(a) に示すように、p型
(Bi−Te系)熱電半導体33aをn型(Bi−Te
系)熱電半導体33bよりも薄く、所望の大きさに成型
した後、融点230℃のSnSb半田めっき層37a,
37bをそれぞれ膜厚50μm,20μm となるように
両端に接触電極として第2の半田層を形成する。
That is, as shown in FIG. 8A, the p-type (Bi-Te system) thermoelectric semiconductor 33a is replaced with an n-type (Bi-Te system).
System) a thermoelectric semiconductor 33b, which is thinner than the thermoelectric semiconductor 33b and is molded into a desired size.
A second solder layer is formed on both ends of 37b as contact electrodes so as to have film thicknesses of 50 μm and 20 μm, respectively.

【0038】そしてさらに図8(b) に示すように、アル
ミナセラミックなどの絶縁性基板からなる熱交換基板3
1,32上に形成された銅電極35の表面に膜厚30μ
m のPbSn共晶系半田層38をめっき法により形成す
る。
Further, as shown in FIG. 8B, the heat exchange substrate 3 made of an insulating substrate such as alumina ceramics.
30μ film thickness on the surface of copper electrode 35 formed on 1, 32
A PbSn eutectic solder layer 38 of m 3 is formed by a plating method.

【0039】この状態で、図8(c) に示すように、フラ
ックスを用いて熱板上で225℃に加熱し、接合する。
このようにして形成された熱電装置は、それぞれ膜厚約
50μm ,20μm のSnSb層と、膜厚約5μm のP
bSn層とからなり、2種の半田の境界面に若干の拡散
層を有する接合部を形成している。
In this state, as shown in FIG. 8 (c), a flux is used to heat to 225 ° C. on the hot plate to bond them.
The thermoelectric device thus formed has SnSb layers of about 50 μm and 20 μm and a P of about 5 μm.
It is composed of a bSn layer and forms a joint portion having a slight diffusion layer on the boundary surface between the two kinds of solder.

【0040】ここでp型熱電素子33aの両端に形成さ
れるSnSb半田層37aはn型熱電素子33bの両端
に形成されるSnSb半田層37bよりも、p型熱電半
導体33aとp型熱電半導体33bとの厚さの差の2分
の1だけ厚く形成され、接合に際しても溶融するのは電
極側にめっきされたPbSn共晶系半田からなる第1の
半田層38であるため、これらSnSb半田層37aお
よび37bは、両素子が熱交換基板31,32に良好に
接続せしめられている。
Here, the SnSb solder layers 37a formed on both ends of the p-type thermoelectric element 33a are more p-type thermoelectric semiconductor 33a and p-type thermoelectric semiconductor 33b than the SnSb solder layers 37b formed on both ends of the n-type thermoelectric element 33b. Since the first solder layer 38 made of PbSn eutectic solder plated on the electrode side is formed to be thicker by a half of the difference in thickness between the SnSb solder layers Both elements of 37a and 37b are satisfactorily connected to the heat exchange boards 31 and 32.

【0041】かかる構成によれば、p型熱電素子本体と
n型熱電素子本体とを同一断面で異なる長さとなるよう
に設計することができ、電気的特性がそれぞれ異なる場
合でも最適設計を行うことができ、最大電流値を等しく
することができる。さらにまた機械的組み立てが容易で
ある。
With this structure, the p-type thermoelectric element body and the n-type thermoelectric element body can be designed to have different lengths in the same cross section, and optimal design can be performed even when the electrical characteristics are different from each other. The maximum current value can be made equal. Furthermore, mechanical assembly is easy.

【0042】なお半田層の材質は、前記実施例に限定さ
れることなく、適宜変更可能である。 また、半田層の
形成方法としてはめっき法に限定されることなくプラズ
マ溶射法あるいは真空蒸着法等他の方法を用いても良
い。
The material of the solder layer is not limited to the above embodiment, but can be changed as appropriate. Further, the method for forming the solder layer is not limited to the plating method, and other methods such as a plasma spraying method or a vacuum deposition method may be used.

【0043】[0043]

【発明の効果】以上説明してきたように、本発明によれ
ば、温度サイクルに対する耐久性が向上し、組み立てが
容易で設計の自由度の高い熱電素子および熱電装置を得
ることが可能となる。
As described above, according to the present invention, it is possible to obtain a thermoelectric element and a thermoelectric device which have improved durability against temperature cycles, are easy to assemble, and have a high degree of freedom in design.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の熱電素子を示す図FIG. 1 is a diagram showing a thermoelectric element according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の熱電素子の製造工程を
示す図
FIG. 2 is a diagram showing a manufacturing process of the thermoelectric element according to the first embodiment of the present invention.

【図3】半田層の厚さと寿命との関係を測定した結果を
示す図
FIG. 3 is a diagram showing a result of measuring a relationship between a solder layer thickness and a life.

【図4】半田層の厚さを変化したときの温度サイクルと
内部抵抗変化率との関係を示す図
FIG. 4 is a diagram showing a relationship between a temperature cycle and an internal resistance change rate when the thickness of a solder layer is changed.

【図5】本発明の第2の実施例の熱電装置を示す図FIG. 5 is a diagram showing a thermoelectric device according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の熱電装置を示す図FIG. 6 is a diagram showing a thermoelectric device according to a third embodiment of the present invention.

【図7】本発明の第4の実施例の熱電素子を示す図FIG. 7 is a diagram showing a thermoelectric element according to a fourth embodiment of the present invention.

【図8】本発明の第4の実施例の熱電素子の製造工程を
示す図
FIG. 8 is a diagram showing a manufacturing process of a thermoelectric element according to a fourth embodiment of the present invention.

【図9】従来例の熱電素子を示す図FIG. 9 is a diagram showing a conventional thermoelectric element.

【図10】従来例の熱電装置を示す図FIG. 10 is a diagram showing a conventional thermoelectric device.

【符号の説明】[Explanation of symbols]

13 熱電半導体 15 銅電極 16a 第1の半田めっき層16aと、融点230℃、
膜厚20μm のSnSb系半田からなる第2の半田めっ
き層16b 1 熱交換基板 31,32…熱交換基板 33a p型Bi−Te熱電半導体 33b n型Bi−Te熱電半導体 35 電極 37a SnSb半田めっき層 37b SnSb半田めっき層 38 PbSn共晶系半田めっき層 111,112 熱交換基板 113a p型熱電素子 113b n型熱電素子 114,115 第1および第2の電極 116a,b 半田層
13 Thermoelectric Semiconductor 15 Copper Electrode 16a First Solder Plating Layer 16a, Melting Point 230 ° C.,
Second solder plating layer 16b 1 made of SnSb-based solder having a film thickness of 20 μm 1 heat exchange substrate 31, 32 ... Heat exchange substrate 33a p-type Bi-Te thermoelectric semiconductor 33b n-type Bi-Te thermoelectric semiconductor 35 electrode 37a SnSb solder-plated layer 37b SnSb solder plating layer 38 PbSn eutectic solder plating layer 111, 112 heat exchange substrate 113a p-type thermoelectric element 113b n-type thermoelectric element 114, 115 first and second electrodes 116a, b solder layer

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 35/34 H01L 35/32 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 35/34 H01L 35/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ペルチェ効果を有する半導体材料からな
る熱電素子本体を形成する工程と、 この熱電素子本体の両端に相対向して第1の半田層を形
成する第1の半田層形成工程と、 前記熱電素子本体を接合すべき電極表面に、前記第1の
半田層とは融点の異なる第2の半田層を形成する工程
と、 前記熱電素子本体と電極とを、前記第1または第2の半
田層の一方が溶融し、他方は溶融しない温度で加圧し接
合する接合工程とを含む熱電装置の製造方法。
1. A step of forming a thermoelectric element body made of a semiconductor material having a Peltier effect, and a first solder layer forming step of forming first solder layers facing each other at both ends of the thermoelectric element body. A step of forming a second solder layer having a melting point different from that of the first solder layer on the surface of the electrode to which the thermoelectric element body is to be joined; A method of manufacturing a thermoelectric device, comprising a step of joining by applying pressure at a temperature at which one of the solder layers melts and the other does not melt.
【請求項2】 ペルチェ効果を有する半導体材料からな
る熱電素子本体を、n型およびp型のうち一方の熱電素
子本体が他方の熱電素子本体よりも厚くなるように形成
する工程と、 前記熱電素子本体の両端に、相対向して両者の全長が等
しくなるように膜厚の異なる第1の半田層を形成する第
1の半田層形成工程と、 熱交換基板上に電極を形成しさらにこの電極表面に前記
第1の半田層よりも融点の低い材料からなる第2の半田
層を形成する第2の半田層形成工程と、 前記第1の半田層の融点よりも融点が低く前記第2の半
田層の融点よりも高い温度で加圧し接合することにより
素子全体としての厚さがn型熱電素子とp型熱電素子と
で互いに等しくなるようにする接合工程とを含む熱電装
置の製造方法。
2. A step of forming a thermoelectric element body made of a semiconductor material having a Peltier effect so that one of the n-type and p-type thermoelectric element bodies is thicker than the other thermoelectric element body, and the thermoelectric element. A first solder layer forming step of forming a first solder layer having a different film thickness on both ends of the main body so as to be opposed to each other so that the total lengths of both sides are equal to each other; A second solder layer forming step of forming on the surface a second solder layer made of a material having a lower melting point than the first solder layer; and a second melting point lower than the melting point of the first solder layer. A method of manufacturing a thermoelectric device, comprising: a bonding step in which the n-type thermoelectric element and the p-type thermoelectric element are made equal in thickness to each other by pressurizing and joining at a temperature higher than the melting point of the solder layer.
JP10991994A 1994-05-24 1994-05-24 Manufacturing method of thermoelectric device Expired - Fee Related JP3443793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10991994A JP3443793B2 (en) 1994-05-24 1994-05-24 Manufacturing method of thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10991994A JP3443793B2 (en) 1994-05-24 1994-05-24 Manufacturing method of thermoelectric device

Publications (2)

Publication Number Publication Date
JPH07321379A JPH07321379A (en) 1995-12-08
JP3443793B2 true JP3443793B2 (en) 2003-09-08

Family

ID=14522462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10991994A Expired - Fee Related JP3443793B2 (en) 1994-05-24 1994-05-24 Manufacturing method of thermoelectric device

Country Status (1)

Country Link
JP (1) JP3443793B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043637A (en) * 2000-07-24 2002-02-08 Aisin Seiki Co Ltd Thermoelectric device
JP4143478B2 (en) * 2002-10-02 2008-09-03 アルプス電気株式会社 Solder connection structure and solder connection method for electronic parts
JP2006278997A (en) * 2005-03-30 2006-10-12 Toyota Central Res & Dev Lab Inc Compound thermoelectric module
JP5092157B2 (en) * 2006-10-30 2012-12-05 株式会社Kelk Thermoelectric module
JP2008277394A (en) * 2007-04-26 2008-11-13 Kyocera Corp Thermoelectric module
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP5075707B2 (en) * 2008-03-27 2012-11-21 株式会社東芝 Thermoelectric device and thermoelectric module
CN102569629A (en) * 2010-12-30 2012-07-11 财团法人工业技术研究院 Thermoelectric module and manufacture method thereof
JP6957916B2 (en) * 2017-03-21 2021-11-02 三菱マテリアル株式会社 Thermoelectric conversion module
KR102323978B1 (en) 2018-08-21 2021-11-08 주식회사 엘지화학 Thermoelectric module

Also Published As

Publication number Publication date
JPH07321379A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
EP0870337B1 (en) Fabrication of thermoelectric modules and solder for such fabrication
US4855810A (en) Thermoelectric heat pump
US6410971B1 (en) Thermoelectric module with thin film substrates
US7932460B2 (en) Thermoelectric heterostructure assemblies element
US6492585B1 (en) Thermoelectric device assembly and method for fabrication of same
US6563039B2 (en) Thermoelectric unicouple used for power generation
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP3443793B2 (en) Manufacturing method of thermoelectric device
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP2006332443A (en) Thermoelectric conversion module and power generator and cooling device using the same
US20130139866A1 (en) Ceramic Plate
US20120060889A1 (en) Thermoelectric modules and assemblies with stress reducing structure
JP2881332B2 (en) Thermoelectric device manufacturing method
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JPH10144967A (en) Thermoelectric element module for cooling
JP3472593B2 (en) Thermoelectric device
JP2019216175A (en) Thermoelectric conversion module
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof
JP2021022712A (en) Thermoelectric module and manufacturing method of thermoelectric module
JP2903331B2 (en) Thermoelectric device manufacturing method
JP3007904U (en) Thermal battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees