JP3433219B2 - Manufacturing method of metal or ceramic products - Google Patents

Manufacturing method of metal or ceramic products

Info

Publication number
JP3433219B2
JP3433219B2 JP32654298A JP32654298A JP3433219B2 JP 3433219 B2 JP3433219 B2 JP 3433219B2 JP 32654298 A JP32654298 A JP 32654298A JP 32654298 A JP32654298 A JP 32654298A JP 3433219 B2 JP3433219 B2 JP 3433219B2
Authority
JP
Japan
Prior art keywords
dimensional
compound
powder
degreasing
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32654298A
Other languages
Japanese (ja)
Other versions
JP2000144205A (en
Inventor
透 清水
信一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP32654298A priority Critical patent/JP3433219B2/en
Publication of JP2000144205A publication Critical patent/JP2000144205A/en
Application granted granted Critical
Publication of JP3433219B2 publication Critical patent/JP3433219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、超硬材料のような
難加工性材料から貴金属、セラミックスを含む幅広い材
料を、ラピッドプロトタイピングにより、従来の機械加
工や鋳造では到底容易に得られないような複雑な三次元
形状に、しかも迅速に成形することができる金属或いは
セラミックス製品の製造方法に関する。 【0002】 【従来の技術】従来より、所定の寸法及び形状の三次元
物体を作成するための方法として、ラピッドプロトタイ
ピングが知られている。このラピッドプロトタイピング
には、 1)光(紫外線)硬化性樹脂等を用いる光造形法、2)
紙等を自動的に積層して造形する手法、3)例えば特開
昭64−78822号公報、特開平3−15519号公
報、特公平8−2598号公報に記載される熱可塑性樹
脂等を用いる積層造形法、あるいは4)金属粉にレーザ
ーを照射して粉体表面の樹脂、又は金属粉そのものを溶
融させて造形する手法がある。 【0003】 【発明が解決しようとする課題】しかしながら前記1)
〜3)の手法は、得られる三次元物体の材質が樹脂、或
いは紙に限られ、金属やセラミックスの造形体は得られ
ない。また、前記4)の手法では、得られる三次元物体
が多孔質であって、強度、気密性が不十分であるため、
その用途も限られたものとなる。一方、金属粉末やセラ
ミックス粉末を熱可塑性樹脂バインダーに混入してコン
パウンドを作製し、射出成形により任意の三次元形状に
成形した後、脱脂、焼結して製品を得るMIM(Metal
Injection Molding )、CIM(Ceramics Injection M
olding)と呼ばれる手法が存在する。あるいは、これら
を総称してPIM(Powder Injection Molding)と呼
ぶ。しかしながらこのPIMは、同一の簡易形状の物品
を大量に生産するには適切な方法であるが、異なる多種
の任意形状の物品を少量ずつ生産するラピッドプロトタ
イピングの手法としては不適当である。 【0004】 【課題を解決するための手段】本発明は上記に鑑み提案
されたもので、熱可塑性樹脂からなり、超臨界脱脂され
やすい成分であるパラフィンワックスなどの非極性低分
子化合物と、超臨界脱脂されにくい成分であるポリエチ
レン、ポリプロピレン、エチレン−酢酸ビニル共重合
体、ポリスチレンの何れかを組み合わせてなるバインダ
ーと、ステンレス合金、カルボニル鉄、チタン合金など
の金属合金粉末、チタンアルミニウムなどの金属間化合
物粉末、或いはアルミナやジルコニアなどの100μm
からサブミクロンのセラミックス粉末の何れかの無機粉
末とを体積比で4:1から3:7の割合で混入してコン
パウンドとする工程(以下、第1の工程という)と、三
次元図形情報を記憶処理するコンピュータの三次元図形
情報に基づいて基準面に対してX,Y,Z方向に相対移
動しながら順次コンパウンドをノズルより射出し、堆
積、凝固させて三次元造形体を造形する工程(以下、第
2の工程という)と、前記三次元造形体を、脱脂温度を
上記非極性低分子化合物の融点付近に設定し脱脂圧力を
臨界圧力以上として超臨界二酸化炭素により脱脂する工
程(以下、第3の工程という)と、前記脱脂後の前記三
次元造形体を焼結する工程(以下、第4の工程という)
とを含み、前記コンパウンドに混合するバインダーはP
IMでのコンパウンドに比して多めに配合し、前記焼結
する工程で得られた三次元焼結体が多孔質状態のとき融
点の低い金属等を含浸させて製品とする、ことを特徴と
する金属或いはセラミックス製品の製造方法である。 【0005】 【発明の実施の形態】前記のように本発明は4つの工程
を含むものであり、以下に各工程についてそれぞれ説明
する。 【0006】前記第1の工程は、熱可塑性樹脂からなる
バインダーに無機粉末を混入してコンパウンドを作製す
る工程であるが、このコンパウンドに使用できる無機粉
末としては、ステンレス合金、カルボニル鉄、チタン合
金、その他の金属合金粉末、或いはチタンアルミニウム
などの金属間化合物粉末、或いはアルミナ、ジルコニア
などの100μmからサブミクロンのセラミックス粉末
などがあげられる。また、バインダーとしては、様々な
熱可塑性樹脂を使用することができる。しかし、後述す
る第3の工程の有機溶媒、或いは超臨界二酸化炭素によ
る脱脂に工程においては全てのバインダー成分が溶解さ
れると無機粉末だけが残って三次元形状を保持できない
ため、三次元形状を維持するために残留するバインダー
成分が必要である。したがって、脱脂されやすい成分
と、脱脂されにくい成分とを組み合わせた(混合させ
た)成分構成が望ましい。具体的なバインダー成分は、
超臨界脱脂されやすい成分としてパラフィンワックスな
どの非極性低分子化合物、脱脂されにくい成分としてポ
リエチレン、ポリプロピレン、エチレン−酢酸ビニル共
重合体(EVA)、ポリスチレンなどがあげられる。こ
の他、バインダーには分散剤としてステアリン酸、その
他の成分を加えるようにしても良い。上記のバインダー
と無機粉末を体積比で4:1から3:7の割合で混合し
てコンパウンドとする。この混合比は無機粉末が多いほ
ど焼結後の収縮率が小さくなるので望ましいが、流動性
が低くなる。またバインダーが多いほど成形が容易とな
るが、脱脂後の焼結が難しくなる。そのため、混合させ
る粉体、バインダーに応じて適当な混合割合を選択す
る。尚、このコンパウンドを作製する工程は、従来のP
IMと同様であるが、コンパウンドの流動性を確保する
ために、バインダー成分はPIMに比較して多めに配合
し、十分な流動性を確保する。 【0007】前記第2の工程は、前記第1の工程にて得
られたコンパウンドを、ノズルより射出し、堆積、凝固
させて三次元造形体を造形する工程であるが、この手法
自体は熱可塑性樹脂等を用いる積層造形法として既に知
られている。この積層造形法は、三次元図形情報を記憶
処理するコンピュータと、基準面に対してX,Y,Z方
向に相対移動しながら順次流動性素材をノズルより射出
し、堆積、凝固させて物体の輪郭を形成する素材供給加
工軸を備えた加工機と、を具備した立体成形装置により
実施される。即ち、本発明では、従来、熱可塑性樹脂等
の造形法として知られていた積層造形法を、バインダー
と無機粉末とからなるコンパウンドの造形に適用したも
のである。この積層造形法を適用することにより、従来
の機械加工や鋳造などでは到底造形不可能な複雑な形状
構成を有する三次元造形体を容易に且つ迅速に造形する
ことが可能となる。 【0008】前記第3の工程は、前記第2の工程にて造
形された三次元造形体を、脱脂する工程である。この工
程には加熱による方法、有機溶媒、或いは超臨界二酸化
炭素により抽出する方法がある。加熱による場合、毎
時、10〜数℃の昇温速度でゆっくりと250〜400
℃まで加熱することにより脱脂する。有機溶媒による抽
出の場合トリクロロエタン、トリクロロエチレン或いは
塩化メチレン等の有機溶媒中に三次元造形体を浸すこと
により、抽出可能なバインダー成分を溶解抽出すること
によって脱脂を行う。この脱脂法の場合、必要に応じて
加熱脱脂を付随させる。超臨界二酸化炭素による脱脂の
場合、超臨界脱脂用の高圧装置に造形体をセットし、加
熱して脱脂剤によって脱脂を行うが、ここで使用する脱
脂剤は超臨界状態の二酸化炭素である。脱脂温度は、前
記バインダーにおける脱脂されやすい成分、例えばパラ
フィンワックスなどの非極性低分子化合物の融点付近に
設定すると効率よく脱脂することができる。脱脂圧力は
臨界圧力(73気圧)以上とする。脱脂効率は高圧ほど
良い。脱脂時間は15分から48時間であり、三次元造
形体の大きさ、肉厚、バインダー系、混合比に応じて適
当な値を選択すれば良い。脱脂は上記のいずれの方法で
も可能であるが、従来のPIMに比較してコンパウンド
にバインダー成分が多めに配合されるため、肉厚の薄い
三次元造形体の加熱脱脂を行うと造形体はとけて変形す
る。しかし、比較的低温で脱脂処理が可能な超臨界二酸
化炭素を用いれば、造形体をとかさずに脱脂を行うこと
ができる。また脱脂後の造形体は第4の工程の焼結過程
においても変形することはない。そのため、脱脂法とし
ては超臨界二酸化炭素による脱脂方法が望ましい。 【0009】前記第4の工程は、前記第3の工程にて脱
脂された三次元造形体を焼結する工程であり、焼結温
度、焼結時間、焼結雰囲気及び昇温時間は、使用した無
機粉末の性質や脱脂条件などに応じて適宜に決定すれば
よい。 【0010】尚、前記第3の工程にて脱脂された三次元
造形体は、バインダー中の非極性低分子化合物などが抽
出されるため多孔質となっている。しかし、第4の工程
にて焼結することにより、全体的に収縮すると同時に強
度及び密度が上昇し、十分な強度、密度を有する三次元
製品となる。また、寸法の収縮を避けるため、収縮が起
こらない程度の比較的低い温度で多孔質状態のまま焼結
を終了し、その後、得られた多孔質状態の三次元焼結体
に、融点の低い金属等を含浸させて製品(無機複合体)
とするようにしても良い。 【0011】このように本発明は、使用する無機粉末を
適宜に選定することにより、超硬材料のような難加工性
材料から貴金属、セラミックスを含む幅広い材料を、従
来の機械加工や鋳造では不可能な形状に、しかも迅速に
成形する事が可能となる。したがって、この製造方法で
は、意匠性の高い製品、装飾性に優れた製品の比較的少
量生産、並びに生体、医療材料のように製品ひとつひと
つが固有の形状を有する製品の成形、製造に最適と考え
られる。 【0012】 【実施例】〔第1の工程:コンパウンドの作製工程〕金
属粉末として、平均粒径6.3μmのSUS304Lス
テンレス粉(太平洋金属株式会社製)を用いた。また、
バインダーとして、パラフィンワックス(融点43℃)
に、EVA(エチレン- 酢酸ビニル共重合体、酢酸ビニ
ル重合率25%)を65%、35%の割合で混合したも
のを用いた。このバインダーではEVAが分散剤に相当
する働きをするため分散剤に相当するものは混合しなか
った。このバインダーは超臨界二酸化炭素で脱脂処理す
ることを目的としたものであり、パラフィンワックスは
超臨界二酸化炭素に溶解する成分、EVAは溶解しない
成分である。これらの金属粉末とバインダーとを体積比
58:42で110℃の温度で加圧ニーダーにより30
分混練し、供試コンパウンドとした。 【0013】〔第2の工程:ラビッドプロトタイピング
による造形法〕前記のように得られた供試コンパウンド
を用いて、図1にその概略構成を示す吐出造形装置によ
り造形した。造形は、ノズル径を0.25,0.6mm
として試みた。また、造形時の送り速度は3〜5mm/
secとした。ノズル先端、及びコンパウンド供給ポッ
トは100〜110℃に加熱して図2に示す3種の三次
元造形体を造形した。その他の条件(射出圧力、送り速
度、温度等)は、造形体の品質を見ながら調整した。図
2(a)に示すコップ状(円錐円筒融合形状)の造形、
図2(b)に示す瓢箪形状の造形にはそれぞれ2時間か
かった。また、図2(c)に示す変形コップ状(擬足ソ
ケットの形状)の造形には8時間程度かかった。 【0014】〔第3の工程:脱脂工程〕前記のように造
形された3種の三次元造形体を、55℃、200気圧の
超臨界状態の二酸化炭素中に2時間保持した。この脱脂
処理によりバインダー中のほとんどのパラフィンワック
スは抽出されるが、形状が変形したり、自重で崩壊する
ことはなかった。 【0015】〔第4の工程:焼結工程〕前記のように脱
脂された3種の三次元造形体を、500℃/hrで昇温
し、1350℃の水素雰囲気において2時間保持して焼
結して製品とした。 【0016】〈結果〉焼結された製品はほとんどポアが
無く、相対密度も96%とバルク材料に近い品質を示し
た。 【0017】以上本発明の実施例を示したが、本発明は
前記した実施例に限定されるものではなく、特許請求の
範囲に記載した構成を変更しない限りどのようにでも実
施することができる。 【0018】 【発明の効果】以上説明したように本発明の金属或いは
セラミックス製品の製造方法は、使用する無機粉末を適
宜に選択することにより、超硬材料のような難加工性材
料から貴金属、セラミックスを含む幅広い材料を造形す
ることができる。また、積層造形法を適用したことによ
り、極めて複雑な三次元形状を、しかも迅速に成形する
ことができる。例えば従来の機械加工や精密鋳造などの
手法によって複雑な三次元形状の製品を得ようとする
と、工程が極めて複雑化し、到底容易に得ることができ
ないし、実質的に不可能であることも多い。そのため、
本発明の製造方法は、意匠性、装飾性、形状特性に優れ
た各種製品或いは部品の製造に利用することができる。
また、生体、医療材料のように製品ひとつひとつが固有
の形状を有する製品の製造にも利用することができる。
したがって、本発明は、各種の工業的分野並びに医療分
野等に多大なる貢献を果たすものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the conventional machining of a wide range of materials including hard metals and noble metals and ceramics from hard-to-work materials such as superhard materials by rapid prototyping. The present invention relates to a method for producing a metal or ceramic product which can be rapidly formed into a complicated three-dimensional shape which cannot be easily obtained by casting or casting. [0002] Hitherto, rapid prototyping has been known as a method for producing a three-dimensional object having a predetermined size and shape. The rapid prototyping includes: 1) stereolithography using a light (ultraviolet) curable resin or the like; 2)
3) For example, using a thermoplastic resin described in JP-A-64-78822, JP-A-3-15519, and JP-B-8-2598. There is a lamination molding method or 4) a method of irradiating a metal powder with a laser to melt the resin on the powder surface or the metal powder itself to form the metal powder. [0003] However, the above 1)
In the methods (3) to (3), the material of the obtained three-dimensional object is limited to resin or paper, and a molded body of metal or ceramic cannot be obtained. In the method 4), the obtained three-dimensional object is porous and has insufficient strength and airtightness.
Its use is also limited. On the other hand, a compound is prepared by mixing a metal powder or a ceramic powder into a thermoplastic resin binder, formed into an arbitrary three-dimensional shape by injection molding, then degreased and sintered to obtain a MIM (Metal).
Injection Molding), CIM (Ceramics Injection M
There is a technique called olding). Alternatively, these are collectively called PIM (Powder Injection Molding). However, this PIM is an appropriate method for mass-producing articles of the same simple shape, but is unsuitable as a rapid prototyping technique for producing different kinds of articles of arbitrary shapes little by little. [0004] Means for Solving the Problems The present invention has been proposed in view of the above, Ri Do a thermoplastic resin, is supercritical degreasing
Non-polar low components such as paraffin wax, which is an easy component
Polymer and polyethylene, a component that is difficult to supercritically degrease
Wren, polypropylene, ethylene-vinyl acetate copolymer
Binder composed of any of solid and polystyrene
ー, stainless steel alloy, carbonyl iron, titanium alloy, etc.
Metal alloy powder, intermetallic compounds such as titanium aluminum
Powder or 100μm of alumina, zirconia, etc.
Any inorganic powder from ceramic powder to submicron
Mixing the powder with the powder at a volume ratio of 4: 1 to 3: 7 to form a compound (hereinafter referred to as a first step), and based on the three-dimensional graphic information of a computer that stores and processes the three-dimensional graphic information. Forming a three-dimensional object by sequentially ejecting the compound from a nozzle while depositing and solidifying the compound while moving relative to the reference plane in the X, Y, and Z directions (hereinafter, referred to as a second step); Three-dimensional object, degreasing temperature
Set the degreasing pressure near the melting point of the non-polar low molecular weight compound and increase the degreasing pressure.
A step of degreasing with supercritical carbon dioxide at a critical pressure or higher (hereinafter, referred to as a third step) and a step of sintering the three-dimensional structure after the degreasing (hereinafter, referred to as a fourth step)
Look including bets, binder to be mixed with the compound is P
More compounding than IM compound, sintering
When the three-dimensional sintered body obtained in the
The product is impregnated with a low point metal, it is prepared how the metal or ceramic products, wherein. [0005] As described above, the present invention includes four steps, each of which will be described below. The first step is a step of preparing a compound by mixing an inorganic powder with a binder made of a thermoplastic resin. The inorganic powder that can be used in this compound includes stainless steel alloy, carbonyl iron, titanium alloy and the like. And other metal alloy powders, intermetallic compound powders such as titanium aluminum, and ceramic powders of 100 μm to submicron such as alumina and zirconia. Also, various thermoplastic resins can be used as the binder. However, when all binder components are dissolved in the step of degreasing with an organic solvent or supercritical carbon dioxide in the third step described below, only the inorganic powder remains and the three-dimensional shape cannot be maintained. A residual binder component is required to maintain. Therefore, a component configuration in which a component that is easily degreased and a component that is difficult to degrease is combined (mixed) is desirable. Specific binder components are
Non-polar low molecular weight compounds such as paraffin wax are examples of components that are easily supercritically degreased, and polyethylene, polypropylene, ethylene-vinyl acetate copolymer (EVA), and polystyrene are examples of components that are not easily degreased. In addition, stearic acid and other components may be added to the binder as a dispersant. The binder and the inorganic powder are mixed at a volume ratio of 4: 1 to 3: 7 to obtain a compound. This mixing ratio is desirable because the more inorganic powder, the smaller the shrinkage after sintering, but the lower the fluidity. Also, as the amount of binder increases, molding becomes easier, but sintering after degreasing becomes more difficult. Therefore, an appropriate mixing ratio is selected according to the powder and the binder to be mixed. Incidentally, the step of producing this compound is the same as the conventional P
Same as IM, but in order to ensure the fluidity of the compound, the binder component is blended more than the PIM to ensure sufficient fluidity. [0007] The second step is a step of injecting the compound obtained in the first step from a nozzle, depositing and solidifying the compound to form a three-dimensional molded body. It is already known as an additive manufacturing method using a plastic resin or the like. In this additive manufacturing method, a fluid material is sequentially ejected from a nozzle while being relatively moved in X, Y, and Z directions with respect to a reference plane, deposited, solidified, and a computer for storing and processing three-dimensional graphic information. And a processing machine having a material supply processing shaft for forming the contour. That is, in the present invention, the lamination molding method conventionally known as a molding method of a thermoplastic resin or the like is applied to the molding of a compound comprising a binder and an inorganic powder. By applying this additive manufacturing method, it is possible to easily and quickly form a three-dimensional model having a complicated configuration that cannot be formed by conventional machining or casting. [0008] The third step is a step of degreasing the three-dimensional structure formed in the second step. In this step, there are a method by heating, a method of extraction with an organic solvent or supercritical carbon dioxide. In the case of heating, the temperature is slowly increased at a rate of 10 to several degrees Celsius every hour to 250 to 400.
Degreasing by heating to ° C. In the case of extraction with an organic solvent, degreasing is performed by immersing the three-dimensional structure in an organic solvent such as trichloroethane, trichloroethylene, or methylene chloride to dissolve and extract the extractable binder component. In the case of this degreasing method, heating degreasing is added as necessary. In the case of degreasing with supercritical carbon dioxide, the shaped body is set in a high pressure device for supercritical degreasing, heated and degreased with a degreaser. The degreaser used here is carbon dioxide in a supercritical state. If the degreasing temperature is set near the melting point of a component of the binder that is easily degreased, for example, a nonpolar low-molecular compound such as paraffin wax, degreasing can be performed efficiently. The degreasing pressure is equal to or higher than the critical pressure (73 atm). The higher the pressure, the better the degreasing efficiency. The degreasing time is 15 minutes to 48 hours, and an appropriate value may be selected according to the size, thickness, binder system, and mixing ratio of the three-dimensional structure. Degreasing can be performed by any of the above methods, but since the binder component is added to the compound in a larger amount than in the conventional PIM, when the thin three-dimensional molded body is heated and degreased, the molded body melts. Deform. However, if supercritical carbon dioxide that can be degreased at a relatively low temperature is used, degreasing can be performed without dissolving the molded body. The shaped body after degreasing does not deform even in the sintering process of the fourth step. Therefore, a degreasing method using supercritical carbon dioxide is desirable as the degreasing method. The fourth step is a step of sintering the three-dimensional molded body degreased in the third step. The sintering temperature, the sintering time, the sintering atmosphere, and the heating time What is necessary is just to determine suitably according to the property of the obtained inorganic powder, degreasing conditions, etc. The three-dimensional structure degreased in the third step is porous because non-polar low-molecular compounds and the like in the binder are extracted. However, by sintering in the fourth step, the strength and density increase at the same time as overall shrinkage, resulting in a three-dimensional product having sufficient strength and density. In addition, in order to avoid shrinkage of the dimensions, sintering is finished in a porous state at a relatively low temperature that does not cause shrinkage, and then the obtained three-dimensional sintered body in a porous state has a low melting point. Product impregnated with metal, etc. (inorganic composite)
You may make it. As described above, according to the present invention, by appropriately selecting the inorganic powder to be used, a wide range of materials including noble metals and ceramics from difficult-to-process materials such as superhard materials cannot be obtained by conventional machining or casting. It is possible to form the shape as quickly as possible. Therefore, this manufacturing method is considered to be most suitable for the production of products with high designability, relatively small quantities of products with excellent decorativeness, and the molding and production of products each having a unique shape such as biological materials and medical materials. Can be EXAMPLES [First Step: Compound Preparation Step] SUS304L stainless steel powder (manufactured by Taiheiyo Metal Co., Ltd.) having an average particle diameter of 6.3 μm was used as the metal powder. Also,
Paraffin wax as binder (melting point 43 ° C)
A mixture of 65% and 35% of EVA (ethylene-vinyl acetate copolymer, polymerization rate of vinyl acetate: 25%) was used. In this binder, EVA functioned as a dispersant, so that the binder was not mixed. This binder is intended to be degreased with supercritical carbon dioxide. Paraffin wax is a component that dissolves in supercritical carbon dioxide, and EVA is a component that does not dissolve. These metal powders and the binder were mixed at a volume ratio of 58:42 at a temperature of 110 ° C. by a pressure kneader for 30 minutes.
The mixture was kneaded separately to obtain a test compound. [Second Step: Molding Method by Rabbit Prototyping] Using the test compound obtained as described above, molding was performed by a discharge molding apparatus whose schematic structure is shown in FIG. For modeling, the nozzle diameter is 0.25, 0.6mm
Tried as. In addition, the feed speed during molding is 3 to 5 mm /
sec. The nozzle tip and the compound supply pot were heated to 100 to 110 ° C. to form three types of three-dimensional objects shown in FIG. Other conditions (injection pressure, feed rate, temperature, etc.) were adjusted while observing the quality of the molded body. Cup-shaped (conical cylinder fusion shape) modeling shown in FIG.
Each of the gourd-shaped modeling shown in FIG. 2B took 2 hours. It took about 8 hours to form the deformed cup shape (shape of the artificial foot socket) shown in FIG. 2C. [Third Step: Degreasing Step] The three types of three-dimensionally shaped bodies formed as described above were kept in supercritical carbon dioxide at 55 ° C. and 200 atm for 2 hours. Although most of the paraffin wax in the binder was extracted by this degreasing treatment, the shape was not deformed or collapsed by its own weight. [Fourth Step: Sintering Step] The three kinds of three-dimensional molded bodies degreased as described above are heated at a temperature of 500 ° C./hr and held in a hydrogen atmosphere at 1350 ° C. for 2 hours for firing. The product was tied. <Results> The sintered product had almost no pores and a relative density of 96%, which was a quality close to that of a bulk material. Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented in any manner unless the configuration described in the claims is changed. . As described above, according to the method for producing a metal or ceramic product of the present invention, by appropriately selecting an inorganic powder to be used, a noble metal, such as a super hard material, can be used. A wide range of materials including ceramics can be formed. In addition, by applying the additive manufacturing method, an extremely complicated three-dimensional shape can be formed quickly. For example, when trying to obtain a product with a complicated three-dimensional shape by a conventional method such as machining or precision casting, the process becomes extremely complicated, it is impossible to obtain it at all, and it is often impossible. . for that reason,
INDUSTRIAL APPLICABILITY The production method of the present invention can be used for production of various products or parts having excellent design, decoration, and shape characteristics.
In addition, the present invention can also be used for the manufacture of products in which each product has a unique shape, such as a living body or a medical material.
Therefore, the present invention greatly contributes to various industrial fields and medical fields.

【図面の簡単な説明】 【図1】本発明に用いる吐出成形装置を示す構成説明図
である。 【図2】(a)〜(c)実施例にて成形を試みた製品の
形状を示す側面図及び斜視図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural explanatory view showing a discharge molding apparatus used in the present invention. FIGS. 2 (a) to 2 (c) are a side view and a perspective view showing a shape of a product which is attempted to be molded in Examples.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 3/02,3/10,3/26 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 3 / 02,3 / 10,3 / 26

Claims (1)

(57)【特許請求の範囲】 【請求項1】 熱可塑性樹脂からなり、超臨界脱脂され
やすい成分であるパラフィンワックスなどの非極性低分
子化合物と、超臨界脱脂されにくい成分であるポリエチ
レン、ポリプロピレン、エチレン−酢酸ビニル共重合
体、ポリスチレンの何れかを組み合わせてなるバインダ
ーと、ステンレス合金、カルボニル鉄、チタン合金など
の金属合金粉末、チタンアルミニウムなどの金属間化合
物粉末、或いはアルミナやジルコニアなどの100μm
からサブミクロンのセラミックス粉末の何れかの無機粉
末とを体積比で4:1から3:7の割合で混入してコン
パウンドとする工程と、 三次元図形情報を記憶処理するコンピュータの三次元図
形情報に基づいて基準面に対してX,Y,Z方向に相対
移動しながら順次コンパウンドをノズルより射出し、堆
積、凝固させて三次元造形体を造形する工程と、 前記三次元造形体を、脱脂温度を上記非極性低分子化合
物の融点付近に設定し脱脂圧力を臨圧力以上として超
臨界二酸化炭素により脱脂する工程と、 前記脱脂後の前記三次元造形体を焼結する工程とを含
み、 前記コンパウンドに混合するバインダーはPIMでのコ
ンパウンドに比して多めに配合し、 前記焼結する工程で得られた三次元焼結体が多孔質状態
のとき融点の低い金属等を含浸させて製品とする、 ことを特徴とする金属或いはセラミックス製品の製造方
法。
(57) [Claims] [Claim 1] It is made of a thermoplastic resin and is supercritically degreased.
Non-polar low components such as paraffin wax, which is an easy component
Polymer and polyethylene, a component that is difficult to supercritically degrease
Wren, polypropylene, ethylene-vinyl acetate copolymer
Binder composed of any of solid and polystyrene
ー, stainless steel alloy, carbonyl iron, titanium alloy, etc.
Metal alloy powder, intermetallic compounds such as titanium aluminum
Powder or 100μm of alumina, zirconia, etc.
Any inorganic powder from ceramic powder to submicron
Mixing the powder with the powder in a volume ratio of 4: 1 to 3: 7 to form a compound; and X, Y with respect to the reference plane based on the three-dimensional graphic information of a computer that stores and processes the three-dimensional graphic information. , A compound is sequentially ejected from a nozzle while being relatively moved in the Z direction, and is deposited and solidified to form a three-dimensional molded body. The three-dimensional molded body is degreased at a temperature near the melting point of the nonpolar low-molecular compound. compound of the steps of degreasing by supercritical carbon dioxide set defatted pressure of more than the critical pressure, the three-dimensional shaped body after the degreasing and the step of sintering, the binder to be mixed with the compound in the PIM The three-dimensional sintered body obtained in the sintering step is impregnated with a metal having a low melting point when the three-dimensional sintered body obtained in the sintering step is in a porous state, to produce a product. Box product manufacturing method of.
JP32654298A 1998-11-17 1998-11-17 Manufacturing method of metal or ceramic products Expired - Lifetime JP3433219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32654298A JP3433219B2 (en) 1998-11-17 1998-11-17 Manufacturing method of metal or ceramic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32654298A JP3433219B2 (en) 1998-11-17 1998-11-17 Manufacturing method of metal or ceramic products

Publications (2)

Publication Number Publication Date
JP2000144205A JP2000144205A (en) 2000-05-26
JP3433219B2 true JP3433219B2 (en) 2003-08-04

Family

ID=18189003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32654298A Expired - Lifetime JP3433219B2 (en) 1998-11-17 1998-11-17 Manufacturing method of metal or ceramic products

Country Status (1)

Country Link
JP (1) JP3433219B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687383B1 (en) * 2014-08-22 2015-03-18 有限会社 ネオ・ディーダブリューエス Portable wireless key
CN104711442A (en) * 2015-03-11 2015-06-17 北京科技大学 Method for manufacturing hard alloy by 3D printing
KR101577328B1 (en) * 2013-10-15 2015-12-14 한국피아이엠(주) Micro-sized control parts and manufacturing method thereof
WO2017057838A1 (en) * 2015-10-02 2017-04-06 주식회사 쓰리디컨트롤즈 Composition containing metal powder for three-dimensional printing, three-dimensional printing method using same as raw material, and three-dimensional printing device
KR20220065962A (en) * 2020-11-13 2022-05-23 한국재료연구원 High stability thermoplastic pattern structure using curable monomer and method for manufacturing the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305777A (en) * 2002-04-15 2003-10-28 Aspect:Kk Three-dimensionally shaping method and device
EP1594679B1 (en) * 2003-02-18 2010-04-14 Daimler AG Powder particles for producing three-dimensional bodies by a layer constituting method
CA2720262A1 (en) * 2008-04-11 2009-10-15 General Electric Company Combustor component and method of manufacture
KR102091678B1 (en) * 2013-11-06 2020-04-24 럿거스, 더 스테이트 유니버시티 오브 뉴저지 Production of monolithic bodies from a porous matrix using low temperature solidification in an additive manufacturing process
JP6519100B2 (en) 2014-04-23 2019-05-29 セイコーエプソン株式会社 Sinter-forming method, liquid binder, and sinter-formed product
CN106470823B (en) * 2014-06-27 2020-05-26 福吉米株式会社 Material for formation and method for formation of structure
CN104162929B (en) * 2014-08-06 2018-03-02 江西东鹏卫浴有限公司 A kind of production method of the master mold of sanitary ceramics
DE102014018081A1 (en) * 2014-12-06 2016-06-09 Universität Rostock Process and plant for the additive production of metal parts by means of an extrusion process - Composite Extrusion Modeling (CEM)
JP2016216801A (en) 2015-05-26 2016-12-22 セイコーエプソン株式会社 Three-dimensional forming apparatus and three-dimensional forming method
JP6536199B2 (en) 2015-06-16 2019-07-03 セイコーエプソン株式会社 Three-dimensional forming device
JP6699824B2 (en) * 2016-01-18 2020-05-27 国立研究開発法人産業技術総合研究所 Modeling powder
JP6433447B2 (en) * 2016-03-01 2018-12-05 株式会社ノリタケカンパニーリミテド 3D 3D modeling powder and 3D 3D modeling
KR101806802B1 (en) * 2016-03-17 2017-12-08 창원대학교 산학협력단 Fabrication method of ceramic mold or core using 3d printer and and slurry composition for 3d printer
KR101820943B1 (en) * 2016-03-17 2018-03-08 창원대학교 산학협력단 Fabrication method of slurry composition and ceramic mold or core using 3d printer
DK3463799T3 (en) 2016-05-27 2023-12-11 Aim3D Gmbh Plant for additive manufacturing of metal parts
DE102016110337B4 (en) * 2016-06-03 2022-06-02 WZR ceramic solutions GmbH 3D printing of various inorganic materials
CN107470626A (en) * 2017-06-14 2017-12-15 吴敏 A kind of 3D printing method
JP7130999B2 (en) * 2018-03-14 2022-09-06 セイコーエプソン株式会社 Manufacturing method of three-dimensional model
KR102217229B1 (en) * 2018-12-06 2021-02-19 한국생산기술연구원 Additive manufacturing method and an appratus for additive manufacturing
KR102167881B1 (en) * 2020-05-07 2020-10-20 (주)한미르 Apparatus for extruding raw material and 3D printer using the same
KR102312734B1 (en) * 2020-05-20 2021-10-14 한국세라믹기술원 Manufacturing method of ceramic 3-dimensional printing output sintered body
KR102393245B1 (en) * 2020-10-20 2022-05-02 한국세라믹기술원 Method of manufacturing sterolithography type ceramic 3-dimensional printing output sintered body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577328B1 (en) * 2013-10-15 2015-12-14 한국피아이엠(주) Micro-sized control parts and manufacturing method thereof
JP5687383B1 (en) * 2014-08-22 2015-03-18 有限会社 ネオ・ディーダブリューエス Portable wireless key
CN104711442A (en) * 2015-03-11 2015-06-17 北京科技大学 Method for manufacturing hard alloy by 3D printing
CN104711442B (en) * 2015-03-11 2016-11-30 北京科技大学 A kind of 3D prints the method manufacturing hard alloy
WO2017057838A1 (en) * 2015-10-02 2017-04-06 주식회사 쓰리디컨트롤즈 Composition containing metal powder for three-dimensional printing, three-dimensional printing method using same as raw material, and three-dimensional printing device
EP3357673A4 (en) * 2015-10-02 2019-05-15 3D Controls Inc. Composition containing metal powder for three-dimensional printing, three-dimensional printing method using same as raw material, and three-dimensional printing device
KR20220065962A (en) * 2020-11-13 2022-05-23 한국재료연구원 High stability thermoplastic pattern structure using curable monomer and method for manufacturing the same
KR102524621B1 (en) 2020-11-13 2023-04-24 한국재료연구원 High stability thermoplastic pattern structure using curable monomer and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000144205A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3433219B2 (en) Manufacturing method of metal or ceramic products
Rane et al. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts
US7351371B2 (en) Method for the production of near net-shaped metallic and/or ceramic parts
Piotter et al. Injection molding of components for microsystems
JP2003504518A (en) Method of forming microporous metal member
Todd et al. Developments in metal injection moulding (MIM)
JP2011144419A (en) Sintering method
US20210146437A1 (en) Method for producing parts having a complex shape by metal powder injection moulding
US6554882B1 (en) Rapid tooling sintering method and compositions therefor
WO2022231420A1 (en) Slurry feedstock for extrusion-based 3d printing of functionally graded articles and casting metal/ceramic article under low pressure at room temperature, methods, and system therefor
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
Ramkumar et al. Additive manufacturing of metals and ceramics using hybrid fused filament fabrication
Angelo Micro and nanofabrication by powder metallurgy
Bala et al. A review on binder jetting fabrication: Materials, characterizations and challenges
JPH0533006A (en) Production of injected and sintered body of powder
Zhang et al. Characterization of near-zero pressure powder injection moulding with sacrificial mould by using fingerprint geometries
Lenk Rapid prototyping of ceramic components
Cao et al. Feedstock technology for reactive metal injection molding: process, design, and application
Liu et al. Injection molding of 316L stainless steel microstructures
Knitter et al. Microfabrication of ceramics by rapid prototyping process chains
JP2012031477A (en) Method for manufacturing hollow sintered compact
Bertsch et al. Ceramic microcomponents by microstereolithography
Malik et al. Robocasting—Printing Ceramics into Functional Materials
Yin et al. Fabrication of micro gear wheels by micropowder injection molding
Shimizu et al. Microfabrication technique for thick structure of metals and PZT

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term