JP3433039B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3433039B2
JP3433039B2 JP03998497A JP3998497A JP3433039B2 JP 3433039 B2 JP3433039 B2 JP 3433039B2 JP 03998497 A JP03998497 A JP 03998497A JP 3998497 A JP3998497 A JP 3998497A JP 3433039 B2 JP3433039 B2 JP 3433039B2
Authority
JP
Japan
Prior art keywords
battery
carbon fiber
positive electrode
alkaline storage
graphitized carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03998497A
Other languages
Japanese (ja)
Other versions
JPH10223228A (en
Inventor
礼造 前田
克彦 新山
光紀 徳田
睦 矢野
光造 野上
育郎 米津
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03998497A priority Critical patent/JP3433039B2/en
Publication of JPH10223228A publication Critical patent/JPH10223228A/en
Application granted granted Critical
Publication of JP3433039B2 publication Critical patent/JP3433039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非焼結式ニッケル
正極を備えるアルカリ蓄電池に係わり、詳しくは、電池
容量が大きく、しかも充放電サイクル特性に優れるアル
カリ蓄電池を提供することを目的とした、正極活物質に
添加する導電剤の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery having a non-sintered nickel positive electrode, and more specifically, to provide an alkaline storage battery having a large battery capacity and excellent charge / discharge cycle characteristics. The present invention relates to improvement of a conductive agent added to a positive electrode active material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
コードレス機器の普及に伴い、ニッケル−水素化物蓄電
池、ニッケル−カドミウム蓄電池、ニッケル−亜鉛蓄電
池等のアルカリ蓄電池の需要が急速に伸びている。
2. Description of the Related Art In recent years,
With the spread of cordless devices, demand for alkaline storage batteries such as nickel-hydride storage batteries, nickel-cadmium storage batteries, and nickel-zinc storage batteries is rapidly increasing.

【0003】ところで、アルカリ蓄電池の正極活物質と
して使用されている水酸化ニッケルは電導度が低い。こ
のため、従来、金属ニッケル粉末の焼結体の空孔内に、
活物質を含浸させて得た焼結式ニッケル正極が汎用され
ている。焼結式ニッケル正極は、芯体(集電体)に電導
度の高い焼結体を用いることにより、活物質の電導度の
低さを補完したものである。
By the way, nickel hydroxide used as a positive electrode active material of an alkaline storage battery has a low electric conductivity. Therefore, conventionally, in the pores of the sintered body of metallic nickel powder,
A sintered nickel positive electrode obtained by impregnating an active material is widely used. The sintered nickel positive electrode complements the low electrical conductivity of the active material by using a sintered body having a high electrical conductivity for the core body (current collector).

【0004】しかしながら、焼結式ニッケル正極には、
焼結体の多孔度が一般に小さいことに起因して(通常、
80%以下である)、活物質の充填量が多い、すなわち
高エネルギー密度な電極が無いという欠点がある。ま
た、焼結体の空孔部の孔径が極めて小さいために(通
常、10μm以下である)、活物質の焼結基板への充填
を、煩雑な含浸工程を数回繰り返し行う必要がある溶液
含浸法により行わなければならないという欠点がある。
However, in the sintered nickel positive electrode,
Due to the generally low porosity of the sintered body (usually
80% or less), the amount of the active material filled is large, that is, there is no high energy density electrode. Further, since the pore size of the pores of the sintered body is extremely small (usually 10 μm or less), it is necessary to fill the sintered substrate with the active material by repeating a complicated impregnation step several times. The drawback is that it must be done by law.

【0005】このようなことから、近年、非焼結式ニッ
ケル正極が提案されている。非焼結式ニッケル正極は、
通常、水酸化ニッケルと結着剤溶液との混練物(ペース
ト)を多孔度の大きい導電性の基板に充填することによ
り作製される。非焼結式ニッケル正極では、多孔度の大
きい基板を用いることができるので(多孔度95%以上
の基板を用いることができる)、活物質の充填量を多く
することができるとともに、活物質の基板への充填が容
易である。
Under these circumstances, a non-sintered nickel positive electrode has recently been proposed. The non-sintered nickel positive electrode is
Usually, it is prepared by filling a kneaded material (paste) of nickel hydroxide and a binder solution into a conductive substrate having high porosity. In the non-sintered nickel positive electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), so that the filling amount of the active material can be increased and the active material Easy to fill the substrate.

【0006】しかしながら、非焼結式ニッケル正極にお
いて基板の多孔度を大きくし、活物質の充填量を多くす
ると、電子伝導性が悪くなり、活物質利用率が低下す
る。活物質利用率の低下は、正極容量及び電池容量の低
下となって現れる。
However, in the non-sintered nickel positive electrode, if the porosity of the substrate is increased and the filling amount of the active material is increased, the electron conductivity is deteriorated and the utilization ratio of the active material is lowered. The decrease in the active material utilization rate appears as a decrease in the positive electrode capacity and the battery capacity.

【0007】そこで、これを防止するべく、一般に、非
焼結式ニッケル正極では、活物質に導電剤が添加され
る。
Therefore, in order to prevent this, in a non-sintered nickel positive electrode, a conductive agent is generally added to the active material.

【0008】導電剤としては、水酸化コバルト等のコバ
ルト化合物が汎用されているが、高価で、比重が大きい
という欠点がある。
As a conductive agent, a cobalt compound such as cobalt hydroxide is generally used, but it has the drawbacks of being expensive and having a large specific gravity.

【0009】安価で、比重の小さい導電剤としては、ア
セチレンブラック等の球状の無定形炭素が知られている
が、この種の導電剤では、充分な電子伝導性が得られな
いとともに、耐食性が良くないために充放電を繰り返す
と酸化劣化し、電子伝導性が次第に悪くなる。
Spherical amorphous carbon such as acetylene black is known as a conductive agent which is inexpensive and has a small specific gravity. However, a conductive agent of this kind cannot provide sufficient electron conductivity and has corrosion resistance. Since it is not good, repeated charge and discharge causes oxidative deterioration and the electron conductivity gradually deteriorates.

【0010】かなり良好な電子伝導性が得られる導電剤
としては、粒状の人造黒鉛(特開平7−211316号
公報参照)及び炭素繊維(特開平5−314982号公
報参照)が提案されているが、これらの導電剤でも、充
分満足のいく電子伝導性は得られないとともに、充放電
を長く繰り返すと酸化劣化して電子伝導性が次第に悪く
なる。
[0010] Granular artificial graphite (see Japanese Unexamined Patent Publication No. 7-213316) and carbon fiber (see Japanese Unexamined Patent Publication No. 5-314982) have been proposed as conductive agents capable of obtaining considerably good electron conductivity. However, even with these conductive agents, sufficiently satisfactory electron conductivity cannot be obtained, and when charge and discharge are repeated for a long time, the electron conductivity gradually deteriorates due to oxidative deterioration.

【0011】本発明は、以上の事情に鑑みなされたもの
であって、非焼結式ニッケル正極に使用する導電剤を改
良することにより、電池容量(初期の放電容量)が大き
く、しかも充放電サイクル特性に優れるアルカリ蓄電池
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by improving the conductive agent used for the non-sintered nickel positive electrode, the battery capacity (initial discharge capacity) is large and the charge / discharge is further improved. An object is to provide an alkaline storage battery having excellent cycle characteristics.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係るアルカリ蓄電池(本発明電池)は、活
物質としての水酸化ニッケル又はオキシ水酸化ニッケル
に、導電剤として、気相成長法により得た炭素繊維を焼
成して作製した黒鉛化炭素繊維が添加されている非焼結
式ニッケル正極を備える。
The alkaline storage battery (the battery of the present invention) according to the present invention for achieving the above object comprises nickel hydroxide or nickel oxyhydroxide as an active material and a vapor phase as a conductive agent. A non-sintered nickel positive electrode to which graphitized carbon fibers produced by firing carbon fibers obtained by the growth method are added is provided.

【0013】本発明電池では、気相成長法により得た炭
素繊維を焼成して作製した黒鉛化炭素繊維が導電剤とし
て使用される。炭素繊維に限定した理由は、これが、球
状の炭素に比べて、炭素粒子間の電気的な接触抵抗が小
さいからであり、また基板から離れた位置にある活物質
と基板との間の電子伝導性を高める上で有利だからであ
る。黒鉛化した炭素に限定した理由は、これが、黒鉛化
していない炭素に比べて、電導度が高く、導電剤として
優れているからである。気相成長法により得た炭素に限
定される理由は、これが、液相成長法により得た炭素に
比べて、耐食性に優れるため、充放電を繰り返しても酸
化劣化しにくいからである。
In the battery of the present invention, the graphitized carbon fiber produced by firing the carbon fiber obtained by the vapor phase growth method is used as a conductive agent. The reason for limiting to carbon fiber is that it has a smaller electrical contact resistance between carbon particles than spherical carbon, and also the electron conduction between the active material located at a position distant from the substrate and the substrate. This is because it is advantageous in improving the sex. The reason why it is limited to graphitized carbon is that it has higher electric conductivity and is superior as a conductive agent as compared with non-graphitized carbon. The reason why it is limited to the carbon obtained by the vapor phase growth method is that it is more excellent in corrosion resistance than the carbon obtained by the liquid phase growth method, so that it is less likely to be oxidized and deteriorated even after repeated charge and discharge.

【0014】黒鉛化炭素繊維としては、結晶中(層間な
ど)にリチウムを含有するものが好ましい。黒鉛の結晶
中にリチウムを含有せしめることにより、電子伝導性が
向上すると考えられるからである。黒鉛の結晶中にリチ
ウムを含有せしめる方法としては、水酸化リチウム又は
リチウム塩を添加した水酸化カリウム水溶液を電解液に
使用して、充電時にリチウムを黒鉛化炭素繊維の結晶中
に取り込ませる方法が考えられる。別法として、アルカ
リ電解液に水酸化リチウム又はリチウム塩を添加してお
き、黒鉛化炭素繊維を陽極酸化して、リチウムが黒鉛化
炭素繊維の結晶中に取り込まれるようにする方法も考え
られる
The graphitized carbon fiber preferably contains lithium in the crystal (interlayer etc.). This is because it is considered that the electron conductivity is improved by including lithium in the graphite crystal. As a method of containing lithium in the crystal of graphite, there is a method of using lithium hydroxide or an aqueous solution of potassium hydroxide to which a lithium salt is added as an electrolytic solution, and incorporating lithium into the crystal of the graphitized carbon fiber during charging. Conceivable . Alternatively, a method of adding lithium hydroxide or a lithium salt to an alkaline electrolyte and anodizing the graphitized carbon fiber so that lithium is incorporated into the crystal of the graphitized carbon fiber is also considered.
To be

【0015】黒鉛化炭素繊維としては、嵩密度が0.0
15〜0.4g/cm3 のものが好ましい。嵩密度が
0.015g/cm3 未満の場合は、黒鉛化炭素繊維同
士の接触が悪くなるため、また嵩密度が0.4g/cm
3 を超えた場合は、水酸化ニッケルと均一に混合するこ
とが困難となるため、いずれの場合も優れた電子伝導性
が得られにくくなる。さらに、黒鉛化炭素繊維の繊維長
としては、10μm〜1mmが好ましい。繊維長が10
μm未満の場合は、黒鉛化炭素繊維同士の接触が悪くな
るため電子伝導性が得られにくい。一方、繊維長が1m
mを超えた場合は、活物質の基板への充填量が減少して
電池容量が低下する。さらにまた、黒鉛化炭素繊維の繊
維径としては、0.1〜50μmが好ましい。繊維径が
0.1μm未満の場合は、細すぎて優れた電子伝導性が
得られにくい。一方、繊維径が50μmを超えた場合
は、活物質の基板への充填量が減少して電池容量が減少
する。
The graphitized carbon fiber has a bulk density of 0.0
It is preferably from 15 to 0.4 g / cm 3 . If the bulk density is less than 0.015 g / cm 3 , contact between graphitized carbon fibers will be poor, and the bulk density will be 0.4 g / cm 3.
When it exceeds 3 , it becomes difficult to uniformly mix it with nickel hydroxide, and in any case, it becomes difficult to obtain excellent electron conductivity. Furthermore, the fiber length of the graphitized carbon fiber is preferably 10 μm to 1 mm. Fiber length is 10
If it is less than μm, the contact between the graphitized carbon fibers becomes poor, and it is difficult to obtain electron conductivity. On the other hand, the fiber length is 1m
When it exceeds m, the filling amount of the active material into the substrate is reduced and the battery capacity is reduced. Furthermore, the fiber diameter of the graphitized carbon fiber is preferably 0.1 to 50 μm. When the fiber diameter is less than 0.1 μm, it is too thin to obtain excellent electron conductivity. On the other hand, when the fiber diameter exceeds 50 μm, the filling amount of the active material into the substrate is reduced, and the battery capacity is reduced.

【0016】水酸化ニッケル又はオキシ水酸化ニッケル
に対する黒鉛化炭素繊維の好適な添加量は、水酸化ニッ
ケル又はオキシ水酸化ニッケル100重量部に対して1
〜20重量部である。添加量が1重量部未満の場合は、
充分な電子伝導性が得られず、一方添加量が20重量部
を超えた場合は、活物質の基板への充填量が減少して、
電池容量が低下する。
The preferred amount of graphitized carbon fiber added to nickel hydroxide or nickel oxyhydroxide is 1 part by weight per 100 parts by weight of nickel hydroxide or nickel oxyhydroxide.
~ 20 parts by weight. If the added amount is less than 1 part by weight,
If sufficient electron conductivity is not obtained and the addition amount exceeds 20 parts by weight, the filling amount of the active material into the substrate decreases,
Battery capacity decreases.

【0017】本発明は、活物質と基板との間の電子伝導
性が充分に確保されにくいパンチングメタルを基板とし
て用いた非焼結式ニッケル正極を備えるアルカリ蓄電池
に適用した場合に、特に有意義である。本発明の効果が
顕著に現れるからである。
The present invention is particularly significant when applied to an alkaline storage battery provided with a non-sintered nickel positive electrode using a punching metal as a substrate in which electron conductivity between the active material and the substrate is not sufficiently ensured. is there. This is because the effect of the present invention appears remarkably.

【0018】本発明電池の非焼結式ニッケル正極は、電
導度が高く、しかも耐食性に優れる導電剤を使用してい
るので、充放電サイクルの長期にわたって、電子伝導性
が良い。
The non-sintered nickel positive electrode of the battery of the present invention uses a conductive agent having high electric conductivity and excellent corrosion resistance, so that it has good electron conductivity over a long period of charge / discharge cycle.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0020】(実施例1) 〔正極の作製〕ベンゼンと触媒としての鉄微粒子(平均
粒径20nm)とを均一に混合して得た混合液を、装置
内温度を1200°Cに設定した反応装置内の水素ガス
気流中に噴霧してベンゼンを熱分解し、熱分解生成物を
気相反応させて、炭素繊維を作製した。なお、混合液の
供給速度は1cm3 /秒、水素ガスの供給速度は、10
0cm3 /秒とした。図1は、使用した反応装置Sを模
式的に示す断面図である。反応装置Sの円筒状の装置本
体1の外周壁には混合液供給管2が、底壁には水素ガス
供給管3が、上壁には排出管4が、それぞれ取り付けら
れている。混合液供給管2にはベンゼンと鉄微粒子の混
合液を貯留する貯留槽5が接続されている。装置本体1
の中に水素ガスを矢符方向に通流させるとともに、ベン
ゼンと鉄微粒子との混合液を混合液供給管2を介して装
置本体1の中に噴霧すると、鉄微粒子を核として炭素が
繊維状に成長した炭素繊維が生成するように構成されて
いる。排出管4より排出された炭素繊維は、他の成分
(未反応のベンゼン、鉄微粒子など)と分離され、収集
される。
(Example 1) [Production of positive electrode] A reaction mixture was prepared by uniformly mixing benzene and iron fine particles (average particle size 20 nm) as a catalyst, and the reaction temperature was set at 1200 ° C. Benzene was pyrolyzed by spraying it in a hydrogen gas stream in the apparatus, and the pyrolysis product was subjected to a gas phase reaction to produce carbon fiber. The supply rate of the mixed solution was 1 cm 3 / sec and the supply rate of hydrogen gas was 10 cm 3.
It was set to 0 cm 3 / sec. FIG. 1 is a sectional view schematically showing the reaction apparatus S used. A mixed liquid supply pipe 2 is attached to the outer peripheral wall of a cylindrical device body 1 of the reaction device S, a hydrogen gas supply pipe 3 is attached to the bottom wall, and a discharge pipe 4 is attached to the upper wall. A storage tank 5 for storing a mixed liquid of benzene and iron fine particles is connected to the mixed liquid supply pipe 2. Device body 1
When hydrogen gas is caused to flow through the inside of the device in the direction of the arrow and a mixed liquid of benzene and iron fine particles is sprayed into the apparatus main body 1 through the mixed liquid supply pipe 2, carbon becomes fibrous with iron fine particles as nuclei. It is configured to produce carbon fibers grown to. The carbon fibers discharged from the discharge pipe 4 are separated from other components (unreacted benzene, iron fine particles, etc.) and collected.

【0021】上記の如くして得た炭素繊維を2900°
Cで1時間焼成して、導電剤としての黒鉛化炭素繊維を
得た。この黒鉛化炭素繊維の嵩密度を求めたところ、
0.04g/cm3 であった。次いで、この黒鉛化炭素
繊維8重量部と、水酸化ニッケル72重量部と、メチル
セルロースの1重量%水溶液20重量部とを混練して、
ペーストを調製し、このペーストを2.4gのニッケル
の発泡メタル(寸法42mm×85mm)からなる多孔
性基板に充填し、乾燥し、加圧成型して、重さ6.4g
の非焼結式ニッケル正極を作製した。
The carbon fiber obtained as described above was treated at 2900 °
It was fired at C for 1 hour to obtain a graphitized carbon fiber as a conductive agent. When the bulk density of this graphitized carbon fiber was determined,
It was 0.04 g / cm 3 . Next, 8 parts by weight of this graphitized carbon fiber, 72 parts by weight of nickel hydroxide, and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose were kneaded,
A paste was prepared, and this paste was filled into a porous substrate made of 2.4 g of nickel foam metal (size 42 mm × 85 mm), dried, pressure-molded, and weighed 6.4 g.
The non-sintered nickel positive electrode of was produced.

【0022】〔負極の作製〕組成式MmNi3.2 CoA
0.2 Mn0.6 で表される水素吸蔵合金100重量部
に、ポリエチレンオキシド0.5重量部を添加し、さら
に適量の水を加えて、ペーストを調製し、このペースト
の中に基板としての鉄にニッケルめっきしたパンチング
メタルを通過させて引き上げ、乾燥し、加圧成型して、
水素吸蔵合金負極を作製した。
[Preparation of Negative Electrode] Compositional Formula MmNi 3.2 CoA
0.5 parts by weight of polyethylene oxide was added to 100 parts by weight of a hydrogen storage alloy represented by 0.2 Mn 0.6 , and an appropriate amount of water was added to prepare a paste. Iron was used as a substrate in the paste. Pass through a nickel-plated punching metal, pull up, dry, press mold,
A hydrogen storage alloy negative electrode was produced.

【0023】〔アルカリ蓄電池の作製〕上記の正極と負
極とを、間にセパレータを配置して重ね合わせ、渦巻き
状に巻回して、渦巻電極体を作製した。次いで、この渦
巻電極体をAAサイズの電池缶に挿入し、8モル/リッ
トルの水酸化カリウム水溶液2.4gをアルカリ電解液
として注液した後、封口して、密閉型のアルカリ蓄電池
X(本発明電池)を作製した。
[Preparation of Alkaline Storage Battery] The positive electrode and the negative electrode described above were superposed with a separator interposed therebetween and spirally wound to manufacture a spirally wound electrode body. Then, this spiral electrode body was inserted into an AA size battery can, and 2.4 g of an 8 mol / liter potassium hydroxide aqueous solution was injected as an alkaline electrolyte, which was then sealed to form a sealed alkaline storage battery X (main Invention battery) was produced.

【0024】(実施例2)アルカリ電解液として、水酸
化カリウムを7モル/リットル及び水酸化リチウムを1
モル/リットル含有するアルカリ水溶液を使用したこと
以外は実施例1と同様にして、密閉型のアルカリ蓄電池
Y(本発明電池)を作製した。
Example 2 As the alkaline electrolyte, 7 mol / liter of potassium hydroxide and 1 mol of lithium hydroxide were used.
A sealed alkaline storage battery Y (battery of the present invention) was produced in the same manner as in Example 1 except that an alkaline aqueous solution containing mol / liter was used.

【0025】(比較例1)正極の作製において、導電剤
として、黒鉛化炭素繊維8重量部に代えて、アセチレン
ブラック8重量部を使用したこと以外は実施例1と同様
にして、密閉型のアルカリ蓄電池A(比較電池)を作製
した。
(Comparative Example 1) A sealed type was prepared in the same manner as in Example 1 except that 8 parts by weight of acetylene black was used as the conductive agent instead of 8 parts by weight of the graphitized carbon fiber in the production of the positive electrode. An alkaline storage battery A (comparative battery) was produced.

【0026】(比較例2)正極の作製において、導電剤
として、黒鉛化炭素繊維8重量部に代えて、粒状の人造
黒鉛(Lonza SFG75)8重量部を使用したこ
と以外は実施例1と同様にして、密閉型のアルカリ蓄電
池B(比較電池)を作製した。
(Comparative Example 2) The same as Example 1 except that 8 parts by weight of artificial graphite (Lonza SFG75) was used as the conductive agent in place of 8 parts by weight of the graphitized carbon fiber in the production of the positive electrode. Then, a sealed alkaline storage battery B (comparative battery) was produced.

【0027】(比較例3)正極の作製において、導電剤
として、黒鉛化炭素繊維8重量部に代えて、焼成してい
ない炭素繊維を8重量部そのまま使用したこと以外は実
施例1と同様にして、密閉型のアルカリ蓄電池C(比較
電池)を作製した。
Comparative Example 3 In the same manner as in Example 1 except that 8 parts by weight of uncalcined carbon fiber was used as a conductive agent instead of 8 parts by weight of graphitized carbon fiber in the production of the positive electrode. Thus, a sealed alkaline storage battery C (comparative battery) was produced.

【0028】(比較例4)正極の作製において、導電剤
として、気相成長法により得た炭素繊維を焼成して作製
した黒鉛化炭素繊維8重量部に代えて、液相成長法によ
り得た炭素繊維を焼成して作製した黒鉛化炭素繊維8重
量部を使用したこと以外は実施例1と同様にして、密閉
型のアルカリ蓄電池D(比較電池)を作製した。上記の
液相成長法により得た炭素繊維を焼成して作製した黒鉛
化炭素繊維としては、液相成長法により作製された炭素
繊維を炭化・黒鉛化して作製された黒鉛化炭素繊維から
なる市販の不織布(ペトカ社製、商品コード「メルブロ
ンF−104」)を、乳鉢中で平均繊維長300μm、
平均繊維径7μmの大きさに粉砕したものを使用した。
(Comparative Example 4) In the production of a positive electrode, a conductive agent was obtained by a liquid phase growth method instead of 8 parts by weight of graphitized carbon fiber produced by firing carbon fiber obtained by a vapor phase growth method. A sealed alkaline storage battery D (comparative battery) was produced in the same manner as in Example 1 except that 8 parts by weight of graphitized carbon fiber produced by firing carbon fiber was used. The graphitized carbon fiber produced by firing the carbon fiber obtained by the above liquid phase growth method is a commercially available graphitized carbon fiber produced by carbonizing / graphitizing the carbon fiber produced by the liquid phase growth method. Of non-woven fabric (product code "Melvlon F-104" manufactured by Petka Co., Ltd.) in a mortar with an average fiber length of 300 μm
What was crushed to an average fiber diameter of 7 μm was used.

【0029】〈各電池の電池容量及び充放電サイクル特
性〉本発明電池X,Y及び比較電池A,B,C,Dにつ
いて、1Aで1.2時間充電した後、1Aで1Vまで放
電する工程を1サイクルとする充放電サイクル試験を行
い、各電池の電池容量(1サイクル目の放電容量)及び
充放電サイクル特性を調べた。結果を図2に示す。図2
は、各電池の充放電サイクル特性を、横軸に充放電サイ
クルを、縦軸に各充放電サイクルにおける放電容量をと
って示したグラフである。
<Battery Capacity and Charging / Discharging Cycle Characteristics of Each Battery> The process of charging the batteries X and Y of the present invention and the comparative batteries A, B, C and D for 1.2 hours at 1 A and then discharging to 1 V at 1 A. Was performed as a cycle, and the battery capacity (first cycle discharge capacity) and charge / discharge cycle characteristics of each battery were examined. The results are shown in Figure 2. Figure 2
3 is a graph showing charge / discharge cycle characteristics of each battery, with the horizontal axis representing the charge / discharge cycle and the vertical axis representing the discharge capacity in each charge / discharge cycle.

【0030】図2に示すように、本発明電池X,Yは、
比較電池A,B,C,Dに比べて、電池容量が大きいと
ともに、充放電サイクル特性に優れる。比較電池Aの電
池容量が小さく、充放電サイクル特性が良くないのは、
導電剤として使用したアセチレンブラックの電導度が低
いとともに、耐食性も悪いからである。比較電池B,
C,Dは電池容量はさほど小さくないが、使用した導電
剤の耐食性がいずれも良くないために充放電サイクル特
性が良くない。本発明電池Yの電池容量が、本発明電池
Xのそれに比べて大きいのは、導電剤として電導度が極
めて高いリチウムを含有する黒鉛化炭素繊維を使用した
ためと考えられる
As shown in FIG. 2, the batteries X and Y of the present invention are
Compared to the comparative batteries A, B, C, D, the battery capacity is large and the charge / discharge cycle characteristics are excellent. Comparative battery A has a small battery capacity and poor charge / discharge cycle characteristics.
This is because the acetylene black used as the conductive agent has low electric conductivity and poor corrosion resistance. Comparative battery B,
Battery capacity of C and D is not so small, but the charge and discharge cycle characteristics are not good because the corrosion resistance of the conductive agent used is not good. The battery capacity of the battery Y of the present invention is larger than that of the battery X of the present invention because the graphitized carbon fiber containing lithium having an extremely high conductivity is used as the conductive agent.
It is thought to be because .

【0031】(実施例3)正極の作製において、多孔性
基板として、発泡メタルに代えて、1.2gのパンチン
グメタルを使用したこと以外は実施例1(導電剤:本発
明の導電剤)と同様にして、密閉型のアルカリ蓄電池E
(本発明電池)を作製した(非焼結式ニッケル正極の重
量:5.2g)。
(Example 3) In Example 1 (conductive agent: conductive agent of the present invention), except that 1.2 g of punching metal was used as the porous substrate instead of foam metal in the production of the positive electrode. Similarly, a sealed alkaline storage battery E
(Invention battery) was produced (weight of non-sintered nickel positive electrode: 5.2 g).

【0032】(比較例5)正極の作製において、多孔性
基板として、発泡メタルに代えて、1.2gのパンチン
グメタルを使用したこと以外は比較例2(導電剤:Lo
nza SFG75)と同様にして、密閉型のアルカリ
蓄電池F(比較電池)を作製した(非焼結式ニッケル正
極の重量:5.2g)。
Comparative Example 5 Comparative Example 2 (conductive agent: Lo) except that 1.2 g of punching metal was used as the porous substrate in place of the foam metal in the production of the positive electrode.
nka SFG75), a sealed alkaline storage battery F (comparative battery) was produced (weight of non-sintered nickel positive electrode: 5.2 g).

【0033】(比較例6)正極の作製において、多孔性
基板として、発泡メタルに代えて、1.2gのパンチン
グメタルを使用したこと以外は比較例3(導電剤:焼成
していない炭素繊維)と同様にして、密閉型のアルカリ
蓄電池G(比較電池)を作製した(非焼結式ニッケル正
極の重量:5.2g)。
Comparative Example 6 Comparative Example 3 (conducting agent: unfired carbon fiber) except that 1.2 g of punching metal was used as the porous substrate in place of the foam metal in the production of the positive electrode. In the same manner as above, a sealed alkaline storage battery G (comparative battery) was produced (weight of non-sintered nickel positive electrode: 5.2 g).

【0034】〈各電池の電池容量及び充放電サイクル特
性〉本発明電池E及び比較電池F,Gについて、先と同
じ条件の充放電サイクル試験を行い、各電池の電池容量
及び充放電サイクル特性を調べた。結果を図2と同じ座
標系の図3に示す。
<Battery Capacity and Charge / Discharge Cycle Characteristics of Each Battery> The battery E and comparative batteries F and G of the present invention were subjected to a charge / discharge cycle test under the same conditions as above, and the battery capacity and charge / discharge cycle characteristics of each battery were determined. Examined. The results are shown in FIG. 3, which has the same coordinate system as in FIG.

【0035】図2と図3の比較から、本発明電池Eは対
応する本発明電池Xに比べて電池容量が少し小さい程度
であるのに対して、比較電池F,Gは対応する比較電池
B,Cに比べて、電池容量が格段小さいとともに、充放
電サイクル特性が格段良くないことが分かる。この事実
から、本発明は、パンチングメタルを多孔性基板として
使用した非焼結式ニッケル正極を備えるアルカリ蓄電池
に適用した場合に、特に有意義であることが分かる。
From the comparison between FIG. 2 and FIG. 3, the battery E of the present invention has a slightly smaller battery capacity than the corresponding battery X of the present invention, whereas the comparative batteries F and G show the corresponding comparative battery B. , C, the battery capacity is much smaller, and the charge / discharge cycle characteristics are not so good. From this fact, it can be seen that the present invention is particularly significant when applied to an alkaline storage battery having a non-sintered nickel positive electrode using a punching metal as a porous substrate.

【0036】〈黒鉛化炭素繊維の嵩密度と高率放電特性
の関係〉正極の作製において、導電剤として、気相成長
法により得た炭素繊維を焼成して作製した表1に示す種
々の嵩密度の黒鉛化炭素繊維を使用したこと以外は実施
例1と同様にして、密閉型のアルカリ蓄電池H,I,
J,K,L,M,N,O,P,Qを作製した。なお、ア
ルカリ蓄電池Kは本発明電池Xと同じ電池である。
<Relationship between Bulk Density of Graphitized Carbon Fiber and High Rate Discharge Characteristic> In the production of a positive electrode, various bulks shown in Table 1 produced by firing carbon fiber obtained by a vapor phase growth method as a conductive agent. In the same manner as in Example 1 except that the high density graphitized carbon fiber was used, the sealed alkaline storage batteries H, I,
J, K, L, M, N, O, P and Q were produced. The alkaline storage battery K is the same battery as the battery X of the present invention.

【0037】[0037]

【表1】 [Table 1]

【0038】各電池を、100mAで16時間充電した
後、100mAで1Vまで放電して、放電容量C1を求
め、次いで、各電池を、100mAで16時間充電した
後、2000mAで1Vまで放電して、放電容量C2を
求めた。放電容量C1及び放電容量C2から、下式で定
義される放電率Rを求めた。放電率Rが大きいほど、高
率放電特性に優れていることを示す。結果を図4に示
す。図4は、黒鉛化炭素繊維の嵩密度と高率放電特性の
関係を、縦軸に放電率R(%)を、横軸に各電池に使用
した黒鉛化炭素繊維の嵩密度(g/cm3 )をとって示
したグラフである。なお、横軸は、常用対数目盛であ
る。
Each battery was charged at 100 mA for 16 hours and then discharged at 100 mA to 1 V to obtain a discharge capacity C1. Then, each battery was charged at 100 mA for 16 hours and then discharged to 2000 V at 1 V. The discharge capacity C2 was determined. The discharge rate R defined by the following formula was determined from the discharge capacity C1 and the discharge capacity C2. The higher the discharge rate R, the better the high rate discharge characteristics. The results are shown in Fig. 4. FIG. 4 shows the relationship between the bulk density of the graphitized carbon fiber and the high rate discharge characteristics, the vertical axis represents the discharge rate R (%) and the horizontal axis represents the bulk density (g / cm) of the graphitized carbon fiber used in each battery. 3 is a graph showing the above. The horizontal axis is a common logarithmic scale.

【0039】放電率R(%)=C2/C1×100Discharge rate R (%) = C2 / C1 × 100

【0040】図4に示すように、嵩密度が0.015〜
0.4g/cm3 のアルカリ蓄電池I,J,K,L,
M,N,Oの放電率Rが他のアルカリ蓄電池のそれらに
比べて大きい。この事実から、高率放電特性にも優れた
アルカリ蓄電池を得るためには、嵩密度が0.015〜
0.4g/cm3 の黒鉛化炭素繊維を使用することが好
ましいことが分かる。
As shown in FIG. 4, the bulk density is 0.015 to 0.015.
0.4 g / cm 3 alkaline storage batteries I, J, K, L,
The discharge rates R of M, N and O are larger than those of other alkaline storage batteries. From this fact, in order to obtain an alkaline storage battery excellent in high rate discharge characteristics, the bulk density is 0.015 to
It can be seen that it is preferable to use 0.4 g / cm 3 of graphitized carbon fiber.

【0041】上記の実施例では非焼結式ニッケル正極の
活物質として水酸化ニッケルを使用したが、オキシ水酸
化ニッケルを正極活物質として使用した放電スタートの
アルカリ蓄電池(充電することなく初回の放電を行うア
ルカリ蓄電池)の場合も、本発明を適用することによ
り、上記と同様の優れた効果が得られることを別途確認
した。
Although nickel hydroxide was used as the active material of the non-sintered nickel positive electrode in the above examples, a discharge-start alkaline storage battery using nickel oxyhydroxide as the positive electrode active material (first discharge without charging) It has been separately confirmed that the same excellent effects as described above can be obtained by applying the present invention in the case of the alkaline storage battery).

【0042】[0042]

【発明の効果】本発明は、電池容量が大きく、しかも充
放電サイクル特性に優れるアルカリ蓄電池を提供する。
The present invention provides an alkaline storage battery having a large battery capacity and excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】気相成長法により炭素繊維を作製するための反
応装置の断面図である。
FIG. 1 is a cross-sectional view of a reaction device for producing carbon fibers by a vapor growth method.

【図2】本発明電池及び比較電池の充放電サイクル特性
を示したグラフである。
FIG. 2 is a graph showing charge / discharge cycle characteristics of the battery of the present invention and the comparative battery.

【図3】本発明電池及び比較電池の充放電サイクル特性
を示したグラフである。
FIG. 3 is a graph showing charge / discharge cycle characteristics of a battery of the present invention and a comparative battery.

【図4】黒鉛化炭素繊維の嵩密度と高率放電特性の関係
を示したグラフである。
FIG. 4 is a graph showing the relationship between the bulk density of graphitized carbon fibers and high rate discharge characteristics.

【符号の説明】 S 反応装置 1 装置本体 2 混合液供給管 3 水素ガス供給管 4 排出管 5 貯留槽[Explanation of symbols] S reactor 1 device body 2 Mixed liquid supply pipe 3 Hydrogen gas supply pipe 4 discharge pipe 5 storage tanks

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 睦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平5−314982(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/24 - 4/32 H01M 10/26 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Mutsumi Yano 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Kozo Nogami 2-5- Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 In Sanyo Electric Co., Ltd. (72) Inventor Ichiro Yonezu 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-5-314982 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/62 H01M 4/24-4 / 32 H01M 10/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】活物質としての水酸化ニッケル又はオキシ
水酸化ニッケルに、導電剤として、気相成長法により得
た炭素繊維を焼成して作製した黒鉛化炭素繊維が添加さ
れている非焼結式ニッケル正極と、負極と、アルカリ電
解液とを備えるアルカリ蓄電池。
1. Non-sintering in which nickel hydroxide or nickel oxyhydroxide as an active material is added with graphitized carbon fiber produced by firing carbon fiber obtained by a vapor phase growth method as a conductive agent. An alkaline storage battery comprising a nickel positive electrode, a negative electrode, and an alkaline electrolyte.
【請求項2】前記アルカリ電解液に水酸化リチウム又は
リチウム塩が添加されている請求項1記載のアルカリ蓄
電池。
2. The alkaline electrolyte is lithium hydroxide or
The alkaline storage according to claim 1, wherein a lithium salt is added.
battery.
【請求項3】前記黒鉛化炭素繊維の嵩密度が0.015
〜0.4g/cm 3 である請求項1又は2記載のアルカ
リ蓄電池。
3. The bulk density of the graphitized carbon fiber is 0.015.
~ 0.4g / cm 3 Alka according to claim 1 or 2.
Rechargeable battery.
JP03998497A 1997-02-06 1997-02-06 Alkaline storage battery Expired - Fee Related JP3433039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03998497A JP3433039B2 (en) 1997-02-06 1997-02-06 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03998497A JP3433039B2 (en) 1997-02-06 1997-02-06 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10223228A JPH10223228A (en) 1998-08-21
JP3433039B2 true JP3433039B2 (en) 2003-08-04

Family

ID=12568218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03998497A Expired - Fee Related JP3433039B2 (en) 1997-02-06 1997-02-06 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3433039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121556A (en) 2014-02-10 2016-10-19 엑서지 파워 시스템즈 가부시키가이샤 Alkaline secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220486C1 (en) * 2002-05-07 2003-09-18 Nbt Gmbh Sealed alkaline accumulator for storing electrical energy uses graphite, mainly as short fibers, as conductor in active paste of nickel hydroxide with cobalt (hydr)oxide and binder for pasting nickel (plated) support of positive electrode
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode
JP5470700B2 (en) 2007-12-10 2014-04-16 住友大阪セメント株式会社 ELECTRODE MATERIAL, MANUFACTURING METHOD THEREOF, AND ELECTRODE AND BATTERY
JP6727264B2 (en) * 2018-09-18 2020-07-22 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using the same
CN111463499B (en) * 2020-03-18 2021-12-28 山东合泰新能源有限公司 Electrolyte for secondary zinc-nickel battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121556A (en) 2014-02-10 2016-10-19 엑서지 파워 시스템즈 가부시키가이샤 Alkaline secondary battery
US20160351907A1 (en) * 2014-02-10 2016-12-01 Exergy Power Systems, Inc. Alkaline secondary cell
US10381647B2 (en) * 2014-02-10 2019-08-13 Exergy Power Systems, Inc. Alkaline secondary cell

Also Published As

Publication number Publication date
JPH10223228A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP3433039B2 (en) Alkaline storage battery
JP3296754B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
JP4458725B2 (en) Alkaline storage battery
JP3925963B2 (en) Alkaline secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3686139B2 (en) Alkaline secondary battery
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3268989B2 (en) Nickel electrode for alkaline storage battery
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP4458749B2 (en) Alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH09219192A (en) Non-sintered nickel electrode for alkalin storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2958786B2 (en) Hydrogen storage electrode
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP3789702B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery
JP3384938B2 (en) Alkaline storage battery
JP2983135B2 (en) Alkaline secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees