JP3423280B2 - Organic / inorganic composite thin film solar cell - Google Patents

Organic / inorganic composite thin film solar cell

Info

Publication number
JP3423280B2
JP3423280B2 JP2000290288A JP2000290288A JP3423280B2 JP 3423280 B2 JP3423280 B2 JP 3423280B2 JP 2000290288 A JP2000290288 A JP 2000290288A JP 2000290288 A JP2000290288 A JP 2000290288A JP 3423280 B2 JP3423280 B2 JP 3423280B2
Authority
JP
Japan
Prior art keywords
thin film
organic
semiconductor
inorganic
composite thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000290288A
Other languages
Japanese (ja)
Other versions
JP2002100793A (en
Inventor
昌宏 平本
正明 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000290288A priority Critical patent/JP3423280B2/en
Publication of JP2002100793A publication Critical patent/JP2002100793A/en
Application granted granted Critical
Publication of JP3423280B2 publication Critical patent/JP3423280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機半導体を用いて
太陽光エネルギーを電気に変換する固体太陽電池に関す
るものである。
TECHNICAL FIELD The present invention relates to a solid-state solar cell that converts solar energy into electricity using an organic semiconductor.

【0002】[0002]

【従来の技術】従来、有機半導体を用いた固体太陽電池
は、有機半導体の単独層を金属、無機半導体又は有機半
導体の単独層と積層した単純な接合における光起電力効
果を利用して、光電エネルギー変換を行うのが通例とな
っていた。従来の技術としては、有機半導体/金属接合
(例えば、D. L. Morel, A. K. Ghosh, T. Feng, E. L.
Stogryn, P. E. Purwin, R. F. Shaw, C. Fishman, App
lied Physics Letters,32, 495 (1978)参照)、異種有
機半導体接合(例えば、C. W. Tang, Applied Physics
Letters, 48, 183 (1986)参照)、及び有機半導体/無
機半導体接合(例えば、A. M. Hor, R. O. Loutfy, Can
adian Journal of Chemistry, 61, 901 (1983)参照)を
有する有機太陽電池がある。
2. Description of the Related Art Conventionally, a solid-state solar cell using an organic semiconductor utilizes a photovoltaic effect in a simple junction in which a single layer of an organic semiconductor and a single layer of a metal, an inorganic semiconductor, or an organic semiconductor are laminated to make use of a photovoltaic effect. It was customary to convert energy. Conventional technologies include organic semiconductor / metal bonding (eg DL Morel, AK Ghosh, T. Feng, EL
Stogryn, PE Purwin, RF Shaw, C. Fishman, App
lied Physics Letters, 32, 495 (1978)), heterogeneous organic semiconductor junctions (eg CW Tang, Applied Physics
Letters, 48, 183 (1986)) and organic / inorganic semiconductor junctions (eg AM Hor, RO Loutfy, Can).
There is an organic solar cell having adian Journal of Chemistry, 61, 901 (1983)).

【0003】[0003]

【発明が解決しようとする課題】上述した従来の単純な
接合の有機太陽電池では、接合近傍に形成される有機半
導体の光キャリア生成に活性な領域幅が非常に狭く、接
合近傍の活性領域(通常数十nm程度)以外の有機半導
体層は光吸収してもキャリアを生成しないdead layerと
なり、その上、有機半導体の光キャリア生成能力自体が
高くないため、有機薄膜全体としての光キャリヤ生成効
率は非常に低い値となり、結果として、小さな光電流、
つまり低い光電エネルギー変換効率しか得られない欠点
があった。そこで、本発明は有機半導体を用いた固体太
陽電池の光電流を増大させ、光電エネルギー変換効率を
高めることを目的とするものである。
In the above-mentioned conventional simple junction organic solar cell, the width of the active region of the organic semiconductor formed near the junction for generating photocarriers is very narrow, and the active region near the junction ( The organic semiconductor layers other than several tens of nm are usually dead layers that do not generate carriers even if they absorb light, and the optical carrier generation capacity of the organic semiconductor is not high, so the optical carrier generation efficiency of the entire organic thin film is high. Becomes a very low value, resulting in a small photocurrent,
That is, there is a drawback that only low photoelectric energy conversion efficiency can be obtained. Then, this invention aims at increasing the photocurrent of the solid-state solar cell using an organic semiconductor, and raising photoelectric energy conversion efficiency.

【0004】[0004]

【課題を解決するための手段】本発明の固体太陽電池
は、有機半導体と無機半導体が混合して複合化した複合
薄膜と、この薄膜を挟んでその両面に設けられ、この複
合薄膜に内蔵電界を与えるための半導体もしくは金属、
又はそれら双方からなる電極部とを備え、その複合薄膜
の全体が、光キャリア生成に活性に働くように全体にわ
たってpn接合が存在している構造をもった有機・無機
複合薄膜太陽電池であり、有機・無機複合薄膜の高い光
キャリヤ生成能力を利用して高効率の太陽光エネルギー
変換を行うものである。
A solid-state solar cell of the present invention is provided with a composite thin film in which an organic semiconductor and an inorganic semiconductor are mixed to form a composite film, and the composite thin film is provided on both sides of the composite thin film with the built-in electric field. Semiconductor or metal to give
Or a composite thin film having an electrode part composed of both of them
The whole of the
This is an organic-inorganic composite thin film solar cell having a structure in which a pn junction is present, and is one that performs high-efficiency solar energy conversion by utilizing the high photocarrier generation ability of the organic-inorganic composite thin film.

【0005】上述した従来の単純な接合の有機太陽電池
に対し、本発明の有機・無機複合薄膜太陽電池は、有機
半導体と無機半導体を混合して複合化し、有機/無機半
導体接合が薄膜全体に張り巡らされた極微細な構造を形
成することによって、膜全体が光キャリア生成に活性な
層として動作し、さらに、有機/無機界面における電子
移動効果や無機半導体の高い誘電率の効果等に起因す
る、光生成した電子-ホール対の分離促進効果によっ
て、大きな光電流および高効率光電エネルギー変換効率
を達成する。
In contrast to the conventional simple junction organic solar cell described above, the organic-inorganic composite thin-film solar cell of the present invention mixes an organic semiconductor and an inorganic semiconductor to form a composite, and an organic / inorganic semiconductor junction is formed over the entire thin film. By forming an extremely fine structure that stretches around, the entire film acts as an active layer for the generation of photocarriers, and also due to the effect of electron transfer at the organic / inorganic interface and the high dielectric constant of the inorganic semiconductor. Due to the effect of promoting the separation of photogenerated electron-hole pairs, a large photocurrent and high efficiency photoelectric energy conversion efficiency are achieved.

【0006】[0006]

【発明の実施の形態】本発明における電極部は、半導体
もしくは金属、又はそれら双方により構成することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode portion in the present invention can be composed of a semiconductor, a metal, or both.

【0007】この複合薄膜に内蔵電界を与える1つの好
ましい方法は、電極部の一方は仕事関数の大きな金属を
含み、他方は仕事関数の小さな金属を含んでいるように
構成することである。仕事関数の大きな金属としては白
金(Pt),金(Au),ITO(indium tin oxid
e),オスミウム(Os),パラジウム(Pd)などを
用いることができ、仕事関数の小さな金属としてはマグ
ネシウム−銀(Mg−Ag)合金,カルシウム(C
a),リチウム(Li),アルミニウム(Al),銀
(Ag),マグネシウム(Mg),インジウム(In)
などを用いることができる。1つの組合わせとして、仕
事関数の大きな金属としてPtを用い、仕事関数の小さ
な金属としてMg−Ag合金を用いることができる。
One preferred method of applying a built-in electric field to the composite thin film is to construct one of the electrode portions containing a metal having a large work function and the other containing a metal having a small work function. Metals with a high work function include platinum (Pt), gold (Au), ITO (indium tin oxid)
e), osmium (Os), palladium (Pd) and the like can be used, and examples of the metal having a small work function include magnesium-silver (Mg-Ag) alloy and calcium (C).
a), lithium (Li), aluminum (Al), silver (Ag), magnesium (Mg), indium (In)
Etc. can be used. As one combination, Pt can be used as a metal having a large work function, and Mg-Ag alloy can be used as a metal having a small work function.

【0008】この複合薄膜に内蔵電界を与える他の好ま
しい方法は、電極部のそれぞれは複合薄膜と接する半導
体層を介して金属電極が配置された構造とし、一方の電
極部の半導体層は複合薄膜を構成している有機半導体と
同じ有機半導体の薄膜とし、他方の電極部の半導体層は
複合薄膜を構成している無機半導体と同じ無機半導体の
薄膜とすることである。電極部における金属電極は、半
導体層を含むときは半導体層上に設け、半導体層を含ま
ないときは複合薄膜に直接接するように設ける。
Another preferred method of applying a built-in electric field to this composite thin film is to have a structure in which a metal electrode is arranged in each of the electrode parts via a semiconductor layer in contact with the composite thin film, and the semiconductor layer of one of the electrode parts is a composite thin film. Is a thin film of the same organic semiconductor as the organic semiconductor constituting the above, and the semiconductor layer of the other electrode part is a thin film of the same inorganic semiconductor as the inorganic semiconductor constituting the composite thin film. The metal electrode in the electrode portion is provided on the semiconductor layer when the semiconductor layer is included, and is provided so as to be in direct contact with the composite thin film when the semiconductor layer is not included.

【0009】本発明において用いる有機半導体として
は、光電導性有機半導体(光照射によってキャリアを発
生出来る有機半導体)であれば、どのような種類のもの
を用いてもよい。有機半導体にはp型性を示す有機半導
体(p型有機半導体)とn型性を示す有機半導体(n型
有機半導体)がある。本発明で使用する主な有機半導体
を図2に例示する。
Any kind of organic semiconductor may be used as the organic semiconductor as long as it is a photoconductive organic semiconductor (organic semiconductor capable of generating carriers by light irradiation). The organic semiconductor includes an organic semiconductor exhibiting p-type property (p-type organic semiconductor) and an organic semiconductor exhibiting n-type property (n-type organic semiconductor). The main organic semiconductors used in the present invention are illustrated in FIG.

【0010】n型有機半導体には、ペリレン顔料とその
誘導体(窒素原子に付いている置換基の異なる誘導体は
多種知られており、例えば、Me−PTC,t−BuP
h−PTC,PhEt−PTCなどがあり、高い光電変
換能を持つIm−PTCもある。)、ナフタレン誘導体
(ペリレン顔料のペリレン骨格がナフタレンになってい
るもので、例えばNTCDA)、C60(フラーレンと
も呼ばれる)等が挙げられる。
For n-type organic semiconductors, various types of perylene pigments and their derivatives (derivatives having different substituents on the nitrogen atom) are known. For example, Me-PTC, t-BuP.
There are h-PTC, PhEt-PTC and the like, and also Im-PTC having a high photoelectric conversion ability. ), A naphthalene derivative (wherein the perylene skeleton of the perylene pigment is naphthalene, such as NTCDA), and C60 (also called fullerene).

【0011】p型有機半導体には、フタロシアニン顔料
とその誘導体(中心に種々の金属をもつMPc、金属を
もたないH2Pcや、周りに種々の置換基の付いたも
の)、キナクリドン顔料(DQ)、ポルフィリン、メロ
シアニン等とその誘導体が挙げられる。
The p-type organic semiconductor includes phthalocyanine pigments and their derivatives (MPc having various metals at the center, H 2 Pc having no metal, and various substituents around it), quinacridone pigment ( DQ), porphyrin, merocyanine and the like and derivatives thereof.

【0012】無機半導体にはn型、p型のほか、どちら
にもなるものもある。n型無機半導体としては、Cd
S,ZnO,TiO2,SnO2,WO3,Fe23,S
i,SiC,GaAsなどを用いることができる。ま
た、p型無機半導体としてはCdTe,Si,SiC,
GaAsなどを用いることができる。この複合薄膜は、
有機半導体と無機半導体を共蒸着によって形成して複合
化することができる。他の成膜手段、例えばスパッタリ
ング法によって形成してもよい。
Inorganic semiconductors include n-type and p-type semiconductors as well as some of them. As the n-type inorganic semiconductor, Cd
S, ZnO, TiO 2 , SnO 2 , WO 3 , Fe 2 O 3 , S
i, SiC, GaAs or the like can be used. Further, as the p-type inorganic semiconductor, CdTe, Si, SiC,
GaAs or the like can be used. This composite thin film
An organic semiconductor and an inorganic semiconductor can be formed by co-evaporation to form a composite. It may be formed by another film forming means, for example, a sputtering method.

【0013】この複合薄膜の膜厚は入射太陽光のほとん
どを吸収でき、かつ、光キャリア生成量子収率の低下し
ない膜厚に最適化する必要がある。膜厚を大きくする
と、光をすべて吸収できるようになり光の利用効率(吸
収率)は向上するが、内蔵電界強度は減少するため光キ
ャリア生成効率が減少する可能性が高く、トレードオフ
の関係があるため最適化は必要である。また、この複合
薄膜は太陽光スペクトルの全域に吸収を持つように、こ
の複合薄膜を構成する半導体の組合せを選択するのが望
ましい。
It is necessary to optimize the film thickness of this composite thin film so that it can absorb most of incident sunlight and the photocarrier generation quantum yield does not decrease. When the film thickness is increased, all the light can be absorbed and the light utilization efficiency (absorptivity) is improved, but the built-in electric field strength is reduced, so there is a high possibility that the photocarrier generation efficiency will be reduced. Therefore, optimization is necessary. It is also desirable to select the combination of semiconductors that make up the composite thin film so that the composite thin film has absorption over the entire solar spectrum.

【0014】[0014]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の断面図である。3はp型
有機半導体とn型無機半導体から成る共蒸着複合薄膜
で、p型有機半導体薄膜2とn型無機半導体薄膜4によ
りその複合薄膜3を挟んでサンドウィッチ状の積層体を
構成している。p型有機半導体薄膜2上には金属電極
1、n型無機半導体薄膜4上には透明電極5がそれぞれ
形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of an embodiment of the present invention. 3 is a co-deposited composite thin film composed of a p-type organic semiconductor and an n-type inorganic semiconductor, and sandwiches the composite thin film 3 between the p-type organic semiconductor thin film 2 and the n-type inorganic semiconductor thin film 4 to form a sandwich-like laminated body. . A metal electrode 1 is formed on the p-type organic semiconductor thin film 2, and a transparent electrode 5 is formed on the n-type inorganic semiconductor thin film 4.

【0015】以上の構造の電池に透明電極5側から太陽
光を照射すると、電極1が電極5に対してプラスとなる
光起電圧が生じ、電池内部において電極1から電極5に
向かって電子が流れる方向に光電流が生じる。
When sunlight is radiated from the transparent electrode 5 side to the battery having the above structure, a photovoltaic voltage is generated in which the electrode 1 is positive with respect to the electrode 5, and electrons are emitted from the electrode 1 toward the electrode 5 inside the battery. Photocurrent is generated in the flowing direction.

【0016】次に、この実施例を参照して本発明の動作
原理を述べる。図3は、有機半導体と無機半導体が微細
に混合した複合構造を持つ有機・無機複合薄膜のエネル
ギー構造を模式的に表した図である。6はp型有機半導
体、7はn型無機半導体、8は太陽光、9は有機/無機
のpn接合で光生成した電子−ホール対、10はp型有
機半導体6中を輸送される光生成ホール、11はn型無
機半導体7中を輸送される光生成電子、12は伝導帯、
13は価電子帯、14は電子のエネルギーである。
Next, the operating principle of the present invention will be described with reference to this embodiment. FIG. 3 is a diagram schematically showing the energy structure of an organic-inorganic composite thin film having a composite structure in which an organic semiconductor and an inorganic semiconductor are finely mixed. 6 is a p-type organic semiconductor, 7 is an n-type inorganic semiconductor, 8 is sunlight, 9 is an electron-hole pair photogenerated by an organic / inorganic pn junction, and 10 is photogeneration generated in the p-type organic semiconductor 6. Holes, 11 photogenerated electrons transported in the n-type inorganic semiconductor 7, 12 conduction band,
13 is a valence band, and 14 is electron energy.

【0017】有機・無機複合薄膜は、n型無機半導体7
とp型有機半導体6が互いに入り組んだ微細構造を持
ち、両者の界面に形成されるpn接合が複合薄膜全体に
張り巡らされたエネルギー構造を持つ。照射された太陽
光は有機半導体6または無機半導体7で吸収され、pn
接合界面で電子−ホール対9を光生成する。光生成電子
11はn型無機半導体7側に、光生成ホール10はp型
有機半導体6側に分離されて別々に輸送される。
The organic-inorganic composite thin film is an n-type inorganic semiconductor 7
And the p-type organic semiconductor 6 have an intricate microstructure, and the pn junction formed at the interface between the two has an energy structure extending over the entire composite thin film. The irradiated sunlight is absorbed by the organic semiconductor 6 or the inorganic semiconductor 7, and the pn
Electron-hole pairs 9 are photogenerated at the junction interface. The photo-generated electrons 11 are separated to the n-type inorganic semiconductor 7 side, and the photo-generated holes 10 are separated to the p-type organic semiconductor 6 side and transported separately.

【0018】有機・無機複合薄膜が高い光電変換能力を
示す原理について以下に述べる。第1に、複合薄膜全体
が光キャリア生成に活性に働くことがあげられる。すな
わち、金属または無機半導体と有機半導体の間の単純な
接合を持つ従来の有機太陽電池では、接合のごく近傍の
活性層でしか有機半導体の光キャリア生成が起こらず、
接合から遠く離れた有機半導体層は光吸収してもキャリ
アを生成しないために dead layer となり、結果として
薄膜全体としての光キャリヤ生成効率は非常に低い値と
なっていたが、本発明の有機・無機複合薄膜において
は、pn接合が膜全体に張り巡らされた構造のため、 d
ead layer がなく、膜全体が光キャリヤ生成に対して活
性に働き、膜で吸収された光すべてがキャリア生成に寄
与するため、大きな光電流が得られる効果がある。
The principle that the organic / inorganic composite thin film exhibits high photoelectric conversion capability will be described below. First, the entire composite thin film is active in photocarrier generation. That is, in a conventional organic solar cell having a simple junction between a metal or inorganic semiconductor and an organic semiconductor, photocarrier generation of the organic semiconductor occurs only in the active layer in the immediate vicinity of the junction,
The organic semiconductor layer far away from the junction does not generate carriers even if it absorbs light, so it becomes a dead layer, and as a result, the photocarrier generation efficiency of the thin film as a whole is very low. In the inorganic composite thin film, since the pn junction is spread over the entire film, d
Since there is no ead layer, the entire film works actively for photocarrier generation, and all the light absorbed in the film contributes to carrier generation, so that a large photocurrent can be obtained.

【0019】第2に、以下に述べる有機/無機界面の電
子移動によって光キャリア生成効率が向上する効果があ
げられる。図4に高い光キャリア生成能を与えると予想
されるn型無機半導体とp型有機半導体のエネルギー関
係を示す。16,17はn型無機半導体の価電子帯と伝
導帯、19,20はp型有機半導体のHOMO(最高占
有分子軌道)とLUMO(最低非占有分子軌道)準位、
21はHOMOからLUMOへの光励起、22は光励起
された電子、23は光生成したホール、24は励起され
た電子22の無機半導体伝導帯17への電子移動、25
は電子のエネルギーを示す。有機半導体単独膜の場合、
励起状態は励起された分子内に局在化し、励起電子とホ
ールは強いクーロン引力で束縛されたフレンケル型の励
起子を形成しているため、通常はほとんどの励起状態が
失活して、光電流となる自由な電子とホールが生成する
効率は非常に低い。それに対して、無機半導体と有機半
導体を混合した場合、光励起によって生じた電子22が
エネルギーのより低い無機半導体の伝導帯17へ電子移
動してホールと分離されるため、自由な電子とホールの
生成効率が大きく向上する。なお、この効果が起こるた
めには、図4に示したように、有機半導体のLUMO準
位20が無機半導体の伝導帯17下端よりも、高いエネ
ルギー位置にあることが必要で、そのようなエネルギー
関係を持つ有機、無機半導体材料の組み合わせが望まれ
る。
Secondly, there is an effect that the photocarrier generation efficiency is improved by electron transfer at the organic / inorganic interface described below. FIG. 4 shows the energy relationship between an n-type inorganic semiconductor and a p-type organic semiconductor that are expected to give a high photocarrier generation ability. 16, 17 are valence band and conduction band of n-type inorganic semiconductor, 19 and 20 are HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) levels of p-type organic semiconductor,
21 is photoexcitation from HOMO to LUMO, 22 is photoexcited electron, 23 is photogenerated hole, 24 is electron transfer of excited electron 22 to inorganic semiconductor conduction band 17, 25
Indicates the energy of an electron. In the case of a single organic semiconductor film,
Excited states are localized in the excited molecule, and excited electrons and holes form Frenkel-type excitons bound by strong Coulomb attraction, so most excited states are usually deactivated and The efficiency of generating free electrons and holes that become electric current is very low. On the other hand, when the inorganic semiconductor and the organic semiconductor are mixed, the electrons 22 generated by photoexcitation move to the conduction band 17 of the inorganic semiconductor having lower energy and are separated from the holes, so that free electrons and holes are generated. Greatly improves efficiency. In order for this effect to occur, the LUMO level 20 of the organic semiconductor needs to be at a higher energy position than the lower end of the conduction band 17 of the inorganic semiconductor, as shown in FIG. A combination of related organic and inorganic semiconductor materials is desired.

【0020】第3に、以下に述べる無機材料の高い誘電
率による光キャリア生成能向上効果があげられる。図5
は無機/有機界面を模式的に表した図である。26は無
機半導体、27は有機半導体、28は有機/無機界面、
29は有機半導体の光励起によって生成した強く束縛さ
れたフレンケル励起子(図中では1nmの距離に束縛さ
れた励起子として描いてある)、30は有機/無機界面
に到達した励起子のホール、31は有機/無機界面に到
達した励起子の電子である。励起子の軌道半径は材料の
比誘電率に強く依存する。有機材料の誘電率は通常3〜
4程度で小さく、光生成した電子とホールは強く束縛さ
れた分子の大きさ程度(〜1nm)のフレンケル励起子
を形成する。一方、無機材料の比誘電率は有機材料に比
べてかなり大きく、電子とホールは弱く束縛されたかな
り大きな空間に拡がったワニエ型の励起子を形成する。
ここで有機材料中でできたフレンケル励起子29が有機
/無機界面28に到達すると、図4で述べたように、電
子31が無機側に移動するため、励起子は比誘電率の大
きな無機材料中の場を感じてホール30との束縛が大き
く弱まり、すなわちホールと電子の間の距離が格段に大
きくなって、フリーキャリアへの解離が促進される(図
中では、一例として、GaAs(比誘電率12.9、励
起子軌道半径16nm)の励起子軌道半径を描いてあ
る)。以上の様に、無機材料の高い比誘電率を利用する
ことで、有機半導体における光キャリア生成効率を向上
できると考えられる。なお、無機材料として非常に誘電
率の高い誘電体(例えば、チタン酸バリウム(比誘電率
2900等))を用いれば、上記効果が大きく現れる可
能性がある。
Thirdly, the effect of improving the photocarrier generation ability due to the high dielectric constant of the inorganic material described below can be mentioned. Figure 5
FIG. 3 is a diagram schematically showing an inorganic / organic interface. 26 is an inorganic semiconductor, 27 is an organic semiconductor, 28 is an organic / inorganic interface,
29 is a strongly bound Frenkel exciton (illustrated as an exciton bound at a distance of 1 nm in the figure) generated by photoexcitation of an organic semiconductor, 30 is a hole of an exciton reaching an organic / inorganic interface, 31 Are electrons of excitons that have reached the organic / inorganic interface. The exciton orbital radius strongly depends on the relative permittivity of the material. The dielectric constant of organic materials is usually 3 to
Photon-generated electrons and holes, which are small at about 4, form Frenkel excitons of about the size of a strongly bound molecule (~ 1 nm). On the other hand, the relative permittivity of inorganic materials is considerably larger than that of organic materials, and electrons and holes form Wannier-type excitons spread in a weakly bound and considerably large space.
Here, when the Frenkel excitons 29 made of the organic material reach the organic / inorganic interface 28, the electrons 31 move to the inorganic side as described in FIG. 4, so the excitons are inorganic materials having a large relative dielectric constant. Feeling the inside field, the bond with the hole 30 is greatly weakened, that is, the distance between the hole and the electron is significantly increased, and dissociation into free carriers is promoted (in the figure, as an example, GaAs (ratio An exciton orbital radius with a dielectric constant of 12.9 and an exciton orbital radius of 16 nm is drawn). As described above, it is considered that the photocarrier generation efficiency in the organic semiconductor can be improved by utilizing the high relative dielectric constant of the inorganic material. If a dielectric material having a very high dielectric constant (for example, barium titanate (relative dielectric constant 2900 or the like)) is used as the inorganic material, the above effect may be significantly exhibited.

【0021】第4に、生成したフリーな電子とホールが
空間的に分離されて輸送されるために、両者の再結合が
抑制され、薄膜全体としての最終的な光キャリア生成効
率、すなわち光電流量を高める効果があげられる。
Fourth, since the generated free electrons and holes are spatially separated and transported, the recombination of both is suppressed, and the final photocarrier generation efficiency of the thin film as a whole, that is, the photoelectric flow rate. The effect of increasing the.

【0022】図6に、一例としてp型有機半導体である
メタルフリーフタロシアニン(H2Pc)とn型無機半
導体である硫化カドミウム(CdS)との複合薄膜(組
成比はモル比でH2Pc/CdS=9/1、膜厚は15
0nm)に外部から小さな電圧(横軸)を印加し、60
0nmの単色光を照射してH2Pcのみを励起した場合
の光キャリア生成量子収率(縦軸)を示す。0.4Vの
電圧で30%を越える量子収率が得られ、これはH2
cで吸収された100個のフォトンによって30個以上
のフリーキャリアが生成したことを意味する。これは、
2Pc単独では得られない大きな値であり、有機・無
機複合薄膜が大きな光キャリア生成能を持つことを示し
ている。
FIG. 6 shows, as an example, a composite thin film of metal-free phthalocyanine (H 2 Pc) which is a p-type organic semiconductor and cadmium sulfide (CdS) which is an n-type inorganic semiconductor (composition ratio is H 2 Pc / molar ratio). CdS = 9/1, film thickness is 15
A small voltage (horizontal axis) is applied to
The photocarrier generation quantum yield (vertical axis) in the case of irradiating 0 nm monochromatic light to excite only H 2 Pc is shown. Quantum yield is obtained of over 30% at a voltage of 0.4V, which is H 2 P
This means that 30 or more free carriers were generated by 100 photons absorbed in c. this is,
This is a large value that cannot be obtained by H 2 Pc alone, indicating that the organic / inorganic composite thin film has a large photocarrier generation ability.

【0023】共蒸着膜を太陽電池として用いるために
は、図6場合の様に外部から電圧を印加して光電流を得
るのではなく、電池の中に組み込まれた内蔵電界によっ
て光電流を得ることが必要である。内蔵電界を得る第1
の方法は、図1に示したように、共蒸着層3を形成する
のに用いたのと同じp型有機半導体2とn型無機半導体
4ではさむことである。すると、n型無機半導体4/共
蒸着層3界面において、共蒸着層3のp型有機半導体が
露出した部分の界面にのみpn接合が形成されてホール
のn型半導体層4への移動が阻止され、共蒸着層のn型
無機半導体が露出した部分の界面から電子のみを取り出
すことができる。同様に、共蒸着層3/p型半導体2界
面において、共蒸着層のn型無機半導体が露出した界面
にのみnp接合が形成されて電子のp型半導体層2への
移動が阻止され、共蒸着層のp型有機半導体が露出した
部分の界面からホールのみを取り出すことができる。こ
の場合の内蔵電界は、p型有機半導体とn型無機半導体
の界面に形成されるpn接合由来となる。なお、p型有
機半導体2およびn型無機半導体4の単独層の膜厚はな
るべく薄くし、金属電極1の反射も考慮して、入射した
太陽光がほぼすべて共蒸着層3で吸収されるようにセル
の各層の膜厚を設計することが望ましい。
In order to use the co-deposited film as a solar cell, a photocurrent is not obtained by externally applying a voltage as in the case of FIG. 6, but a photocurrent is obtained by a built-in electric field incorporated in the cell. It is necessary. First to get a built-in electric field
The method is to sandwich the same p-type organic semiconductor 2 and n-type inorganic semiconductor 4 used to form the co-deposited layer 3 as shown in FIG. Then, at the n-type inorganic semiconductor 4 / co-deposited layer 3 interface, a pn junction is formed only at the interface of the part of the co-deposited layer 3 where the p-type organic semiconductor is exposed, and movement of holes to the n-type semiconductor layer 4 is prevented. Thus, only electrons can be taken out from the interface of the portion of the co-deposited layer where the n-type inorganic semiconductor is exposed. Similarly, at the co-deposition layer 3 / p-type semiconductor 2 interface, an np junction is formed only at the interface where the n-type inorganic semiconductor of the co-deposition layer 3 is exposed, and movement of electrons to the p-type semiconductor layer 2 is blocked. Only holes can be taken out from the interface of the exposed portion of the p-type organic semiconductor of the vapor deposition layer. In this case, the built-in electric field comes from the pn junction formed at the interface between the p-type organic semiconductor and the n-type inorganic semiconductor. Note that the individual layers of the p-type organic semiconductor 2 and the n-type inorganic semiconductor 4 are made as thin as possible, and in consideration of the reflection of the metal electrode 1, almost all incident sunlight is absorbed by the co-deposited layer 3. It is desirable to design the film thickness of each layer of the cell.

【0024】内蔵電界を電池内に形成する第2の方法
は、電極に用いる金属の仕事関数差を利用することであ
る。すなわち、光生成したフリーなキャリアの取り出し
効率をさらに高めるには、電極に用いる金属対1,5に
大きな仕事関数差のある金属の組み合わせを選択し、セ
ル全体に仕事関数差由来の内蔵電界を付加することが有
効と考えられる。具体的には、電極1の金属として仕事
関数の大きな金属、電極5の金属として仕事関数の小さ
な金属を用いると、共蒸着層で生成した電子を電極5
に、ホールを電極1に動かす方向に内蔵電界がかかり、
両者を別々の方向に効率的に輸送できるため、得られる
光電流量が大きく向上することが期待できる。なお、金
属でサンドイッチする場合、太陽光を照射する側の電極
金属は太陽光を吸収しないITOの様な透明電極である
ことが望ましい。また、複合薄膜に内蔵電界を付加する
方法として、2つの半導体単独層2,4を省き、仕事関
数の異なる金属で直接サンドイッチしたタイプのセル構
造も考えられる。
The second method of forming the built-in electric field in the battery is to utilize the work function difference of the metals used for the electrodes. That is, in order to further increase the extraction efficiency of the photogenerated free carriers, a combination of metals having a large work function difference is used for the metal pairs 1 and 5 used for the electrodes, and a built-in electric field derived from the work function difference is applied to the entire cell. It is considered effective to add them. Specifically, when a metal having a high work function is used as the metal of the electrode 1 and a metal having a low work function is used as the metal of the electrode 5, electrons generated in the co-deposition layer are generated in the electrode 5
, An internal electric field is applied in the direction of moving the hole to the electrode 1,
Since both can be efficiently transported in different directions, the obtained photoelectric flow rate can be expected to be greatly improved. In the case of sandwiching with a metal, the electrode metal on the side that radiates sunlight is preferably a transparent electrode that does not absorb sunlight, such as ITO. Further, as a method of applying a built-in electric field to the composite thin film, a cell structure of a type in which the two semiconductor single layers 2 and 4 are omitted and a metal having a different work function is directly sandwiched may be considered.

【0025】図7は、電極1の金属として仕事関数の大
きな白金(Pt)、p型有機半導体薄膜2としてp型H
2Pc(膜厚75nm)、共蒸着複合膜3としてH2Pc
とCdSの共蒸着膜(組成比はモル比でH2Pc/Cd
S=9/1、膜厚は150nm)、n型無機半導体薄膜
4としてn型CdS(膜厚55nm)、電極5の金属と
して仕事関数の小さなマグネシウム−銀(Mg−Ag)
合金を用いて作製した太陽電池の短絡光電流の光電流量
子収率(縦軸)の照射光波長(横軸)依存性を示した図
である。
In FIG. 7, platinum (Pt) having a large work function is used as the metal of the electrode 1, and p-type H is used as the p-type organic semiconductor thin film 2.
2 Pc (film thickness 75 nm), H 2 Pc as co-deposited composite film 3
And CdS co-deposited film (composition ratio is molar ratio of H 2 Pc / Cd
S = 9/1, film thickness 150 nm), n-type CdS (film thickness 55 nm) as the n-type inorganic semiconductor thin film 4, and magnesium-silver (Mg-Ag) having a small work function as the metal of the electrode 5.
It is the figure which showed the irradiation light wavelength (horizontal axis) dependence of the photocurrent quantum yield (vertical axis) of the short circuit photocurrent of the solar cell produced using the alloy.

【0026】この有機・無機複合薄膜太陽電池は0.6
Vの光電圧を発生できる。また、図7に示したように、
CdSの吸収領域で最大60%(400nm)、H2
cの吸収領域で最大40%(600nm)の量子収率が
得られた。これは、実用可能なレベルの光電流、光電エ
ネルギー変換効率を持った有機・無機複合薄膜太陽電池
の実現可能性を示す結果である。
This organic / inorganic composite thin film solar cell has a thickness of 0.6
A photovoltage of V can be generated. Also, as shown in FIG.
Up to 60% (400 nm) in the absorption region of CdS, H 2 P
A maximum quantum yield of 40% (600 nm) was obtained in the absorption region of c. This is a result showing the feasibility of an organic-inorganic composite thin-film solar cell having a practical level of photocurrent and photoelectric energy conversion efficiency.

【0027】本発明に用いる有機材料と無機材料とし
て、これまで述べたのとは逆の組み合わせであるp型無
機半導体とn型有機半導体の組み合わせを用いても良
い。また、高い光電エネルギー変換効率を得るには、吸
収波長域が2つの材料でオーバーラップしない相補的に
太陽光スペクトル全域をカバーできる組み合わせが望ま
しい。無機半導体として可視光を吸収しない材料を用い
て、有機半導体のみで太陽スペクトル全域をカバーする
ことも考えられる。その際、無機半導体と他の2種以上
の有機半導体を共蒸着することも考えられる。
As the organic material and the inorganic material used in the present invention, a combination of a p-type inorganic semiconductor and an n-type organic semiconductor, which is a combination opposite to that described above, may be used. Further, in order to obtain high photoelectric energy conversion efficiency, it is desirable to use a combination in which two materials have complementary absorption wavelength regions that do not overlap each other and can cover the entire sunlight spectrum. It is also possible to use a material that does not absorb visible light as the inorganic semiconductor and cover the entire solar spectrum with only the organic semiconductor. In that case, it is also possible to co-evaporate an inorganic semiconductor and two or more kinds of other organic semiconductors.

【0028】有機・無機複合薄膜は、別々の蒸着源から
有機材料と無機材料を同時に蒸発させて作製するため、
両者がかなり微細に混合した複合膜となると考えられ
る。共蒸着層内部の微細構造、すなわち無機半導体と有
機半導体がどの程度のサイズの粒子として混ざり合って
いるかは、かなり大きなサブミクロンオーダーの粒径の
粒子同士の混合からナノメーターオーダーの非常に小さ
な粒径の粒子の混合、極端な場合には分子レベルでの混
合まで考えられ、これは電池の効率と大きく関係すると
予想される。粒径制御には、蒸着時の基板を冷却または
加熱して適切に基板温度をコントロールすることが重要
と予想される。なお、有機材料は抵抗加熱によって蒸着
可能であるが、無機材料の場合は、抵抗加熱の他に電子
ビーム蒸着源を用いることで酸化物を含めほぼすべての
無機材料が蒸着可能となる。
The organic-inorganic composite thin film is produced by simultaneously evaporating the organic material and the inorganic material from different vapor deposition sources.
It is thought that a composite film in which both are mixed in a fairly fine manner. The microstructure inside the co-deposited layer, that is, the size of the inorganic semiconductor and the organic semiconductor mixed with each other, depends on the mixture of particles with a considerably large submicron order particle size and a very small particle size of nanometer order. Mixing of particles of size, and in the extreme case mixing at the molecular level is also considered, which is expected to be strongly related to the efficiency of the cell. For controlling the grain size, it is expected that it is important to appropriately control the substrate temperature by cooling or heating the substrate during vapor deposition. Note that an organic material can be vapor-deposited by resistance heating, but in the case of an inorganic material, almost all inorganic materials including oxides can be vapor-deposited by using an electron beam vapor deposition source in addition to resistance heating.

【0029】[0029]

【発明の効果】以上説明したように、本発明は、極微細
な有機/無機半導体接合が薄膜全体に張り巡らされた薄
膜構造を共蒸着によって形成することによって、膜全体
が光キャリア生成活性な層として動作すること、およ
び、有機/無機界面における光生成電子−ホール分離促
進効果を利用することによって、高効率光電エネルギー
変換効率を有する有機固体太陽電池を作製できる効果を
持つ。
As described above, according to the present invention, by forming a thin film structure in which ultrafine organic / inorganic semiconductor junctions are spread over the entire thin film by co-evaporation, the entire film is active for photocarrier generation. By operating as a layer and utilizing the photogenerated electron-hole separation promoting effect at the organic / inorganic interface, it has the effect of producing an organic solid-state solar cell having high efficiency photoelectric energy conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機・無機複合薄膜太陽電池の一実施
例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an organic / inorganic composite thin film solar cell of the present invention.

【図2】本発明で使用できる有機半導体を例示する化学
構造式である。
FIG. 2 is a chemical structural formula illustrating an organic semiconductor that can be used in the present invention.

【図3】有機・無機複合薄膜のエネルギー構造を模式的
に表した図である。
FIG. 3 is a diagram schematically showing an energy structure of an organic / inorganic composite thin film.

【図4】高い光キャリア生成能を与えると予想されるn
型無機半導体とp型有機半導体のエネルギー関係を表し
た図である。
FIG. 4 is expected to give a high photocarrier generation ability.
It is a figure showing the energy relation of a p-type organic semiconductor and a p-type organic semiconductor.

【図5】無機/有機界面を模式的に表した図である。FIG. 5 is a diagram schematically showing an inorganic / organic interface.

【図6】H2PcとCdSとの複合薄膜における光キャ
リア生成量子収率の印加電圧依存性を示す図である。
FIG. 6 is a diagram showing applied voltage dependency of photocarrier generation quantum yield in a composite thin film of H 2 Pc and CdS.

【図7】Pt/H2Pc(75nm厚)/H2PcとCd
Sの共蒸着膜(150nm厚)/CdS(55nm厚)
/Mg−Agの構成の有機・無機複合薄膜太陽電池の短
絡光電流の光電流量子収率の照射光波長依存性を示した
図である。
FIG. 7: Pt / H 2 Pc (75 nm thickness) / H 2 Pc and Cd
Co-deposited film of S (150 nm thickness) / CdS (55 nm thickness)
It is the figure which showed the irradiation light wavelength dependence of the photocurrent quantum yield of the short circuit photocurrent of the organic-inorganic composite thin film solar cell of the composition of / Mg-Ag.

【符号の説明】[Explanation of symbols]

1 金属電極 2 p型有機半導体薄膜 3 p型有機半導体とn型無機半導体から成る共蒸
着複合膜 4 n型無機半導体薄膜 5 透明電極 6 p型有機半導体 7 n型無機半導体 8 太陽光 9 有機/無機pn接合で光生成した電子−ホール
対 10 p型有機半導体中を輸送される光生成ホール 11 n型無機半導体中を輸送される光生成電子 12 伝導帯 13 価電子帯 14 電子のエネルギー 15 n型無機半導体 16 n型無機半導体の価電子帯 17 n型無機半導体の伝導帯 18 p型有機半導体 19 p型有機半導体のHOMO準位 20 p型有機半導体のLUMO準位 21 HOMOからLUMOへの光励起 22 光励起された電子 23 光生成したホール 24 励起された電子の無機半導体の伝導帯17へ
の電子移動 25 電子のエネルギー 26 無機半導体 27 有機半導体 28 有機/無機界面 29 有機半導体中の強く束縛されたフレンケル励
起子 30 有機/無機界面に到達した励起子のホール 31 有機/無機界面に到達した励起子の電子
1 metal electrode 2 p-type organic semiconductor thin film 3 co-deposited composite film composed of p-type organic semiconductor and n-type inorganic semiconductor 4 n-type inorganic semiconductor thin film 5 transparent electrode 6 p-type organic semiconductor 7 n-type inorganic semiconductor 8 sunlight 9 organic / Electron-hole pair photogenerated in inorganic pn junction 10 Photogenerated hole transported in p-type organic semiconductor 11 Photogenerated electron transported in n-type inorganic semiconductor 12 Conduction band 13 Valence band 14 Electron energy 15 n -Type inorganic semiconductor 16 Valence band of n-type inorganic semiconductor 17 Conduction band of n-type inorganic semiconductor 18 p-type organic semiconductor 19 HOMO level of p-type organic semiconductor 20 LUMO level of p-type organic semiconductor 21 Photoexcitation from HOMO to LUMO 22 Photo-excited electron 23 Photo-generated hole 24 Electron transfer of excited electron to conduction band 17 of inorganic semiconductor 25 Electron energy 26 Inorganic semiconductor 27 Yes Semiconductor 28 Organic / inorganic interface 29 organic semiconductor in strongly constrained Frenkel exciton 30 organic / inorganic interface excitons reach the hole 31 organic / inorganic interface electrons excitons reached

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機半導体と無機半導体が混合して複合
化した複合薄膜と、この薄膜を挟んでその両面に設けら
れ、この複合薄膜に内蔵電界を与えるための半導体もし
くは金属、又はそれら双方からなる電極部とを備え、前
記複合薄膜は、その全体が光キャリア生成に活性に働く
ように全体にわたってpn接合が存在している構造をも
た有機・無機複合薄膜太陽電池。
1. A composite thin film in which an organic semiconductor and an inorganic semiconductor are mixed to form a composite, and a semiconductor or a metal, or both of them, which are provided on both sides of the composite thin film so as to provide an internal electric field to the composite thin film. comprising an electrode portion, before
The composite thin film as a whole actively works for photocarrier generation.
Even if the structure has a pn junction throughout,
Organic-inorganic composite thin film solar cells Tsu.
【請求項2】 前記電極部の一方は仕事関数の大きな金
属を含み、他方は仕事関数の小さな金属を含んでいる請
求項に記載の有機・無機複合薄膜太陽電池。
2. The organic-inorganic composite thin film solar cell according to claim 1 , wherein one of the electrode portions contains a metal having a large work function and the other contains a metal having a small work function.
【請求項3】 前記電極部において、仕事関数の大きな
金属として白金を用い、仕事関数の小さな金属としてマ
グネシウム−銀を用いた請求項に記載の有機・無機複
合薄膜太陽電池。
3. The organic / inorganic composite thin film solar cell according to claim 2 , wherein platinum is used as a metal having a large work function and magnesium-silver is used as a metal having a small work function in the electrode portion.
【請求項4】 前記電極部のそれぞれは前記複合薄膜と
接する半導体層を介して金属電極が配置された構造をし
ており、一方の電極部の半導体層は前記複合薄膜を構成
している有機半導体と同じ有機半導体の薄膜であり、他
方の電極部の半導体層は前記複合薄膜を構成している無
機半導体と同じ無機半導体の薄膜である請求項1から
のいずれかに記載の有機・無機複合薄膜太陽電池。
4. Each of the electrode portions has a structure in which a metal electrode is arranged via a semiconductor layer in contact with the composite thin film, and the semiconductor layer of one electrode portion is an organic material forming the composite thin film. a thin film of the same organic semiconductor as the semiconductor, the first aspect of the semiconductor layer of the other electrode portion is a thin film of the same inorganic semiconductors and inorganic semiconductors constituting the composite thin film 3
The organic / inorganic composite thin film solar cell according to any one of 1.
【請求項5】 前記複合薄膜は、有機半導体と無機半導
体を共蒸着によって複合化した共蒸着薄膜である請求項
1からのいずれかに記載の有機・無機複合薄膜太陽電
池。
Wherein said composite thin film, an organic-inorganic composite thin film solar cell according to any one of claims 1 to 4, the organic semiconductor and an inorganic semiconductor is codeposited composite films with by co-evaporation.
JP2000290288A 2000-09-25 2000-09-25 Organic / inorganic composite thin film solar cell Expired - Fee Related JP3423280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290288A JP3423280B2 (en) 2000-09-25 2000-09-25 Organic / inorganic composite thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290288A JP3423280B2 (en) 2000-09-25 2000-09-25 Organic / inorganic composite thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002100793A JP2002100793A (en) 2002-04-05
JP3423280B2 true JP3423280B2 (en) 2003-07-07

Family

ID=18773535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290288A Expired - Fee Related JP3423280B2 (en) 2000-09-25 2000-09-25 Organic / inorganic composite thin film solar cell

Country Status (1)

Country Link
JP (1) JP3423280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142380A1 (en) * 2016-02-18 2017-08-24 전영권 Solar cell and method for preparing same
KR101925263B1 (en) 2018-10-30 2018-12-04 전영권 Solar cells and manufacturing method for the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934770B2 (en) * 2003-04-15 2012-05-16 国立大学法人金沢大学 Organic solar cells
DE10326546A1 (en) * 2003-06-12 2005-01-05 Siemens Ag Organic solar cell with an intermediate layer with asymmetric transport properties
JP2007035893A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Organic power generation element
DE102005062674B4 (en) * 2005-12-23 2011-06-16 Technische Universität Darmstadt A composite composition for a solar cell, p-i-n semiconductor structure containing this composition, solar cell and method for producing a composite composition
JP4970443B2 (en) * 2006-06-30 2012-07-04 パイオニア株式会社 Organic solar cells
JP5605601B2 (en) * 2008-11-21 2014-10-15 国立大学法人弘前大学 Visible light responsive photocatalyst complex
KR20200142125A (en) * 2009-01-12 2020-12-21 더 리젠츠 오브 더 유니버시티 오브 미시간 Enhancement of organic photovoltaic cell open circuit voltage using electron/hole blocking exciton blocking layers
JP2012038541A (en) * 2010-08-06 2012-02-23 Asahi Glass Co Ltd Plasmon resonance type photoelectric conversion element manufacturing method, and plasmon resonance type photoelectric conversion element
KR20130143603A (en) * 2010-11-16 2013-12-31 세키스이가가쿠 고교가부시키가이샤 Ink for active layer of organic solar cell, organic solar cell, and process for manufacture of organic solar cell
CN104471679B (en) * 2012-07-20 2020-11-03 旭化成株式会社 Semiconductor film and semiconductor element
JP2014112610A (en) * 2012-12-05 2014-06-19 Sekisui Chem Co Ltd Organic thin-film solar cell
JP5938077B2 (en) * 2013-10-04 2016-06-22 旭化成株式会社 Solar cell
US20160240804A1 (en) * 2013-11-07 2016-08-18 Sekisui Chemical Co., Ltd. Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell
JP2015133466A (en) 2013-12-11 2015-07-23 積水化学工業株式会社 Thin-film solar battery, and method of manufacturing the same
JP2017059655A (en) 2015-09-16 2017-03-23 ソニー株式会社 Solid-state imaging device and method of manufacturing solid-state imaging device
JP6791249B2 (en) * 2016-08-31 2020-11-25 日産自動車株式会社 Photovoltaic device
CN115589774B (en) * 2022-12-08 2023-03-10 西安电子科技大学杭州研究院 Light-operated capacitive ferroelectric memory and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142380A1 (en) * 2016-02-18 2017-08-24 전영권 Solar cell and method for preparing same
US10991843B2 (en) 2016-02-18 2021-04-27 Young-Kwon Jun Solar cell and method for preparing same
KR101925263B1 (en) 2018-10-30 2018-12-04 전영권 Solar cells and manufacturing method for the same

Also Published As

Publication number Publication date
JP2002100793A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP3423280B2 (en) Organic / inorganic composite thin film solar cell
CN102610627B (en) Stacked organic photosensitive devices
US8592680B2 (en) Organic photosensitive devices
KR100915530B1 (en) Organic photovoltaic devices
JP3423279B2 (en) Organic semiconductor thin film solar cell
US7087834B2 (en) Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
KR101387188B1 (en) Organic photovoltaic cells utilizing ultrathin sensitizing layer
CN101651183B (en) Stacked organic photosensitive devices
US20020017656A1 (en) Solid state heterojunction and solid state sensitized photovoltaic cell
US8357849B2 (en) Organic photosensitive devices
TWI528607B (en) Inverted organic photosensitive devices
US20140060613A1 (en) Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell
KR20110069085A (en) Organic photosensitive devices comprising a squaraine containing organoheterojunction and methods of making the same
TW201424072A (en) Power generating color coatings
TW201342678A (en) Method of preparing the surface of metal substrates for organic photosensitive devices
Xue Mixed Molecular Heterojunction Photovoltaic Cells
Wang Low cost organic photovoltaic cells for broad spectrum light harvesting
Baruah et al. Carbon–Science and Technology
Baruah et al. ASI Carbon–Science and Technology
MX2007001690A (en) Organic photosensitive devices

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees