JP3412139B2 - Calibration method of three-dimensional distance measuring device - Google Patents

Calibration method of three-dimensional distance measuring device

Info

Publication number
JP3412139B2
JP3412139B2 JP29136696A JP29136696A JP3412139B2 JP 3412139 B2 JP3412139 B2 JP 3412139B2 JP 29136696 A JP29136696 A JP 29136696A JP 29136696 A JP29136696 A JP 29136696A JP 3412139 B2 JP3412139 B2 JP 3412139B2
Authority
JP
Japan
Prior art keywords
light
projection plate
distance measuring
dimensional
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29136696A
Other languages
Japanese (ja)
Other versions
JPH10132518A (en
Inventor
晃市 加藤
洋 酒井
透 金子
研二 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29136696A priority Critical patent/JP3412139B2/en
Publication of JPH10132518A publication Critical patent/JPH10132518A/en
Application granted granted Critical
Publication of JP3412139B2 publication Critical patent/JP3412139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、任意方向に光線を
照射可能な投光器と、その反射を観測する受光器を組み
合わせた3次元距離測定装置のキャリブレーション方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calibration method for a three-dimensional distance measuring device in which a light projector capable of irradiating a light beam in an arbitrary direction and a light receiver for observing its reflection are combined.

【0002】[0002]

【従来の技術】一般に、視覚センサを用いて3次元計測
を行なう場合、センサのキャリブレーションが必要とな
る。この時、求めなければならないパラメータは、視覚
センサの焦点距離、歪み、画像中心、3次元空間中での
センサ自身の位置及び姿勢である。この内、焦点距離、
歪み、及び画像中心はセンサ固有の値であり、内部パラ
メータと称する。3次元空間中でのセンサ自身の位置及
び姿勢は、センサの設置に関する値であり、外部パラメ
ータと称する。
2. Description of the Related Art Generally, when three-dimensional measurement is performed using a visual sensor, it is necessary to calibrate the sensor. At this time, the parameters that must be obtained are the focal length of the visual sensor, distortion, image center, and the position and orientation of the sensor itself in the three-dimensional space. Of these, the focal length,
The distortion and the image center are values unique to the sensor and are called internal parameters. The position and orientation of the sensor itself in the three-dimensional space are values related to the installation of the sensor and are called external parameters.

【0003】ここで、3次元距離測定装置として、後述
する2次元面レンジセンサ(以下、2DSと称する)に
限定すると、内部パラメータに関しては出荷時に調整可
能であり、計測不要である。外部パラメータに関して、
投光装置、受光装置各々について求める必要があるが、
2DSにおいて、検出範囲と検出精度は受光装置と投光
装置の位置関係(以下、外部パラメータと称する)によ
り決定される。この外部パラメータを決定するための方
法として従来、以下のような方法が採用されてきた。
If the three-dimensional distance measuring device is limited to a two-dimensional surface range sensor (to be referred to as 2DS hereinafter) which will be described later, internal parameters can be adjusted at the time of shipment and measurement is not necessary. Regarding external parameters,
Although it is necessary to calculate for each of the light emitting device and the light receiving device,
In 2DS, the detection range and the detection accuracy are determined by the positional relationship between the light receiving device and the light projecting device (hereinafter referred to as an external parameter). Conventionally, the following method has been adopted as a method for determining the external parameter.

【0004】まず、空間上の位置が既知である複数の点
に平面状の発光装置を固定し、受光器でこれを観測す
る。この観測情報と空間に固定された発光点の位置関係
から、受光器の空間中での位置姿勢を算出する。次に、
発光装置を投影板に置き換え、該投影板に投光器より光
線を照射する。このとき、計測領域を全て包含するよう
に照射方向を順次変化させるものとする。受光器では、
投影板を照らした時の反射光検知を行ない、検知時の投
光器の照射方向を記録する。複数の投影板の位置情報及
び投光器の各投影板に対する照射方向情報より、投光器
の外部パラメータを算出する。最後に、2つの外部パラ
メータを受光器側の焦点を基準とした座標系に変換す
る。
First, a planar light emitting device is fixed to a plurality of points whose positions in space are known, and this is observed by a light receiver. The position and orientation of the light receiver in the space are calculated from this observation information and the positional relationship between the light emitting points fixed in the space. next,
The light emitting device is replaced with a projection plate, and the projection plate is irradiated with light rays from a projector. At this time, the irradiation direction is sequentially changed so as to include the entire measurement area. In the receiver,
Reflected light is detected when the projection plate is illuminated, and the irradiation direction of the projector at the time of detection is recorded. An external parameter of the projector is calculated from position information of the plurality of projection plates and irradiation direction information of the projector for each projection plate. Finally, the two external parameters are converted into a coordinate system with the focal point on the light receiver side as a reference.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、前記従来
技術を検討した結果、以下の問題点を見いだした。
The present inventor has found the following problems as a result of examining the above-mentioned prior art.

【0006】前記従来の3次元距離測定装置のキャリブ
レーション方法では、キャリブレーションのための装置
が複雑となる上、操作も煩雑である。従って、高精度な
キャリブレーションを行なう場合には、厳密な操作が必
要であり、キャリブレーションに要する時間が長くなる
といった問題点があった。
In the conventional calibration method for the three-dimensional distance measuring apparatus, the apparatus for calibration is complicated and the operation is complicated. Therefore, when performing highly accurate calibration, there is a problem that a strict operation is required and the time required for calibration becomes long.

【0007】本発明の目的は、3次元距離測定装置にお
いて、簡便かつ容易な方法を用いて高精度なキャリブレ
ーション方法を提供することにある。
An object of the present invention is to provide a highly accurate calibration method using a simple and easy method in a three-dimensional distance measuring device.

【0008】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。
The outline of the representative one of the inventions disclosed in the present application will be briefly described as follows.

【0010】すなわち、本発明は、任意方向に光線を照
射可能な発光装置によって光線を物体に投光し、前記物
体によって反射された光線を受光装置によって別の角度
から観測し、この時の投光情報と受光情報を用いて物体
までの距離を測定する3次元距離測定装置をキャリブレ
ーションする3次元距離測定装置のキャリブレーション
方法であって、前記物体を、所定の位置に反射率の異な
る図形を有し、かつ、水平又は垂直に移動可能な平面状
の投影板に置換し、前記発光装置から前記投影板に光線
を照射し、前記投影板上の反射率の異なる図形で反射さ
れた光線を受光装置で観測し、当該受光装置での受光量
の差から前記投影板上の図形位置を検出する操作を前記
投影板の位置を変化させて複数回行うことにより、前記
発光装置から投光される光線の複数の投光方向、及び
記各投光方向における前記受光装置の受光位置情報、
びに、前記各投光方向における前記投影板上の図形位置
情報を参照データとして算出することを特徴とする
That is, according to the present invention, a light emitting device capable of irradiating a light beam in an arbitrary direction projects the light beam on an object, and the light beam reflected by the object is observed from another angle by a light receiving device, and the light beam projected at this time is projected. Calibration of a three-dimensional distance measuring device for measuring a distance to an object using light information and light receiving information
A method, wherein the object is replaced with a plane projection plate having a figure with different reflectance at a predetermined position and movable horizontally or vertically, and a light beam is emitted from the light emitting device to the projection plate.
And the light rays reflected by the figures with different reflectances on the projection plate are observed by the light receiving device, and the amount of light received by the light receiving device.
The operation of detecting the figure position on the projection plate from the difference of
By performing a plurality of times while changing the position of the projection panel, the
A plurality of light projection direction of the light beam is projected from the light-emitting device, and a front
Serial receiving position information of the light receiving device in each light projection direction, parallel
Further, it is characterized in that graphic position information on the projection plate in each of the projection directions is calculated as reference data.

【0011】本発明の好ましい実施の形態では、前記3
次元距離測定装置は、2次元面レンジセンサを用いた装
置である。
In a preferred embodiment of the present invention, the above 3
The dimensional distance measuring device is a device using a two-dimensional surface range sensor.

【0012】すなわち、本発明は、板上にレーザー反射
率の異なる領域で描かれた図形を有し、水平及び垂直に
移動可能な投影板を具備し、受光装置側で受光量の差か
ら図形を検出する。この操作を投影板の位置を変化させ
て複数回行ない、3次元空間中での位置(X,Y,Z)
に対する投光方向及び受光位置のデータの組み合わせを
得る。このデータ群を参照データとし、未知の入力(投
光方向及び受光位置)に対して近傍の参照データから変
換行列を作成し3次元位置を計算するものである。
That is, according to the present invention, a figure is drawn on the plate in regions having different laser reflectivities, and a projection plate movable horizontally and vertically is provided. To detect. This operation is performed multiple times by changing the position of the projection plate, and the position (X, Y, Z) in the three-dimensional space
A combination of data of the light projecting direction and the light receiving position is obtained. This data group is used as reference data, and a conversion matrix is created from reference data in the vicinity of unknown inputs (light emitting direction and light receiving position) to calculate a three-dimensional position.

【0013】ここで、前記投光手段の光源には、レーザ
ー光を使用しており、また、該レーザー光のビーム径
は、前記反射率の差異のある投影板上の領域又は図形の
最小寸法よりも小さい。
Here, a laser beam is used as the light source of the light projecting means, and the beam diameter of the laser beam is the minimum size of a region or a figure on the projection plate where the reflectance is different. Smaller than.

【0014】前記手段によれば、装置の光学系に歪を有
する場合でも高精度計測が期待できる近傍データより3
次元位置導出を行なうため、カメラキャリブレーション
が簡便かつ高精度なものとなる。
According to the above-mentioned means, even if the optical system of the apparatus has distortion, it is possible to obtain 3 from the neighborhood data that can be expected to be measured with high accuracy.
Since the dimensional position is derived, the camera calibration becomes simple and highly accurate.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態(実施例)を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments (examples) of the present invention will be described in detail below with reference to the drawings.

【0016】本発明の実施形態は、3次元距離測定装置
として、特に、2次元面レンジセンサ(2DS)を用い
た場合のキャリブレーションを例として示す。
The embodiment of the present invention shows a calibration when a two-dimensional surface range sensor (2DS) is used as a three-dimensional distance measuring device.

【0017】ここで、2次元面レンジセンサ(2DS)
とは、2自由度アクチュエータでレンズを駆動すること
で任意方向へレーザ走査可能な投光器と、2次元の受光
素子でこの反射光を観測する手段を有し、三角測量の原
理で照射点の3次元位置を計測する装置である。この2
次元面レンジセンサの詳細構成は、“JAPAN-U.S.A SYMP
OSIUM ON FLEXIBLE AUTOMATION -A Pacific Rim Confer
ence- July,11-18,1994,Kobe,Japan”において発表され
た論文集第1065〜1068頁にTomoichi Takahashi,Akinor
i Watabe著の論文表題“A Range Finder using a Two-d
imensional Lens Actuator”で発表されている。
Here, a two-dimensional surface range sensor (2DS)
Means a projector that can perform laser scanning in an arbitrary direction by driving a lens with a two-degree-of-freedom actuator, and a means for observing this reflected light with a two-dimensional light receiving element. This is a device for measuring the dimensional position. This 2
For detailed configuration of the dimensional surface range sensor, refer to "JAPAN-USA SYMP
OSIUM ON FLEXIBLE AUTOMATION -A Pacific Rim Confer
ence- July, 11-18,1994, Kobe, Japan ”, Tomoichi Takahashi, Akinor, pp. 1065-1068
i Watabe's article title “A Range Finder using a Two-d
imensional Lens Actuator ”.

【0018】前記2次元面レンジセンサのキャリブレー
ション法とは、空間中任意方向に対して、レーザを照射
可能な装置と、この投光に対する反射光を観測する受光
装置を備えた2次元面レンジセンサにおいて、該センサ
からの出力であるレーザ照射方向(X1,Y1)及び受
光装置による観測情報(X2,Y2)により、照射点の
3次元位置(Xp,Yp,Zp)を出力する変換式を求
める方法に関するものである。具体的には数1の式で示
す変換関数“F”を求める。
The calibration method of the two-dimensional surface range sensor is a two-dimensional surface range provided with a device capable of irradiating a laser in an arbitrary direction in space and a light receiving device for observing reflected light with respect to the projected light. In the sensor, a conversion formula for outputting the three-dimensional position (Xp, Yp, Zp) of the irradiation point based on the laser irradiation direction (X1, Y1) output from the sensor and the observation information (X2, Y2) by the light receiving device It is about how to ask. Specifically, the conversion function “F” shown by the equation 1 is obtained.

【0019】[0019]

【数1】Xp=fx(X1,Y1,X2,Y2,) Yp=fx(X1,Y1,X2,Y2,) Zp=fx(X1,Y1,X2,Y2,) P=F(X1,Y1,X2,Y2,) 図1は本発明の実施形態の3次元距離測定装置のキャリ
ブレーション方法を説明するための実施装置の構成図で
あり、1は2次元面レンジセンサ(2DS)、2は投影
板、3は固定治具、4は投影板固定具、5は2DS固定
具、6はホストコンピュータである。
## EQU1 ## Xp = fx (X1, Y1, X2, Y2) Yp = fx (X1, Y1, X2, Y2) Zp = fx (X1, Y1, X2, Y2) P = F (X1, Y1 , X2, Y2) FIG. 1 is a configuration diagram of an implementation device for explaining a calibration method of a three-dimensional distance measurement device according to an embodiment of the present invention, where 1 is a two-dimensional surface range sensor (2DS) and 2 is a Projection plate, 3 is a fixing jig, 4 is a projection plate fixing device, 5 is a 2DS fixing device, and 6 is a host computer.

【0020】前記投影板固定具4の部分は可動部を有
し、移動方向は2DS1の光軸に対して平行となる。
The projection plate fixing tool 4 has a movable part, and its moving direction is parallel to the optical axis of 2DS1.

【0021】図2は本実施形態の実施装置で使用する投
影板2の構成図であり、Aは白色ペイント部の領域、B
は異色ペイント部又は鏡面反射部の領域である。ここ
で、領域Aの格子は一定間隔で描かれたものとする。2
DS1の投光器により投光されるレーザーは、領域Bで
は全反射され反射方向が受光面と一致しない限りは観測
されない。
FIG. 2 is a block diagram of the projection plate 2 used in the embodying apparatus of the present embodiment, where A is the area of the white paint portion and B is the area.
Is an area of a different color paint portion or a specular reflection portion. Here, it is assumed that the grid of the area A is drawn at regular intervals. Two
The laser projected by the DS1 projector is not observed unless it is totally reflected in the region B and the reflection direction does not coincide with the light receiving surface.

【0022】なお、領域Bを鏡面とした場合には、反射
方向と受光面が一致しても観測されるが、この場合に
は、受光量が大きすぎるために検出不能となるように設
定される。よって、領域Aのみが受光面で観測される。
When the area B is a mirror surface, it can be observed even if the reflection direction and the light receiving surface match, but in this case, the amount of light received is too large to be undetectable. It Therefore, only the region A is observed on the light receiving surface.

【0023】図3は本実施形態の投影板2と2DS1の
投光器及び受光面の関係を示した図であり、11は投影
板(投影板2の断面)、12は受光器(断面)、13は
投光器、14は受光量グラフである。図3の受光量グラ
フ14に示されるように、領域Aにレーザーが照射され
た場合のみ受光位置が特定可能となる。
FIG. 3 is a view showing the relationship between the projection plate 2 of the present embodiment and the projector and the light receiving surface of the 2DS1, 11 is the projection plate (cross section of the projection plate 2), 12 is the light receiver (cross section), 13 Is a projector, and 14 is a received light amount graph. As shown in the received light amount graph 14 of FIG. 3, the light receiving position can be specified only when the region A is irradiated with the laser.

【0024】図4は本実施形態の実施装置のホストコン
ピュータ6を用いて参照テーブルを作成するアルゴリズ
ムを説明するためのフローチャートであり、図5は参照
テーブルのデータ取得を説明するための図である。図5
(a)はしきい値処理した結果をX−Y平面に描画した
図、図5(b)は線分抽出及び交点検出をX−Y平面に
描画した図である。
FIG. 4 is a flow chart for explaining an algorithm for creating a reference table using the host computer 6 of the embodiment apparatus, and FIG. 5 is a view for explaining data acquisition of the reference table. . Figure 5
5A is a diagram in which the result of threshold processing is drawn on the XY plane, and FIG. 5B is a diagram in which line segment extraction and intersection detection are drawn on the XY plane.

【0025】ホストコンピュータ6による参照テーブル
の作成は、図4に示すように、図1に示す実施装置にお
いて、指定回数のみ投影板2を一定間隔移動させ(ステ
ップ101)、レーザ照射部では投影板2にラスタスキ
ャン等の面全体に一様な照射を行ない、その受光データ
を記録する(ステップ102)。しきい値処理部では、
受光量が一定以上の部分を抽出し、その時のレーザー照
射方向(X1,Y1)及び受光位置(X2,Y2)を記
録する(ステップ103)(図5a)。
The reference table is created by the host computer 6, as shown in FIG. 4, in the embodiment shown in FIG. In step 2, uniform irradiation is performed on the entire surface by raster scanning or the like, and the received light data is recorded (step 102). In the threshold processing section,
A portion where the amount of received light is equal to or more than a certain amount is extracted, and the laser irradiation direction (X1, Y1) and the light receiving position (X2, Y2) at that time are recorded (step 103) (FIG. 5a).

【0026】このデータに対して直線検出処理(ハフ変
換)を行ない各々の直線の交点を求める(ステップ10
4)(図5b)。
A straight line detection process (Hough transform) is performed on this data to find the intersection of each straight line (step 10).
4) (Fig. 5b).

【0027】投影板2の移動位置をZ3として、交点の
座標値(X3,Y3,Z3)及び(X1,Y1)(X
2,Y2)を記録する。以上の操作を指定回数繰り返し
た後(ステップ106)、データ出力部においてPn=
(X3n,Y3n,Z3n,X1n,Y1n,X2n,
Y2n)を参照テーブルとして出力する(ステップ10
7)。
When the moving position of the projection plate 2 is Z3, the coordinate values (X3, Y3, Z3) and (X1, Y1) (X of the intersections are set.
2, Y2). After repeating the above operation a specified number of times (step 106), Pn =
(X3n, Y3n, Z3n, X1n, Y1n, X2n,
Y2n) is output as a reference table (step 10).
7).

【0028】前記参照テーブルを用い、未知入力(X1
k,Y1k)(X2k,Y2k)について3次元位置
(X3k,Y3k,Z3k)を以下の手順に従い計算す
る。
Using the reference table, unknown input (X1
The three-dimensional position (X3k, Y3k, Z3k) for k, Y1k) (X2k, Y2k) is calculated according to the following procedure.

【0029】(1)入力(X1k,Y1k)(X2k,
Y2k)とテーブルデータ(X1n,Y1n,X2n,
Y2n)との距離dnを計算する。
(1) Input (X1k, Y1k) (X2k,
Y2k) and table data (X1n, Y1n, X2n,
Y2n) and the distance dn are calculated.

【0030】[0030]

【数2】dn=(X1n−X1k)2+(Y1n−Y1
k)2+(X2n−X2k)2+(Y2n−Y2k)2 (2)各参照値の重みWnを計算する。
## EQU2 ## dn = (X1n-X1k) 2 + (Y1n-Y1
k) 2 + (X2n−X2k) 2 + (Y2n−Y2k) 2 (2) Calculate the weight Wn of each reference value.

【0031】[0031]

【数3】Wn=1/dn (3)以下の式を残差行列とし、係数a,b,c,dを
最小二乗法で求める。
## EQU3 ## Wn = 1 / dn (3) The following equation is used as the residual matrix, and the coefficients a, b, c, d are obtained by the least squares method.

【0032】[0032]

【数4】 [Equation 4]

【0033】(4)入力(X1k,Y1k)(X2k,
Y2k)について以下の行列を求め(X3k,Y3k,
Z3k)を出力する。
(4) Input (X1k, Y1k) (X2k,
Y2k), the following matrix is obtained (X3k, Y3k,
Z3k) is output.

【0034】[0034]

【数5】 [Equation 5]

【0035】以上のように(X3k,Y3k,Z3k)
が求まれば、これらを補正値として利用することにより
3次元距離測定装置のキャリブレーションを行なうこと
が可能となる。
As described above (X3k, Y3k, Z3k)
If is obtained, it is possible to calibrate the three-dimensional distance measuring device by using these as correction values.

【0036】すなわち、本実施形態の3次元距離測定装
置のキャリブレーション法は、投影板2の位置(Zp)
及び該板上の格子位置(Xp,Yp)を用い(Xp,Y
p,Zp)=F(X1,Y1,X2,Y2)の変換行列
を与える手法である。この手法によって得られた変換関
数“F”を用いてセンサからの任意出力(Xi,Yi,
Xj,Yj)に対する(X,Y,Z)を逐次計算し出力
することが可能となり、3次元距離測定装置のキャリブ
レーションを行なうことが可能となる。
That is, the calibration method of the three-dimensional distance measuring apparatus of this embodiment uses the position (Zp) of the projection plate 2.
And the lattice position (Xp, Yp) on the plate is used (Xp, Y
p, Zp) = F (X1, Y1, X2, Y2). Arbitrary output (Xi, Yi,
(X, Y, Z) for (Xj, Yj) can be sequentially calculated and output, and the three-dimensional distance measuring device can be calibrated.

【0037】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
As described above, the invention made by the present inventor is
Although the specific description has been given based on the above-described embodiments, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0038】[0038]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られた効果を簡単に説明すれば、以
下のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0039】計測時は投影板の移動装置のみでよいた
め、カメラキャリブレーションが簡便となる。また、参
照テーブルの密度を変更することで任意の精度に変更が
可能となる。
At the time of measurement, only the moving device of the projection plate is required, so that the camera calibration becomes easy. Further, by changing the density of the reference table, it is possible to change the accuracy to any accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の3次元距離測定装置のキャ
リブレーション方法を説明するための実施装置の構成図
である。
FIG. 1 is a configuration diagram of an implementation device for explaining a calibration method of a three-dimensional distance measurement device according to an embodiment of the present invention.

【図2】本実施形態の実施装置で使用する投影板の構成
図である。
FIG. 2 is a configuration diagram of a projection plate used in the embodying device of the present embodiment.

【図3】本実施形態の投影板と2次元面レンジセンサ
(2DS)の投光器及び受光面の関係を示した図であ
る。
FIG. 3 is a diagram showing a relationship between a projection plate and a projector and a light receiving surface of a two-dimensional surface range sensor (2DS) according to the present embodiment.

【図4】本実施形態の実施装置のホストコンピュータを
用いて3次元計測用の参照テーブルを作成するアルゴリ
ズムを説明するためのフローチャートである。
FIG. 4 is a flowchart for explaining an algorithm for creating a reference table for three-dimensional measurement using the host computer of the implementation device of this embodiment.

【図5】本実施形態の3次元計測用の参照テーブルのデ
ータ取得を説明するための図である。
FIG. 5 is a diagram for explaining data acquisition of a reference table for three-dimensional measurement according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…2次元面レンジセンサ(2DS)、2…投影板、3
…固定治具、4…投影板固定具、5…2DS固定具、6
…ホストコンピュータ、A…白色ペイント部の領域、B
…異色ペイント部又は鏡面反射部の領域、11…投影板
(投影板2の断面)、12…受光器(断面)、13…投
光器、14…受光量グラフ。
1 ... Two-dimensional surface range sensor (2DS), 2 ... Projection plate, 3
... Fixing jig, 4 ... Projection plate fixing tool, 5 ... 2DS fixing tool, 6
… Host computer, A… White paint area, B
Areas of different-color paint portions or specular reflection portions, 11 ... Projection plate (cross section of projection plate 2), 12 ... Light receiver (cross section), 13 ... Emitter, 14 ... Light reception amount graph.

フロントページの続き (72)発明者 望月 研二 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平8−210816(JP,A) 特開 平6−137840(JP,A) 特開 平5−248819(JP,A) 特開 平9−329417(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 Front Page Continuation (72) Inventor Kenji Mochizuki 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nihon Telegraph and Telephone Corporation (56) Reference JP-A-8-210816 (JP, A) JP-A-6 -137840 (JP, A) JP-A-5-248819 (JP, A) JP-A-9-329417 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 11/00- 11/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 任意方向に光線を照射可能な発光装置に
よって光線を物体に投光し、前記物体によって反射され
た光線を受光装置によって別の角度から観測し、この時
の投光情報と受光情報を用いて物体までの距離を測定す
る3次元距離測定装置のキャリブレーション方法であっ
て、 前記物体を、所定の位置に反射率の異なる図形を有し、
かつ、水平又は垂直に移動可能な平面状の投影板に置換
し、前記発光装置から前記投影板に光線を照射し、 前記投影
板上の反射率の異なる図形で反射された光線を受光装置
で観測し、当該受光装置での受光量の差から前記投影板
上の図形位置を検出する操作を前記投影板の位置を変化
させて複数回行うことにより、前記発光装置から投光さ
れる光線の複数の投光方向、及び前記各投光方向におけ
る前記受光装置の受光位置情報、並びに、前記各投光方
向における前記投影板上の図形位置情報を参照データと
して算出することを特徴とする3次元距離測定装置のキ
ャリブレーション方法。
1. A light emitting device capable of irradiating a light beam in an arbitrary direction projects the light beam onto an object, and the light beam reflected by the object is observed from a different angle by a light receiving device. It is a calibration method for a three-dimensional distance measuring device that measures the distance to an object using information .
Then, the object has a figure with different reflectance at a predetermined position,
Further, the light emitting device is replaced with a plane projection plate that can move horizontally or vertically, the light emitting device irradiates the projection plate with a light beam, and the light receiving device receives the light beam reflected by a pattern having a different reflectance on the projection plate.
Observed at, and the projection plate from the difference in the amount of light received by the light receiving device
Change the position of the projection board to detect the position of the figure above
The light is emitted from the light-emitting device by performing the operation multiple times.
A plurality of light projection direction of the light ray, and put to the each light projection direction
Light receiving position information of the light receiving device and each of the light projecting methods
A method for calibrating a three-dimensional distance measuring device, characterized in that the position information of the figure on the projection plate in the orientation is calculated as reference data.
【請求項2】 前記3次元距離測定装置は、2次元面レ
ンジセンサを用いた装置であることを特徴とする請求項
1に記載の3次元距離測定装置のキャリブレーション方
法。
2. The calibration method for a three-dimensional distance measuring device according to claim 1, wherein the three-dimensional distance measuring device is a device using a two-dimensional surface range sensor.
JP29136696A 1996-11-01 1996-11-01 Calibration method of three-dimensional distance measuring device Expired - Fee Related JP3412139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29136696A JP3412139B2 (en) 1996-11-01 1996-11-01 Calibration method of three-dimensional distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29136696A JP3412139B2 (en) 1996-11-01 1996-11-01 Calibration method of three-dimensional distance measuring device

Publications (2)

Publication Number Publication Date
JPH10132518A JPH10132518A (en) 1998-05-22
JP3412139B2 true JP3412139B2 (en) 2003-06-03

Family

ID=17767995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29136696A Expired - Fee Related JP3412139B2 (en) 1996-11-01 1996-11-01 Calibration method of three-dimensional distance measuring device

Country Status (1)

Country Link
JP (1) JP3412139B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873485B2 (en) * 2007-05-11 2012-02-08 国立大学法人 和歌山大学 Shape measuring method and shape measuring apparatus using a number of reference surfaces
KR101009563B1 (en) 2008-10-09 2011-01-18 삼성중공업 주식회사 Calibration apparatus for noncontact measuring system
JP2014020978A (en) * 2012-07-20 2014-02-03 Fujitsu Ltd Irradiation device, ranging device, and calibration program and calibration method of irradiation device

Also Published As

Publication number Publication date
JPH10132518A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
US8180101B2 (en) Calibration method for structure parameters of structured-light vision sensor
CN103649674B (en) Measuring equipment and messaging device
KR102557208B1 (en) Calibration of scanning systems
JPH10311711A (en) Optical profile sensor
JP2009156877A (en) Three-dimensional inspection system
JP2007256091A (en) Method and apparatus for calibrating range finder
US20150085108A1 (en) Lasergrammetry system and methods
Peng Algorithms and models for 3-D shape measurement using digital fringe projections
US20150362310A1 (en) Shape examination method and device therefor
US20070273687A1 (en) Device for Scanning Three-Dimensional Objects
US20190026899A1 (en) Determining a mark in a data record with three-dimensional surface coordinates of a scene, captured by at least one laser scanner
Wang et al. Modelling and calibration of the laser beam-scanning triangulation measurement system
TWI388797B (en) Three - dimensional model reconstruction method and its system
US6304680B1 (en) High resolution, high accuracy process monitoring system
EP0290237A2 (en) Synchronous optical scanning apparatus
JP3412139B2 (en) Calibration method of three-dimensional distance measuring device
WO2012057230A1 (en) Defect inspection method and device therefor
JP3893539B2 (en) Shape measuring method and apparatus
JP2007192594A (en) Apparatus and method for acquiring pattern image
JP2567923B2 (en) Distance measurement method
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
JP3369235B2 (en) Calibration method for measuring distortion in three-dimensional measurement
JP7417750B2 (en) Calibration of solid-state LIDAR devices
JP2009186216A (en) Three-dimensional shape measuring device
JP2002039721A (en) Instrument and method for film thickness measurement and recording medium stored with program for film thickness measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees