JP3410166B2 - Red light emitting diode element - Google Patents

Red light emitting diode element

Info

Publication number
JP3410166B2
JP3410166B2 JP21283593A JP21283593A JP3410166B2 JP 3410166 B2 JP3410166 B2 JP 3410166B2 JP 21283593 A JP21283593 A JP 21283593A JP 21283593 A JP21283593 A JP 21283593A JP 3410166 B2 JP3410166 B2 JP 3410166B2
Authority
JP
Japan
Prior art keywords
layer
mixed crystal
contact layer
crystal ratio
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21283593A
Other languages
Japanese (ja)
Other versions
JPH0766450A (en
Inventor
博志 村田
研一 真田
賢一 小屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21283593A priority Critical patent/JP3410166B2/en
Publication of JPH0766450A publication Critical patent/JPH0766450A/en
Application granted granted Critical
Publication of JP3410166B2 publication Critical patent/JP3410166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はIII−V族化合物半導体
を用いた発光ダイオード素子に関する。 【0002】 【従来の技術】従来、III−V族化合物半導体装置、例
えばガリウムアルミニウム砒素(GaAlAs)半導体
基板上のヘテロ接合からなる高輝度発光ダイオード(以
下LED)は、ホモ接合構造LEDに比べてキャリアの
注入効率が高いため、高出力、高速応答性が得られ、シ
ングルヘテロ接合構造あるいはダブルヘテロ接合構造の
LEDが用いられている。特に、ダブルヘテロ接合構造
を用いた高輝度赤色LEDは車載用ハイマウントストッ
プランプや屋外表示装置等に実装されている。 【0003】これらヘテロ接合構造LEDに特徴的なこ
とは、光取り出し側にアルミニウム砒素(AlAs)混
晶比Xの高いGa1-xAlxAs半導体基板が用いられて
いることである。図3に従来のGaAlAs半導体基板
からなるLED素子の断面図を示し説明する。p型Ga
As基板((100)面)10上にpクラッド層11と
して液相エピタキシャル成長法等により亜鉛(Zn)ド
ープGa0.20Al0.80As層を100μm形成した後、
p型アクティブ層12としてZnドープGa0. 65Al
0.35As層を1〜2μmを形成し、次いでn型クラッド
層13としてテルル(Te)ドープGa0.20Al0.80
s層を30μm程度形成する。そしてGaAs基板選択
性エッチャントを用いて光吸収性のGaAs基板10を
除去して高輝度赤色のLED素子とする。 【0004】 【発明が解決しようとする課題】前述の高輝度赤色LE
D素子の表面にあるn型クラッド層13および裏面にあ
るp型クラッド層11のAlAs混晶比は0.8と高
い。このようにAlAs混晶比が高いGa1-xAlxAs
層は極めて酸化され易いため、大気に接する基板表面、
裏面にAl酸化層が形成され、水分が添加されることに
よりAl酸化層の成長が著しく助長される特性がある。
そしてAl酸化層は光吸収層となりAl酸化層の成長に
ともなって発光特性の劣化を招き素子寿命を著しく短く
してしまうという課題があった。 【0005】この酸化防止対策としてエッチャントによ
るネイティブオキサイド膜(N.O.膜)と称される自
然酸化膜や、CVD法やスパッタリング法によりSiO
2膜、SiN膜、SiON膜を表面の保護膜として形成
する方法がある。しかしながら、こういった保護膜は完
全に均一と言うことはなくピンホール等の発生により耐
湿性が破られることもある。また完全表面被覆をするた
めに、図3に示すようにn型電極6周辺を覆うように保
護膜14を形成しているが、n型電極6と保護膜14の
付着力が弱いためn型電極6と保護膜14の界面から水
分が浸入しやすい。このためn型電極6周辺からAl酸
化層が成長し輝度劣化が始まり、Al酸化層がLED素
子内部へ進行し、ひいてはLED素子に亀裂を生じ断線
させるという致命的な結果を引き起こすものである。こ
の現象はエポキシ樹脂等で封止したLEDにおいても同
様であった。 【0006】本発明は上記課題を解決するもので、発光
特性を低下させることなくAl酸化層の発生を防止し、
高品質のLED素子を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は半導体基板の表
面第一層と裏面第一層にAlAs混晶比が0.6以下で
あるGaAlAsエピタキシャル層を形成し、また電極
を形成した半導体基板に、半導体基板表面から裏面第一
層に達するメサエッチング部を形成したのち電極を除く
表面第一層全面とメサエッチング面に保護膜を形成する
ものである。 【0008】 【作用】本発明は大気に接する半導体基板の表面第一層
及び裏面第一層にAlAs混晶比が0.6以下のエピタ
キシャル層を形成したので、半導体基板のAl酸化層の
形成が抑制できる。またLED素子分割後、側面に露出
する高AlAs混晶比部分に保護膜を付着したので側面
のAl酸化層の形成も防止できる。 【0009】 【実施例】以下本発明の実施例を図を参照しながら説明
する。 【0010】本発明のLED素子の一実施例を図1に示
す。本LED素子はp型GaAs基板(100面)(図
示せず)上にAlAs混晶比0.6であるZnドープG
0. 4Al0.6As層を100μm成長してp型コンタク
ト層1となし、次いでAlAs混晶比0.8のZnドー
プGa0.2Al0.8As層20μm成長してp型クラッド
層2とし、引続きp型アクティブ層3であるGa0.65
0.35As層を1μm、n型クラッド層4であるTeド
ープGa0.2Al0.8As層を20μm成長し、さらにA
lAs混晶比0.6のTeドープGa0.4Al0.6As層
を10μm成長してn型コンタクト層5となす。最後に
GaAs基板選択性エッチャントでp型GaAs基板を
除去する。そしてn型コンタクト層上に電極6を、p型
コンタクト層1に電極7を蒸着・熱処理して金合金電極
を形成し、最後にダイシング等で分割してLED素子を
得るものである。 【0011】このように半導体基板の表面第一層として
AlAs混晶比が0.6以下であるn型コンタクト層5
と、裏面第一層として同じくAlAs混晶比が0.6以
下であるp型コンタクト層1を形成したので、Al酸化
層の発生・成長を防止することができる。 【0012】次に上記に加えて更に保護膜を成膜した実
施例の断面図を図2に示し説明する。図2では上述の電
極6、電極7を形成した後に、LED素子の境界部分に
メサエッチングを行い、電極6を除く部分に保護膜9を
生成したものである。製造手順としては、電極6形成後
の半導体基板の所定部分を除いた表面全面にホトレジス
ト(図示せず)を付着し、ホトレジストの付着していな
い部分をウェットエッチング等の手段でエッチングし、
メサエッチング部8を形成する。このメサエッチング部
8がLED素子分割の際の境界になる。またこのメサエ
ッチング部8は半導体基板表面から裏面第一層であるp
型コンタクト層1に達する深さとする。この後電極6を
除く表面全面にSiO2膜やSiN膜等の保護膜9を成
膜し、メサエッチング部8の底部をダイシング等の手段
で分割しLED素子とする。ここで保護膜9は電極6に
接しても良いし、電極6との間にマスク合わせの誤差を
見込んだ隙間があってもよい。 【0013】このように裏面第一層であるp型コンタク
ト層1に達するメサエッチングを行ったうえで保護膜9
を成膜するので、素子分割した際側面に露出する高Al
As混晶比部分すなわちn型クラッド層5とp型クラッ
ド層2側面を保護膜9で覆うことができ、側面のAl酸
化膜形成を防止することができる。 【0014】次に表1に本発明のLED素子と従来構造
のLED素子の寿命試験の結果を輝度残存率の比較で示
す。 【0015】 【表1】 【0016】試験Aは、温度85℃、相対湿度85%、
駆動電流5mAの高温高湿連続通電試験、試験Bは、温
度65℃、相対湿度95%、駆動電流10mAの高温高
湿連続通電試験である。輝度残存率とは未試験時0時間
での輝度を100%とし、試験後の輝度を%表示したも
のである。 【0017】従来品の1000時間経過後の輝度残存率
は試験A、試験Bの両方とも20%以下となりかなり劣
化が進んでいるのに対し、本発明品は1000時間経過
後でも90%以上の高レベルを維持しており、本発明の
Al酸化層形成防止効果をはっきり示している。 【0018】なお、本実施例ではドーピング材料として
ZnとTeを使用したがドーピング材料の種類に制限さ
れるものではない。 【0019】 【発明の効果】本発明によれば、半導体基板の表面第一
層と裏面第一層にAlAs混晶比が0.60以下のエピ
タキシャル層を形成することでAl酸化層の形成を防止
し、メサエッチング部にSiO2膜、SiN膜等の保護
膜を形成することで側面に露出するAlAs混晶比の高
いn型クラッド層、p型クラッド層に形成されるAl酸
化層を防止することができる。これによってLED素子
の耐湿性は格段に向上し、Al酸化層形成による光吸収
の影響を低減させることで寿命特性を向上させることが
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode device using a III-V compound semiconductor. 2. Description of the Related Art Hitherto, III-V compound semiconductor devices, for example, high-brightness light-emitting diodes (hereinafter referred to as LEDs) comprising a heterojunction on a gallium aluminum arsenide (GaAlAs) semiconductor substrate have been compared with homojunction structure LEDs. Since the carrier injection efficiency is high, high output and high-speed response can be obtained, and an LED having a single hetero junction structure or a double hetero junction structure is used. In particular, a high-brightness red LED using a double hetero junction structure is mounted on a high-mount stop lamp for a vehicle, an outdoor display device, and the like. A feature of these heterojunction structure LEDs is that a Ga 1-x Al x As semiconductor substrate having a high mixed crystal ratio X of aluminum arsenide (AlAs) is used on the light extraction side. FIG. 3 is a cross-sectional view of a conventional LED element formed of a GaAlAs semiconductor substrate and will be described. p-type Ga
After a zinc (Zn) -doped Ga 0.20 Al 0.80 As layer of 100 μm is formed as a p-cladding layer 11 on an As substrate ((100) plane) 10 by a liquid phase epitaxial growth method or the like.
As the p-type active layer 12 Zn-doped Ga 0. 65 Al
A 0.35 As layer is formed to have a thickness of 1 to 2 μm, and then the tellurium (Te) doped Ga 0.20 Al 0.80 A is formed as the n-type cladding layer 13.
An s layer is formed to a thickness of about 30 μm. Then, the light absorbing GaAs substrate 10 is removed using a GaAs substrate selective etchant to obtain a high brightness red LED element. [0004] The above-described high-brightness red LE
The AlAs mixed crystal ratio of the n-type cladding layer 13 on the front surface and the p-type cladding layer 11 on the rear surface of the D element is as high as 0.8. Ga 1-x Al x As having a high AlAs mixed crystal ratio as described above
Since the layer is extremely oxidizable, the substrate surface in contact with the atmosphere,
There is a characteristic that an Al oxide layer is formed on the back surface and the growth of the Al oxide layer is remarkably promoted by adding water.
Then, the Al oxide layer becomes a light absorbing layer, and there is a problem in that the growth of the Al oxide layer causes deterioration of the light emission characteristics, thereby significantly shortening the element life. As a countermeasure against this oxidation, a natural oxide film called a native oxide film (NO film) using an etchant, or a SiO2 film formed by CVD or sputtering is used.
There is a method of forming two films, a SiN film, and a SiON film as a protective film on the surface. However, such a protective film is not completely uniform, and the moisture resistance may be broken due to the occurrence of pinholes and the like. In order to completely cover the surface, the protective film 14 is formed so as to cover the periphery of the n-type electrode 6 as shown in FIG. Water easily penetrates from the interface between the electrode 6 and the protective film 14. For this reason, an Al oxide layer grows from the periphery of the n-type electrode 6, luminance degradation starts, and the Al oxide layer proceeds inside the LED element, which eventually causes a fatal result that the LED element is cracked and disconnected. This phenomenon was the same for LEDs sealed with epoxy resin or the like. The present invention has been made to solve the above problems, and prevents the formation of an Al oxide layer without deteriorating the light emission characteristics.
An object is to provide a high-quality LED element. According to the present invention, a GaAlAs epitaxial layer having an AlAs mixed crystal ratio of 0.6 or less is formed on a first surface layer and a first rear surface layer of a semiconductor substrate, and an electrode is formed. Forming a mesa-etched portion extending from the front surface of the semiconductor substrate to the back surface first layer, and then forming a protective film on the entire surface of the first surface layer excluding the electrodes and on the mesa-etched surface. According to the present invention, an epitaxial layer having an AlAs mixed crystal ratio of 0.6 or less is formed on the first surface layer and the first rear layer of the semiconductor substrate in contact with the atmosphere. Can be suppressed. In addition, since the protective film is attached to the high AlAs mixed crystal ratio portion exposed on the side surface after the division of the LED element, the formation of the Al oxide layer on the side surface can be prevented. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the LED element of the present invention. This LED element is formed on a p-type GaAs substrate (100 surface) (not shown) by Zn-doped G having an AlAs mixed crystal ratio of 0.6.
p-type contact layer 1 ungated, then Zn-doped Ga 0.2 Al 0.8 As layer 20μm growth of the AlAs mixed crystal ratio of 0.8 and p-type cladding layer 2 to 100μm grow a 0. 4 Al 0.6 As layer, subsequently Ga 0.65 A which is the p-type active layer 3
A 0.35 As layer is grown to 1 μm, and a Te-doped Ga 0.2 Al 0.8 As layer as the n-type cladding layer 4 is grown to 20 μm.
An n-type contact layer 5 is formed by growing a Te-doped Ga 0.4 Al 0.6 As layer having an lAs mixed crystal ratio of 0.6 by 10 μm. Finally, the p-type GaAs substrate is removed with a GaAs substrate selective etchant. Then, the electrode 6 is formed on the n-type contact layer and the electrode 7 is formed on the p-type contact layer 1 by vapor deposition and heat treatment to form a gold alloy electrode. Finally, dicing or the like is performed to obtain an LED element. As described above, the n-type contact layer 5 having an AlAs mixed crystal ratio of 0.6 or less is used as the first surface layer of the semiconductor substrate.
Also, since the p-type contact layer 1 having the same AlAs mixed crystal ratio of 0.6 or less is formed as the backside first layer, generation and growth of the Al oxide layer can be prevented. Next, a sectional view of an embodiment in which a protective film is further formed in addition to the above will be described with reference to FIG. In FIG. 2, after the above-described electrodes 6 and 7 are formed, mesa etching is performed on a boundary portion of the LED element, and a protective film 9 is formed on a portion other than the electrode 6. As a manufacturing procedure, a photoresist (not shown) is attached to the entire surface except for a predetermined portion of the semiconductor substrate after the electrode 6 is formed, and a portion where the photoresist is not attached is etched by means such as wet etching.
A mesa etching portion 8 is formed. This mesa etching portion 8 becomes a boundary at the time of LED element division. The mesa etching portion 8 is formed from the front surface of the semiconductor substrate to p
The depth reaches the mold contact layer 1. Thereafter, a protective film 9 such as a SiO 2 film or a SiN film is formed on the entire surface excluding the electrode 6, and the bottom of the mesa etching portion 8 is divided by means such as dicing to obtain an LED element. Here, the protective film 9 may be in contact with the electrode 6, or there may be a gap between the protective film 9 and the electrode 6 that allows for a mask alignment error. After the mesa etching is performed to reach the p-type contact layer 1 as the first layer on the back surface, the protective film 9 is formed.
High Al exposed on the side surface when the element is divided
The As mixed crystal ratio portion, that is, the side surfaces of the n-type clad layer 5 and the p-type clad layer 2 can be covered with the protective film 9, and the formation of the Al oxide film on the side surfaces can be prevented. Next, Table 1 shows the results of the life tests of the LED element of the present invention and the LED element of the conventional structure in comparison of the residual luminance ratio. [Table 1] Test A was conducted at a temperature of 85 ° C. and a relative humidity of 85%.
A high-temperature and high-humidity continuous energization test with a driving current of 5 mA, Test B is a high-temperature and high-humidity continuous energization test with a temperature of 65 ° C., a relative humidity of 95%, and a driving current of 10 mA. The luminance remaining ratio is a value in which the luminance at 0 hour before the test is 100% and the luminance after the test is expressed in%. The luminance residual ratio of the conventional product after 1000 hours has passed is not more than 20% in both the tests A and B, and the deterioration has progressed considerably. On the other hand, the product of the present invention has 90% or more even after 1000 hours has passed. The high level is maintained, which clearly shows the effect of preventing the formation of the Al oxide layer of the present invention. In this embodiment, Zn and Te are used as doping materials, but the present invention is not limited to the types of doping materials. According to the present invention, an Al oxide layer can be formed by forming an epitaxial layer having an AlAs mixed crystal ratio of 0.60 or less on the front surface first layer and the back surface first layer of the semiconductor substrate. By forming a protective film such as a SiO 2 film or a SiN film on the mesa-etched portion, the Al oxide layer formed on the n-type cladding layer having a high AlAs mixed crystal ratio and the p-type cladding layer exposed on the side surface is prevented. can do. Thereby, the moisture resistance of the LED element is remarkably improved, and the life characteristics can be improved by reducing the influence of light absorption due to the formation of the Al oxide layer.

【図面の簡単な説明】 【図1】本発明の一実施例のLED素子の断面図 【図2】本発明の別の実施例のLED素子の工程断面図 【図3】従来のLED素子の工程断面図 【符号の説明】 1 p型コンタクト層 2 p型クラッド層 3 p型アクティブ層 4 n型クラッド層 5 n型コンタクト層 8 メサエッチング部 9 保護膜 10 p型GaAs基板 11 p型クラッド層 12 p型アクティブ層 13 n型クラッド層 14 保護膜[Brief description of the drawings] FIG. 1 is a sectional view of an LED element according to an embodiment of the present invention. FIG. 2 is a process sectional view of an LED device according to another embodiment of the present invention. FIG. 3 is a process sectional view of a conventional LED element. [Explanation of symbols] 1 p-type contact layer 2 p-type cladding layer 3 p-type active layer 4 n-type cladding layer 5 n-type contact layer 8 Mesa etching part 9 Protective film 10 p-type GaAs substrate 11 p-type cladding layer 12 p-type active layer 13 n-type cladding layer 14 Protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小屋 賢一 大阪府高槻市幸町1番1号 松下電子工 業株式会社内 (56)参考文献 特開 昭60−153186(JP,A) 特開 昭59−114885(JP,A) 特開 平4−212480(JP,A) 特開 平3−127873(JP,A) 特開 平1−226181(JP,A) 特開 平4−273174(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kenichi Koya               Matsushita Electronics Corp., 1-1 1-1 Sachicho, Takatsuki-shi, Osaka               Industry Co., Ltd.                (56) References JP-A-60-153186 (JP, A)                 JP-A-59-114885 (JP, A)                 JP-A-4-212480 (JP, A)                 JP-A-3-127873 (JP, A)                 JP-A-1-226181 (JP, A)                 JP-A-4-273174 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 III−V族化合物半導体による裏面コン
タクト層および表面コンタクト層をアルミニウムを含み
アルミニウム砒素混晶比が0.6以下のガリウムアルミ
ニウム砒素エピタキシャル層で形成し、前記表裏両面の
コンタクト層間にアルミニウム混晶比が0.6をこえる
ガリウムアルミニウム砒素エピタキシャル層をクラッド
層とするヘテロ接合を形成し、かつ前記表面コンタクト
層から裏面コンタクト層に達するメサエッチング面を設
け、前記メサエッチング面および表面コンタクト層の露
出面に保護膜を形成し、前記クラッド層が直接大気に接
しなくしたことを特徴とする赤色発光ダイオード素子。
(57) [Claim 1] A back contact layer and a front contact layer made of a III-V compound semiconductor are formed of a gallium aluminum arsenide epitaxial layer containing aluminum and having an aluminum arsenic mixed crystal ratio of 0.6 or less. Then, a heterojunction having a gallium aluminum arsenide epitaxial layer having an aluminum mixed crystal ratio exceeding 0.6 as a cladding layer is formed between the contact layers on both front and back surfaces, and a mesa etching surface reaching the back contact layer from the front contact layer is formed. A protective film is formed on the mesa-etched surface and the exposed surface of the surface contact layer, and the clad layer is in direct contact with the atmosphere.
A red light-emitting diode element characterized by being eliminated .
JP21283593A 1993-08-27 1993-08-27 Red light emitting diode element Expired - Fee Related JP3410166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21283593A JP3410166B2 (en) 1993-08-27 1993-08-27 Red light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21283593A JP3410166B2 (en) 1993-08-27 1993-08-27 Red light emitting diode element

Publications (2)

Publication Number Publication Date
JPH0766450A JPH0766450A (en) 1995-03-10
JP3410166B2 true JP3410166B2 (en) 2003-05-26

Family

ID=16629144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21283593A Expired - Fee Related JP3410166B2 (en) 1993-08-27 1993-08-27 Red light emitting diode element

Country Status (1)

Country Link
JP (1) JP3410166B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
JP2006127884A (en) 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd Light emitting element and display device
JP2011035017A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Light-emitting device
CN110379801A (en) * 2019-07-04 2019-10-25 南京宇丰晔禾信息科技有限公司 LED lamp bead, display screen

Also Published As

Publication number Publication date
JPH0766450A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP2953468B2 (en) Compound semiconductor device and surface treatment method thereof
US5008718A (en) Light-emitting diode with an electrically conductive window
JP2666237B2 (en) Group III nitride semiconductor light emitting device
EP0325493B1 (en) Epitaxial substrate for high-intensity LED, and method of manufacturing same
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
EP0616377B1 (en) Semiconductor light-emitting element and method for its manufacturing
JP3410166B2 (en) Red light emitting diode element
JP3325713B2 (en) Manufacturing method of semiconductor light emitting device
JPH08293623A (en) Method of manufacturing light emitting diode
JPH08255929A (en) Fabrication of semiconductor light emitting element
JP2001085742A (en) Semiconductor light emitting element and its manufacturing method
JP2003046119A (en) Light-emitting diode and method for manufacturing the same
US5639674A (en) Semiconductor light-emitting element and method for manufacturing therefor
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JPH05218498A (en) Light emitting diode provided with transverse junction
JPS61163689A (en) Manufacture of semiconductor device
JP3140123B2 (en) Semiconductor light emitting device
JPH10107314A (en) Semiconductor device and method of manufacturing the same
JPH05110135A (en) Multilayer epitaxial crystalline structure
JP2621850B2 (en) Light emitting diode
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JP3341484B2 (en) Group III nitride semiconductor light emitting device
JPS6244717B2 (en)
JPH08293622A (en) Infrared light-emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees